The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding
Abstract
:1. Introduction
2. Materials and Methods
2.1. Production and Enzymatic Analysis of Recombinant Proteins
2.2. Determination of Kinetic Parameters of Inhibition
2.3. Crystallography, X-ray and Structural Analysis
2.4. Data Bank Accession Numbers
3. Results and Discussion
3.1. Inhibitory Effect of TCK on the Proteolytic Activity of PSP and PSPmod
E + I ⇌ EI → EI′ (I),
E + I ⇌ EI + I ⇌ EI2 → EI2′ (II),
3.2. Comparative Analysis of the Structure of PSPmod with Two Molecules of TCK Attached to the Catalytic Ser and His Residues
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Polgár, L. The prolyl oligopeptidase family. Cell. Mol. Life Sci. 2002, 59, 349–362. [Google Scholar] [CrossRef] [PubMed]
- Rawlings, N.D.; Barrett, A.J.; Thomas, P.; Huang, X.; Bateman, A.; Finn, R.D. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Res. 2018, 46, D624–D632. [Google Scholar] [CrossRef] [PubMed]
- Motta, F.N.; Azevedo, C.D.S.; Neves, B.P.; de Araújo, C.N.; Grellier, P.; de Santana, J.M.; Bastos, I.M.D. Oligopeptidase B, a missing enzyme in mammals and a potential drug target for trypanosomatid diseases. Biochimie 2019, 167, 207–216. [Google Scholar] [CrossRef] [PubMed]
- Coetzer, T.H.; Goldring, J.P.D.; Huson, L.E. Oligopeptidase B: A processing peptidase involved in pathogenesis. Biochimie 2008, 90, 336–344. [Google Scholar] [CrossRef]
- Mattiuzzo, M.; De Gobba, C.; Runti, G.; Mardirossian, M.; Bandiera, A.; Gennaro, R.; Scocchi, M. Proteolytic Activity of Escherichia coli Oligopeptidase B Against Proline-Rich Antimicrobial Peptides. J. Microbiol. Biotechnol. 2014, 24, 160–167. [Google Scholar] [CrossRef] [Green Version]
- Fülöp, V.; Böcskei, Z.; Polgár, L. Prolyl Oligopeptidase: An Unusual β-Propeller Domain Regulates Proteolysis. Cell 1998, 94, 161–170. [Google Scholar] [CrossRef] [Green Version]
- Rea, D.; Fülöp, V. Structure-Function Properties of Prolyl Oligopeptidase Family Enzymes. Cell Biophys. 2006, 44, 349–365. [Google Scholar] [CrossRef]
- Shan, L.; Mathews, I.I.; Khosla, C. Structural and mechanistic analysis of two prolyl endopeptidases: Role of interdomain dynamics in catalysis and specificity. Proc. Natl. Acad. Sci. USA 2005, 102, 3599–3604. [Google Scholar] [CrossRef] [Green Version]
- McLuskey, K.; Paterson, N.; Bland, N.D.; Isaacs, N.W.; Mottram, J. Crystal Structure of Leishmania major Oligopeptidase B Gives Insight into the Enzymatic Properties of a Trypanosomatid Virulence Factor. J. Biol. Chem. 2010, 285, 39249–39259. [Google Scholar] [CrossRef] [Green Version]
- Canning, P.; Rea, D.; Morty, R.E.; Fülöp, V. Crystal Structures of Trypanosoma brucei Oligopeptidase B Broaden the Paradigm of Catalytic Regulation in Prolyl Oligopeptidase Family Enzymes. PLoS ONE 2013, 8, e79349. [Google Scholar] [CrossRef]
- Petrenko, D.E.; Timofeev, V.I.; Britikov, V.V.; Britikova, E.V.; Kleymenov, S.Y.; Vlaskina, A.V.; Kuranova, I.P.; Mikhailova, A.G.; Rakitina, T.V. First Crystal Structure of Bacterial Oligopeptidase B in an Intermediate State: The Roles of the Hinge Region Modification and Spermine. Biology 2021, 10, 1021. [Google Scholar] [CrossRef] [PubMed]
