Controlled Synthesis of Au Nanoparticles by Modified Polyol Methods: Determination of Their Size, Shape, and Crystal Structure
Abstract
:1. Introduction
2. Materials and Methods
3. Results and Discussion
3.1. Determination of Crystal Structure
3.2. Determination of Size and Shape of As-Prepared Au Nanoparticles
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burda, C.; Chen, X.; Narayanan, R.; El-Sayed, M.A. Chemistry and Properties of Nanocrystals of Different Shapes. Chem. Rev. 2005, 105, 1025–1102. [Google Scholar] [CrossRef] [PubMed]
- Fiévet, F.; Ammar-Merah, S.; Brayner, R.; Chau, F.; Giraud, M.; Mammeri, F.; Peron, J.; Piquemal, J.-Y.; Sicard, L.; Viau, G. The polyol process: A unique method for easy access to metal nanoparticles with tailored sizes, shapes and compositions. Chem. Soc. Rev. 2018, 47, 5187–5233. [Google Scholar] [CrossRef]
- Ammar, S.; Fiévet, F. Polyol Synthesis: A Versatile Wet-Chemistry Route for the Design and Production of Functional Inorganic Nanoparticles. Nanomaterials 2020, 10, 1217. [Google Scholar] [CrossRef] [PubMed]
- Kelly, K.L.; Coronado, E.; Zhao, L.L.; Schatz, G.C. The optical properties of metal nanoparticles: The influence of size, shape, and dielectric environment. J. Phys. Chem. B 2003, 107, 668–677. [Google Scholar] [CrossRef]
- Long, N.V.; Ohtaki, M.; Yuasa, M.; Yoshida, S.; Kuragaki, T.; Thi, C.M.; Nogami, M. Synthesis and Self-Assembly of Gold Nanoparticles by Chemically Modified Polyol Methods under Experimental Control. J. Nanomater. 2013, 2013, 793125. [Google Scholar]
- Long, N.V.; Yong, Y.; Lin, Z.L.; Cao, Y.; Thi, C.M.; Nogami, M. Controlled Synthesis of Gold Nanoparticles by Modified Polyol Methods for Plasmonic Applications. In New Developments in Gold Nanomaterials Research; Xu, Z., Yong, J.K.C., Eds.; Series: Nanotechnology Science and Technology; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2016; Chapter 2; pp. 25–37. [Google Scholar]
- Long, N.V.; Yong, Y.; Lin, Z.L.; Cao, Y.; Thi, C.M.; Nogami, M. New Developments of Gold Nanoparticles in Plasmonic Sensing. In New Developments in Gold Nanomaterials Research; Xu, Z., Yong, J.K.C., Eds.; Series: Nanotechnology Science and Technology; Nova Science Publishers, Inc.: Hauppauge, NY, USA, 2016; Chapter 7; pp. 115–146. [Google Scholar]
- Long, N.V.; Thi, C.M.; Nogami, M. The recent patents and highlights of functionally engineered nanoparticles for potential applications in biology, medicine, and nanomedicine. Curr. Phys. Chem 2014, 4, 173–194. [Google Scholar] [CrossRef]
- Long, N.V.; Chien, N.D.; Hayakawa, T.; Hirata, H.; Lakshminarayana, G.; Nogami, M. The Synthesis and Characterization of Platinum Nanoparticles: A Method of Controlling the Size and Morphology. Nanotechnology 2009, 21, 35605. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.; Zhao, H.; Peng, Z.; Zheng, B.; Zhang, C.; Wang, J. One-Step Fabrication of Highly Dense Gold Nanoparticles on Polyamide for Surface-Enhanced Raman Scattering. Appl. Surf. Sci. 2021, 561, 149856. [Google Scholar] [CrossRef]
- Rodrigues, T.S.; Zhao, M.; Yang, T.H.; Gilroy, K.D.; da Silva, A.G.; Camargo, P.H.; Xia, Y. Synthesis of colloidal metal nanocrystals: A comprehensive review on the reductants. Chem. Eur. J. 2018, 24, 16944–16963. [Google Scholar] [CrossRef] [PubMed]
- Yue, H.; Zhao, Y.; Ma, X.; Gong, J. Ethylene glycol: Properties, synthesis, and applications. Chem. Soc. Rev. 2012, 41, 4218–4244. [Google Scholar] [CrossRef]
- Wei, M.-Z.; Deng, T.-S.; Zhang, Q.; Cheng, Z.; Li, S. Seed-Mediated Synthesis of Gold Nanorods at Low Concentrations of CTAB. ACS Omega 2021, 6, 9188–9195. [Google Scholar] [CrossRef] [PubMed]
- Daniel, M.-C.; Astruc, D. Gold Nanoparticles: Assembly, Supramolecular Chemistry, Quantum-Size-Related Properties, and Applications toward Biology, Catalysis, and Nanotechnology. Chem. Rev. 2004, 104, 293–346. [Google Scholar] [CrossRef] [PubMed]
- Suchomel, P.; Kvitek, L.; Prucek, R.; Panacek, A.; Halder, A.; Vajda, S.; Zboril, R. Simple Size-Controlled Synthesis of Au Nanoparticles and Their Size-Dependent Catalytic Activity. Sci. Rep. 2018, 8, 4589. [Google Scholar] [CrossRef] [PubMed][Green Version]
