The Relative Contribution of Solutal Marangoni Convection to Thermal Marangoni Flow Instabilities in a Liquid Bridge of Smaller Aspect Ratios under Zero Gravity
Abstract
:1. Introduction
2. Numerical Method
2.1. Numerical Simulation
2.2. Dynamic Mode Decomposition (DMD)
3. Results and Discussion
3.1. Critical at Small Thermal Marangoni Numbers,
3.2. Critical under a Weak Solutal Marangoni Convection
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
3D | Three-dimensional |
LSA | Linear stability analysis |
POD | Proper orthogonal decomposition |
DMD | Dynamic mode decomposition |
References
- Lappa, M. CHAPTER 1—Space research. In Fluids, Materials and Microgravity; Lappa, M., Ed.; Elsevier: Oxford, UK, 2004; pp. 1–37. [Google Scholar] [CrossRef]
- Carotenuto, L.; Castagnolo, D.; Albanese, C.; Monti, R. Instability of thermocapillary convection in liquid bridges. Phys. Fluids 1998, 10, 555–565. [Google Scholar] [CrossRef]
- Yasuhiro, S.; Imaishi, N.; Kuhlmann, H.C.; Yoda, S. Numerical simulation of three-dimensional oscillatory thermocapillary flow in a half zone of Pr=l fluid. Adv. Space Res 1999, 24, 1385–1390. [Google Scholar] [CrossRef]
- Leypoldt, J.; Kuhlmann, H.C.; Rath, H.J. Three-dimensional numerical simulation of thermocapillary flows in cylindrical liquid bridges. J. Fluid Mech. 2000, 414, 285–314. [Google Scholar] [CrossRef]
- Rupp, R.; Müller, G.; Neumann, G. Three-dimensional time dependent modelling of the Marangoni convection in zone melting configurations for GaAs. J. Cryst. Growth 1989, 97, 34–41. [Google Scholar] [CrossRef]
- Chen, G.; Lizée, A.; Roux, B. Bifurcation Analysis of the thermocapillary convection in cylindrical Liquid Bridges. J. Cryst. Growth 1997, 180, 638–647. [Google Scholar] [CrossRef] [Green Version]
- Wanschura, M.; Shevtsova, V.M.; Kuhlmann, H.C.; Rath, H.J. Convective instability mechanisms in thermocapillary liquid bridges. Phys. Fluids 1995, 7, 912–925. [Google Scholar] [CrossRef]
- Minakuchi, H.; Okano, Y.; Dost, S. A three-dimensional numerical simulation study of the Marangoni convection occurring in the crystal growth of SixGe1−x by the float-zone technique in zero gravity. J. Cryst. Growth 2004, 266, 140–144. [Google Scholar] [CrossRef]
- Minakuchi, H.; Okano, Y.; Dost, S. Effect of thermo-solutal Marangoni convection on the azimuthal wave number in a liquid bridge. J. Cryst. Growth 2017, 468, 502–505. [Google Scholar] [CrossRef]
- Minakuchi, H.; Okano, Y.; Dost, S. The Hysteresis Phenomena of Flow Patterns due to Thermal and Solutal Marangoni Convections in a Liquid Bridge under Zero Gravity. Fluid Mech. Res. Int. J. 2018, 2, 00018. [Google Scholar] [CrossRef] [Green Version]
- Agampodi Mendis, R.L.; Sekimoto, A.; Okano, Y.; Minakuchi, H.; Dost, S. Global Linear Stability Analysis of Thermo-solutal Marangoni Convection in a Liquid Bridge Under Zero Gravity. Microgravity Sci. Technol. 2020. [Google Scholar] [CrossRef]
- Jin, C.; Sekimoto, A.; Okano, Y.; Minakuchi, H.; Dost, S. Characterization of the thermal and solutal Marangoni flows of opposite directions developing in a cylindrical liquid bridge under zero gravity. Phys. Fluids 2020, 32, 034104. [Google Scholar] [CrossRef]
- Lappa, M.; Savino, R.; Monti, R. Three-dimensional numerical simulation of Marangoni instabilities in liquid bridges: Influence of geometrical aspect ratio. Int. J. Numer. Methods Fluids 2001, 36, 53–90. [Google Scholar] [CrossRef] [Green Version]
- Preisser, F.; Schwabe, D.; Scharmann, A. Steady and oscillatory thermocapillary convection in liquid columns with free cylindrical surface. J. Fluid Mech. 1983, 126, 545–567. [Google Scholar] [CrossRef]