- Czekster, C.M.; Ludewig, H.; McMahon, S.A.; Naismith, J.H. Characterization of a dual function macrocyclase enables design and use of efficient macrocyclization substrates. Nat. Commun. 2017, 8, 1045. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Ellis-Guardiola, K.; Rui, H.; Beckner, R.; Srivastava, P.; Sukumar, N.; Roux, B.; Lewis, J.C. Crystal Structure and Conformational Dynamics of Pyrococcus furiosus Prolyl Oligopeptidase. Biochemie 2019, 58, 1616–1626. [Google Scholar] [CrossRef] [PubMed]
- Li, M.; Chen, C.; Davies, D.R.; Chiu, T.K. Induced-fit Mechanism for Prolyl Endopeptidase. J. Biol. Chem. 2010, 285, 21487–21495. [Google Scholar] [CrossRef] [Green Version]
- Frydrych, I.; Mlejnek, P. Serine protease inhibitorsN-α-Tosyl-L-Lysinyl-Chloromethylketone (TLCK) andN-Tosyl-L-Phenylalaninyl-Chloromethylketone (TPCK) are potent inhibitors of activated caspase proteases. J. Cell. Biochem. 2008, 103, 1646–1656. [Google Scholar] [CrossRef]
- Asztalos, P.; Müller, A.; Hölke, W.; Sobek, H.; Rudolph, M.G. Atomic resolution structure of a lysine-specific endoproteinase from Lysobacter enzymogenes suggests a hydroxyl group bound to the oxyanion hole. Acta Crystallogr. Sect. D Biol. Crystallogr. 2014, 70, 1832–1843. [Google Scholar] [CrossRef]
- Drenth, J.; Kalk, K.H.; Swen, H.M. Binding of chloromethyl ketone substrate analogs to crystalline papain. Biochemistry 1976, 15, 3731–3738. [Google Scholar] [CrossRef]
- Azarkan, M.; Maquoi, E.; Delbrassine, F.; Herman, R.; M’Rabet, N.; Esposito, R.C.; Charlier, P.; Kerff, F. Structures of the free and inhibitors-bound forms of bromelain and ananain from Ananas comosus stem and in vitro study of their cytotoxicity. Sci. Rep. 2020, 10, 19570. [Google Scholar] [CrossRef]
- Mikhailova, A.G.; Khairullin, R.F.; Demidyuk, I.V.; Kostrov, S.V.; Grinberg, N.V.; Burova, T.V.; Grinberg, V.Y.; Rumsh, L.D. Cloning, sequencing, expression, and characterization of thermostability of oligopeptidase B from Serratia proteamaculans, a novel psychrophilic protease. Protein Expr. Purif. 2014, 93, 63–76. [Google Scholar] [CrossRef]
- Walsh, K.; Wilcox, P. Serine proteases. Methods Enzymol. 2011, 19, 31–41. [Google Scholar] [CrossRef]
- Mikhailova, A.G.; Rakitina, T.V.; Timofeev, V.I.; Karlinsky, D.M.; Korzhenevskiy, D.A.; Agapova, Y.K.; Vlaskina, A.V.; Ovchinnikova, M.V.; Gorlenko, V.A.; Rumsh, L.D. Activity modulation of the oligopeptidase B from Serratia proteamaculans by site-directed mutagenesis of amino acid residues surrounding catalytic triad histidine. Biochimie 2017, 139, 125–136. [Google Scholar] [CrossRef]
- Petrenko, D.E.; Mikhailova, A.G.; Timofeev, V.I.; Agapova, Y.K.; Karlinsky, D.M.; Komolov, A.S.; Korzhenevskiy, D.A.; Vlaskina, A.V.; Rumsh, L.D.; Rakitina, T.V. Molecular dynamics complemented by site-directed mutagenesis reveals significant difference between the interdomain salt bridge networks stabilizing oligopeptidases B from bacteria and protozoa in their active conformations. J. Biomol. Struct. Dyn. 2019, 38, 4868–4882. [Google Scholar] [CrossRef] [PubMed]