- Lin, S.; Lin, X.; Shang, Y.; Han, S.; Hasi, W.; Wang, L. Self-Assembly of Faceted Gold Nanocrystals for Surface-Enhanced Raman Scattering Application. J. Phys. Chem. C 2019, 123, 24714–24722. [Google Scholar] [CrossRef]
- Nwahara, N.; Achadu, O.J.; Nyokong, T. In-Situ Synthesis of Gold Nanoparticles on Graphene Quantum Dots-Phthalocyanine Nanoplatforms: First Description of the Photophysical and Surface Enhanced Raman Scattering Behaviour. J. Photochem. Photobiol. A Chem. 2018, 359, 131–144. [Google Scholar] [CrossRef]
- Bai, L.; Ouyang, Y.; Song, J.; Xu, Z.; Liu, W.; Hu, J.; Wang, Y.; Yuan, F. Synthesis of Metallic Nanocrystals: From Noble Metals to Base Metals. Materials 2019, 12, 1497. [Google Scholar] [CrossRef][Green Version]
- González-Rubio, G.; Hilbert, H.; Rosenberg, R.; Ni, B.; Fuhrer, L.; Cölfen, H. Simple Determination of Gold Nanocrystal Dimensions by Analytical Ultracentrifugation via Surface Ligand-Solvent Density Matching. Nanomaterials 2021, 11, 1427. [Google Scholar] [CrossRef]
- Hossain, M.K. Nanoassembly of Gold Nanoparticles: An Active Substrate for Size-Dependent Surface-Enhanced Raman Scattering. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2020, 242, 118759. [Google Scholar] [CrossRef]
- Long, N.V.; Thi, C.M.; Nogami, M.; Ohtaki, M. Novel issues of morphology, size, and structure of Pt nanoparticles in chemical engineering: Surface attachment, aggregation or agglomeration, assembly, and structural changes. New. J. Chem. 2012, 36, 1320–1334. [Google Scholar] [CrossRef]
- Long, N.V.; Chien, N.D.; Uchida, M.; Matsubara, T.; Randy, J.; Masayuki, N. Directed and random self-assembly of Pt–Au nanoparticles. Mater. Chem. Phys. 2010, 124, 1193–1197. [Google Scholar] [CrossRef]
- Long, N.V.; Ohtaki, M.; Uchida, M.; Jalem, R.; Hirata, H.; Chien, N.D.; Nogami, M. Synthesis and characterization of polyhedral Pt nanoparticles: Their catalytic property, surface attachment, self-aggregation and assembly. J. Colloid Interface Sci. 2011, 359, 339–350. [Google Scholar] [CrossRef] [PubMed]
- Favier, I.; Pla, D.; Gómez, M. Palladium nanoparticles in polyols: Synthesis, catalytic couplings, and hydrogenations. Chem. Rev. 2019, 120, 1146–1183. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Peng, Y.; Lin, C.; Long, L.; Hu, J.; He, J.; Zeng, H.; Huang, Z.; Li, Z.Y.; Tanemura, M.; et al. Human ACE2-Functionalized Gold “Virus-Trap” Nanostructures for Accurate Capture of SARS-CoV-2 and Single-Virus SERS Detection. Nano-Micro Lett. 2021, 13, 109. [Google Scholar] [CrossRef] [PubMed]
- Crystallography Open Database. Available online: http://www.crystallography.net/cod/9008463.html (accessed on 25 September 2021).
- VESTA. Available online: https://jp-minerals.org/vesta/en/ (accessed on 25 September 2021).
- Momma, K.; Izumi, F. VESTA 3 for three-dimensional visualization of crystal, volumetric and morphology data. J. Appl. Cryst. 2011, 44, 1272–1276. [Google Scholar] [CrossRef]
- Gharbi, K.; Mezni, A.; Collière, V.; Philippot, K.; Amiens, C. Controlled Synthesis of Anisotropic Gold Nanoparticles by a Simple Polyol Process and Their Related Optical Properties. J. Tunis. Chem. Soc. 2017, 4, 335–342. [Google Scholar]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hang, N.T.N.; Yang, Y.; Nam, N.Q.T.; Nogami, M.; Phuc, L.H.; Tri, N.H.; Cuu, H.V.; Long, N.V. Controlled Synthesis of Au Nanoparticles by Modified Polyol Methods: Determination of Their Size, Shape, and Crystal Structure. Crystals 2021, 11, 1297. https://doi.org/10.3390/cryst11111297
Hang NTN, Yang Y, Nam NQT, Nogami M, Phuc LH, Tri NH, Cuu HV, Long NV. Controlled Synthesis of Au Nanoparticles by Modified Polyol Methods: Determination of Their Size, Shape, and Crystal Structure. Crystals. 2021; 11(11):1297. https://doi.org/10.3390/cryst11111297
Chicago/Turabian StyleHang, Nguyen Thi Nhat, Yong Yang, Nguyen Quang Thanh Nam, Masayuki Nogami, Le Hong Phuc, Nguyen Huu Tri, Ho Van Cuu, and Nguyen Viet Long. 2021. "Controlled Synthesis of Au Nanoparticles by Modified Polyol Methods: Determination of Their Size, Shape, and Crystal Structure" Crystals 11, no. 11: 1297. https://doi.org/10.3390/cryst11111297