- Lappa, M. Three-dimensional numerical simulation of Marangoni flow instabilities in floating zones laterally heated by an equatorial ring. Phys. Fluids 2003, 15, 776–789. [Google Scholar] [CrossRef]
- Numerical investigation of the effect of rotation on the oscillatory thermocapillary convection and dopant transport in a silicon liquid bridge. J. Cryst. Growth 2019, 523. [CrossRef]
- Schmid, P.J. Dynamic mode decomposition of numerical and experimental data. J. Fluid Mech. 2010, 656, 5–28. [Google Scholar] [CrossRef] [Green Version]
- Rowley, C.W.; Mezi, I.; Bagheri, S.; Schlatter, P.; Henningson, D.S. Spectral analysis of nonlinear flows. J. Fluid Mech. 2009, 641, 115–127. [Google Scholar] [CrossRef] [Green Version]
- Imaishi, N.; Yasuhiro, S.; Akiyama, Y.; Yoda, S. Numerical simulation of oscillatory Marangoni flow in half-zone liquid bridge of low Prandtl number fluid. J. Cryst. Growth 2001, 230, 164–171. [Google Scholar] [CrossRef]
- Minakuchi, H.; Takagi, Y.; Okano, Y.; Mizoguchi, K.; Gima, S.; Dost, S. A grid refinement study of half-zone configuration of the Floating Zone growth system. J. Adv. Res. Phys. 2012, 3, 011201. [Google Scholar]
- Abbasoglu, S.; Sezai, I. Three-dimensional modelling of melt flow and segregation during Czochralski growth of GexSi1−x single crystals. Int. J. Therm. Sci. 2007, 46, 561–572. [Google Scholar] [CrossRef]
- Minakuchi, H.; Yoshino, T.; Okano, Y. The relative contributions and control of thermo-solutal Marangoni convections on flow patterns in a liquid bridge. J. Cryst. Growth 2014, 285, 61–65. (In Japanese) [Google Scholar] [CrossRef]
- Chun, C.H. Experiments on steady and oscillatory temperature distribution in a floating zone due to the Marangoni convection. Acta Astronaut. 1980, 7, 479–488. [Google Scholar] [CrossRef]
Case | Eigenvalue () | Frequency | m | |||
---|---|---|---|---|---|---|
(i) | 0.25 | 14,000 | 1786 | 0.0002 | 19 | 6 |
13,300 | 1786 | 0.0002 | 33 | 7 | ||
2100 | 3572 | 0.0052 | 55 | 11 | ||
1400 | 3572 | 0.0219 | 50 | 12 | ||
9100 | 3572 | 0.00006 | 120 | 13 | ||
(ii) | 1 | 3150 | 1490 | 0.006 | 6.19 | 2 |
3150 | 1786 | 0.0032 | 6.32 | 2 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Agampodi Mendis, R.L.; Sekimoto, A.; Okano, Y.; Minakuchi, H.; Dost, S. The Relative Contribution of Solutal Marangoni Convection to Thermal Marangoni Flow Instabilities in a Liquid Bridge of Smaller Aspect Ratios under Zero Gravity. Crystals 2021, 11, 116. https://doi.org/10.3390/cryst11020116
Agampodi Mendis RL, Sekimoto A, Okano Y, Minakuchi H, Dost S. The Relative Contribution of Solutal Marangoni Convection to Thermal Marangoni Flow Instabilities in a Liquid Bridge of Smaller Aspect Ratios under Zero Gravity. Crystals. 2021; 11(2):116. https://doi.org/10.3390/cryst11020116
Chicago/Turabian StyleAgampodi Mendis, Radeesha Laknath, Atsushi Sekimoto, Yasunori Okano, Hisashi Minakuchi, and Sadik Dost. 2021. "The Relative Contribution of Solutal Marangoni Convection to Thermal Marangoni Flow Instabilities in a Liquid Bridge of Smaller Aspect Ratios under Zero Gravity" Crystals 11, no. 2: 116. https://doi.org/10.3390/cryst11020116
APA StyleAgampodi Mendis, R. L., Sekimoto, A., Okano, Y., Minakuchi, H., & Dost, S. (2021). The Relative Contribution of Solutal Marangoni Convection to Thermal Marangoni Flow Instabilities in a Liquid Bridge of Smaller Aspect Ratios under Zero Gravity. Crystals, 11(2), 116. https://doi.org/10.3390/cryst11020116