- Kitz, R.; Wilson, I.B. Esters of methanesulfonic acid as irreversible inhibitors of acetylcholinesterase. J. Biol. Chem. 1962, 237, 3245–3249. [Google Scholar] [CrossRef]
- Collen, D.; Lijnen, H.; De Cock, F.; Durieux, J.; Loffet, A. Kinetic properties of tripeptide lysyl chloromethyl ketone and lysyl p-nitroanilide derivatives towards trypsin-like serine proteinases. Biochim. Biophys. Acta (BBA) Enzym. 1980, 615, 158–166. [Google Scholar] [CrossRef]
- Lu, D.; Fütterer, K.; Korolev, S.; Zheng, X.L.; Tan, K.; Waksman, G.; Sadler, J.E. Crystal structure of enteropeptidase light chain complexed with an analog of the trypsinogen activation peptide. J. Mol. Biol. 1999, 292, 361–373. [Google Scholar] [CrossRef] [PubMed]
- Petrenko, D.E.; Nikolaeva, A.Y.; Lazarenko, V.A.; Dorovatovskii, P.V.; Timofeev, V.; Vlaskina, A.V.; Korzhenevskiy, D.A.; Mikhailova, A.G.; Rakitina, T.V. Screening of Conditions that Facilitate Crystallization of Oligopeptidase B from Serratia Proteamaculans by Differential Scanning Fluorimetry. Crystallogr. Rep. 2020, 65, 264–268. [Google Scholar] [CrossRef]
- Petrenko, D.E.; Nikolaeva, A.Y.; Lazarenko, V.A.; Dorovatovskiy, P.V.; Timofeev, V.I.; Vlaskina, A.V.; Korzhenevskiy, D.A.; Mikhailova, A.G.; Boyko, K.M.; Rakitina, T.V. Crystallographic Study of Mutants and Complexes of Oligopeptidase B from Serratia proteamaculans. Crystallogr. Rep. 2020, 65, 909–914. [Google Scholar] [CrossRef]
- Long, F.; Vagin, A.A.; Young, P.; Murshudov, G.N. BALBES: A molecular-replacement pipeline. Acta Crystallogr. Sect. D Biol. Crystallogr. 2007, 64, 125–132. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Murshudov, G.N.; Skubák, P.; Lebedev, A.A.; Pannu, N.S.; Steiner, R.A.; Nicholls, R.A.; Winn, M.D.; Long, F.; Vagin, A.A. REFMAC5 for the refinement of macromolecular crystal structures. Acta Crystallogr. Sect. D Biol. Crystallogr. 2011, 67, 355–367. [Google Scholar] [CrossRef] [Green Version]
- Emsley, P.; Lohkamp, B.; Scott, W.; Cowtan, K.D. Features and development of Coot. Acta Crystallogr. Sect. D Biol. Crystallogr. 2010, 66, 486–501. [Google Scholar] [CrossRef] [Green Version]
- Krissinel, E.; Henrick, K. Inference of Macromolecular Assemblies from Crystalline State. J. Mol. Biol. 2007, 372, 774–797. [Google Scholar] [CrossRef] [PubMed]
- Number 4 Collaborative Computational Project. The CCP4 suite: Programs for protein crystallography. Acta Crystallogr. Sect. D Biol. Crystallogr. 1994, 50, 760–763. [Google Scholar] [CrossRef] [PubMed]
- Diederichs, K.; Karplus, P. Improved R-factors for diffraction data analysis in macromolecular crystallography. Nat. Struct. Mol. Biol. 1997, 4, 269–275. [Google Scholar] [CrossRef] [PubMed]
- Holm, L. Using Dali for Protein Structure Comparison. Methods Mol. Biol. 2020, 2112, 29–42. [Google Scholar] [CrossRef]
PDB ID Protein-Inhibitor | 7NE7 PSPmod-TCK |
---|---|
Data collection | |
Diffraction source | K4.4 beamline, NRC “Kurchatov Institute” |
Wavelength (Å) | 0.79272 |
Temperature (K) | 100 |
Detector | CCD |
Space group | P212121 |
a, b, c (Å) | 73.32, 101.10, 108.76 |
α, β, γ (°) | 90.0 |
Unique reflections | 63282 |
Resolution range (Å) | 19.98–2.3 (2.36–2.3) |
