Comparison of CrN, AlN and TiN Diffusion Barriers on the Interdiffusion and Oxidation Behaviors of Ni+CrAlYSiN Nanocomposite Coatings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sample Preparation
2.2. Oxidation Test
2.3. Characterization
3. Results
3.1. Coating Morphology and Microstructures
3.2. Corrosion Kinetics and Corrosion Products
3.3. Characterization by SEM and EDS
4. Discussion
4.1. Influence of Diffusion Barrier on Interdiffusion
4.2. Influence of Diffusion Barrier on Growth of Oxide Scale
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Nicholls, J.R.; Simms, N.J.; Chan, W.Y.; Evans, H.E. Smart overlay coatings-concept and practice. Surf. Coat. Technol. 2002, 149, 236–244. [Google Scholar] [CrossRef] [Green Version]
- Goward, G.W. Progress in coatings for gas turbine airfoils. Surf. Coat. Technol. 1998, 108–109, 73–79. [Google Scholar] [CrossRef]
- Podchernyaeva, I.A.; Panasyuk, A.D.; Teplenko, M.A.; Podol’ski, V.I. Protective Coatings on Heat-resistant Nickel Alloys (Review). Powder Metall. Met. Ceram. 2000, 39, 434–444. [Google Scholar] [CrossRef]
- Pomeroy, M.J. Coatings for gas turbine materials and long term stability issues. Mater. Des. 2005, 26, 223–231. [Google Scholar] [CrossRef]
- Wang, J.L.; Chen, M.H.; Yang, L.L.; Sun, W.Y.; Zhu, S.L.; Wang, F.H. Nanocrystalline coatings on superalloys against high temperature oxidation and corrosion: A review. Corros. Com. 2021, 1, 58–69. [Google Scholar] [CrossRef]
- Yang, S.S.; Yang, L.L.; Chen, M.H.; Wang, J.L.; Zhu, S.L.; Wang, F.H. Understanding of failure mechanisms of the oxide scales formed on nanocrystalline coatings with different Al content during cyclic oxidation. Acta Mater. 2021, 205, 116576. [Google Scholar] [CrossRef]
- Brandl, W.; Toma, D.; Grabke, H.J. The characteristics of alumina scales formed on HVOF-sprayed MCrAlY coatings. Surf. Coat. Technol. 1998, 108, 10–15. [Google Scholar]
- Godlewski, K.; Godlewska, E. The effect of chromium on the corrosion resistance of aluminide coatings on nickel and nickel-based substrates. Mater. Sci. Eng. 1987, 88, 103–109. [Google Scholar] [CrossRef]
- Johnson, J.B.; Nicholls, J.R.; Hurst, R.C.; Hancock, P. The Mechanical Properties of Surface Scales on Nickel-Base Superalloys-II. Contaminant Corrosion. Corros. Sci. 1978, 18, 543–553. [Google Scholar] [CrossRef]
- Ren, X.; Wang, F.H.; Wang, X. High-temperature oxidation and hot corrosion behaviors of the NiCr–CrAl coating on a nickel-based superalloy. Surf. Coat. Technol. 2005, 198, 425–431. [Google Scholar] [CrossRef]
- Chen, G.F.; Lou, H.Y. Oxidation behavior of sputtered Ni-3Cr-20Al nanocrystalline coating. Mater. Sci. Eng. A 1999, 271, 360–365. [Google Scholar] [CrossRef]
- Ren, X.; Wang, F.H. High-temperature oxidation and hot-corrosion behavior of a sputtered NiCrAlY coating with and without aluminizing. Surf. Coat. Technol. 2006, 201, 30–37. [Google Scholar] [CrossRef]
- Zhang, K.; Wang, Q.M.; Sun, C.; Wang, F.H. Preparation and oxidation behavior of NiCrAlYSi coating on a cobalt-base superalloy K40S. Corros. Sci. 2008, 50, 1707–1715. [Google Scholar] [CrossRef]
- Knotek, O.; Lugscheider, E.; Löffler, F.; Beele, W. Diffusion barrier coatings with active bonding, designed for gas turbine blades. Surf. Coat. Technol. 1994, 68, 22–26. [Google Scholar] [CrossRef]
- Lang, F.Q.; Narita, T. Improvement in oxidation resistance of a Ni3Al-based superalloy IC6 by rhenium-based diffusion barrier coatings. Intermetallics 2007, 15, 599–606. [Google Scholar] [CrossRef]
- Nicolet, M. Diffusion barrier in thin films. Thin Solid Films 1978, 52, 415–443. [Google Scholar] [CrossRef]
- Müller, J.; Schierling, M.; Zimmermann, E.; Neuschütz, D. Chemical vapor deposition of smooth α-Al2O3 films on nickel base superalloys as diffusion barriers. Surf. Coat. Technol. 1999, 120, 16–21. [Google Scholar] [CrossRef]
- Lou, H.; Wang, F. Effect of Ta, Ti and TiN barriers on diffusion and oxidation kinetics of sputtered CoCrAlY coatings. Vacuum 1992, 43, 757–761. [Google Scholar] [CrossRef]
- Li, W.Z.; Wang, Q.M.; Gong, J.; Sun, C.; Jiang, X. Interdiffusion reaction in the CrN interlayer in the NiCrAlY/CrN/DSM11 system during thermal treatment. Appl. Surf. Sci. 2009, 255, 8190–8193. [Google Scholar] [CrossRef]
- Wang, Q.M.; Zhang, K.; Gong, J.; Cui, Y.Y.; Sun, C.; Wen, L.S. NiCoCrAlY coatings with and without an Al2O3/Al interlayer on an orthorhombic Ti2AlNb-based alloy: Oxidation and interdiffusion behaviors. Acta Mater. 2007, 55, 1427–1439. [Google Scholar] [CrossRef]
- Wang, Q.M.; Wu, Y.N.; Guo, M.H.; Ke, P.L.; Gong, J.; Sun, C.; Wen, L.S. Ion-plated Al-O-N and Cr-O-N films on Ni-base superalloys as diffusion barriers. Surf. Coat. Technol. 2005, 197, 68–76. [Google Scholar] [CrossRef]
- Cheng, Y.X.; Wang, W.; Zhu, S.L.; Xin, L.; Wang, F.H. Arc ion plated-Cr2O3 intermediate film as a diffusion barrier between NiCrAlY and γ-TiAl. Intermetallics 2010, 18, 736–739. [Google Scholar] [CrossRef]
- Zhu, L.J.; Zhu, S.L.; Wang, F.H. Effects of bias voltage and nitrogen flow rate on the structure and properties of Ni+CrAlYSiN nanocrystalline composite coatings. Chin. J. Mater. Res. 2013, 27, 53–59. (In Chinese) [Google Scholar]
- Zhu, L.J.; Zhu, S.L.; Wang, F.H. Preparation and oxidation behavior of nanocrystalline Ni+CrAlYSiN composite coating with AlN diffusion barrier on Ni-based superalloy K417. Corros. Sci. 2012, 60, 265–274. [Google Scholar] [CrossRef]
- Zhu, L.J.; Zhu, S.L.; Wang, F.H. Hot corrosion behavior of a Ni+CrAlYSiN composite coating in Na2SO4–25 wt.% NaCl melt. Appl. Surf. Sci. 2013, 268, 103–110. [Google Scholar] [CrossRef]
- Liang, Y.J.; Che, M.C. Handbook of Thermodynamic Data for Inorganic Compounds, 1st ed.; Northeast University Press: Shenyang, China, 1993. (In Chinese) [Google Scholar]
- Li, W.Z.; Yao, Y.; Wang, Q.M.; Bao, Z.B.; Gong, J.; Sun, C.; Jiang, X. Improvement of oxidation-resistance of NiCrAlY coatings by application of CrN or CrON interlayer. J. Mater. Res. 2008, 23, 341–352. [Google Scholar] [CrossRef]
- Müller, J.; Neuschütz, D. Efficiency of α-alumina as diffusion barrier between bond coat and bulk material of gas turbine blades. Vacuum 2003, 71, 247–251. [Google Scholar] [CrossRef]
- Cremer, R.; Witthaut, M.; Reichert, K.; Schierling, M.; Neuschütz, D. Thermal stability of Al-O-N PVD diffusion barriers. Surf. Coat. Technol. 1998, 108, 48–58. [Google Scholar] [CrossRef]
- Zhang, J.; Zhao, Y.H. Multi Arc Ion Plating Technology and Application; Metallurgical Industry Press: Beijing, China, 2007; p. 90. (In Chinese) [Google Scholar]
- Cheng, Y.X. Investigation on the Diffusion Barrier of γ-TiAl/NiCrAlY Coating Systems. Ph.D. Thesis, Institute of Metal Research, Chinese Academy of Sciences, Shenyang, China, 2009. (In Chinese). [Google Scholar]
- Mehrer, H. Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes; Springer Series in Solid-State Sciences; Springer: Berlin/Heidelberg, Germany, 2007; Volume 155. [Google Scholar]
- Chen, H.Y.; Stock, H.R.; Mayr, P. Plasma-assisted nitriding of aluminum. Surf. Coat. Technol. 1994, 64, 139–147. [Google Scholar] [CrossRef]
Arc-Voltage (V) | Arc Current (A) | Bias Voltage (V) | Bias Duty (%) | Temperature (°C) | |
---|---|---|---|---|---|
CrN layer | 19 | 70 | −600 | 20 | 195–215 |
AlN layer | 30 | 70 | −500 | 20 | 195–215 |
TiN layer | 19 | 70 | −600 | 20 | 195–215 |
Ni+CrAlYSiN coating | 19 | 70 | −300 | 20 | 195–215 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, L.; Feng, C.; Zhu, S.; Wang, F.; Yuan, J.; Wang, P. Comparison of CrN, AlN and TiN Diffusion Barriers on the Interdiffusion and Oxidation Behaviors of Ni+CrAlYSiN Nanocomposite Coatings. Crystals 2021, 11, 1333. https://doi.org/10.3390/cryst11111333
Zhu L, Feng C, Zhu S, Wang F, Yuan J, Wang P. Comparison of CrN, AlN and TiN Diffusion Barriers on the Interdiffusion and Oxidation Behaviors of Ni+CrAlYSiN Nanocomposite Coatings. Crystals. 2021; 11(11):1333. https://doi.org/10.3390/cryst11111333
Chicago/Turabian StyleZhu, Lijuan, Chun Feng, Shenglong Zhu, Fuhui Wang, Juntao Yuan, and Peng Wang. 2021. "Comparison of CrN, AlN and TiN Diffusion Barriers on the Interdiffusion and Oxidation Behaviors of Ni+CrAlYSiN Nanocomposite Coatings" Crystals 11, no. 11: 1333. https://doi.org/10.3390/cryst11111333
APA StyleZhu, L., Feng, C., Zhu, S., Wang, F., Yuan, J., & Wang, P. (2021). Comparison of CrN, AlN and TiN Diffusion Barriers on the Interdiffusion and Oxidation Behaviors of Ni+CrAlYSiN Nanocomposite Coatings. Crystals, 11(11), 1333. https://doi.org/10.3390/cryst11111333