Completeness (%) | 99.71 (99.01) |
Average redundancy | 7.92 (4614) |
〈I/σ(I)〉 | 7.98 (2.14) |
Rmrgd-F * (%) | 5.7 (24) |
Willson B | 26.2 |
Refinement | |
Rfact (%) | 19.1 |
Rfree (%) | 23.3 |
Rfree set size (%) | 5 |
RMSD of bonds (Å) | 0.008 |
RMSD of angles (°) | 1.65 |
Ramachandran plot | |
Most favoured (%) | 99.6 |
Allowed (%) | 0.4 |
No. atoms | |
Protein | 5545 |
Water | 328 |
Ligands | 124 |
B-factor (Å2) | |
Average | 27.2 |
Protein | 28.6 |
Water | 26.1 |
Ligands | 44.4 |
Enzyme Concentr. | Concentration of TCK Curve | k2, min−1 | Ki′, mM | Ki Ki′ × 1010, M2 | Ki, μM |
---|---|---|---|---|---|
PSPmod | 21–352 μM (Figure 1A, curve 1) | 0.043 ± 0.012 | 0.22 ± 0.05 | 26.2 ± 8.0 | 11.7 ± 4.7 |
1.25 μM | 100–352 μM (Figure 1A, curve 2) | 0.05 ± 0.01 | 0.31 ± 0.05 | – | – |
PSP | 15–263 μM (Figure 1B, curve 1) | 0.32 ± 0.05 | 0.36 ± 0.08 | 6.5 ± 2.3 | 1.8 ± 0.63 |
70 nM | 50–263 μM (Figure 1B, curve 2) | 0.27 ± 0.03 | 0.28 ± 0.06 | – | – |
PDB ID/Reference | 7NE7 | 7OB1 [11] | 2XE4 [9] |
---|---|---|---|
Structure name | PSPmod-TCK | PSPmod | LmOpb-AIP |
Protein size/aligned area, amino acids | 677/677 | 677/677 | 719/672 |
Conformation | interm. | interm. | closed |
RMSD (Cα), Å/identity, % * | 0/100 | 0.5/100 | 2.2/39 |
Catalytic Ser—His Cα-distance, Å | 20.2 | 18.2 | 8.3 |
Catalytic SerOγ—HisNε2 distance, Å | 23.0 | 13.9 | 3.1 |
Catalytic Asp—His Cα-distance, Å | 11.5 | 10.6 | 4.5 |
Catalytic AspOδ2—HisNδ1 distance, Å | 10.9 | 9.0 | 2.6 |
The distance between centers of mass of the domains, Å | 32.2 | 32.3 | 29.9 |
Buried surface area, cat./prop. domain, % 1 | 11.6/9.9 | 11.3/9.4 | 18.3/17.3 |
Interface residues, cat./prop. domain, % 2 | 16.9/15.9 | 16.3/15.9 | 24.0/19.5 |
Free solvation energy of the interdomain interface (ΔiG), kcal/M ** | −12.7 | −12.9 | −24.0 |
Interdomain hydrogen bonds ** | 17 | 11 | 38 |
Interdomain salt bridges ** | 5 | 4 | 8 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Timofeev, V.I.; Petrenko, D.E.; Agapova, Y.K.; Vlaskina, A.V.; Karlinsky, D.M.; Mikhailova, A.G.; Kuranova, I.P.; Rakitina, T.V. The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. Crystals 2021, 11, 1438. https://doi.org/10.3390/cryst11111438
Timofeev VI, Petrenko DE, Agapova YK, Vlaskina AV, Karlinsky DM, Mikhailova AG, Kuranova IP, Rakitina TV. The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. Crystals. 2021; 11(11):1438. https://doi.org/10.3390/cryst11111438
Chicago/Turabian StyleTimofeev, Vladimir I., Dmitry E. Petrenko, Yulia K. Agapova, Anna V. Vlaskina, David M. Karlinsky, Anna G. Mikhailova, Inna P. Kuranova, and Tatiana V. Rakitina. 2021. "The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding" Crystals 11, no. 11: 1438. https://doi.org/10.3390/cryst11111438
APA StyleTimofeev, V. I., Petrenko, D. E., Agapova, Y. K., Vlaskina, A. V., Karlinsky, D. M., Mikhailova, A. G., Kuranova, I. P., & Rakitina, T. V. (2021). The Crystal Structure of Nα-p-tosyl-lysyl Chloromethylketone-Bound Oligopeptidase B from Serratia Proteamaculans Revealed a New Type of Inhibitor Binding. Crystals, 11(11), 1438. https://doi.org/10.3390/cryst11111438