Green Synthesis of Ge1−xSnx Alloy Nanoparticles for Optoelectronic Applications
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Characterization
2.3. Preparation of Ge-Sn Nanoparticles
2.4. Ligand Exchange and Surface Oxide Removal
3. Results and Discussion
3.1. Synthesis
3.2. XRD and Raman Analysis
3.3. SEM and TEM
3.4. Optical Properties and Ligand Exchange
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ruddy, D.; Johnson, J.; Smith, E.R.; Neale, N. Size and Bandgap Control in the Solution-Phase Synthesis of Near-Infrared-Emitting Germanium Nanocrystals. ACS Nano 2010, 4, 7459–7466. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.; Zabel, T.; Sigg, H. Group Iv Direct Band Gap Photonics: Methods, Challenges, and Opportunities. Front. Mater. 2015, 2, 52. [Google Scholar] [CrossRef] [Green Version]
- Suyog, G.; Chen, R.; Huang, Y.-C.; Yihwan, K.; Sanchez, E.; Harris, J.S.; Saraswat, K.C. Highly Selective Dry Etching of Germanium over Germanium–Tin (Ge1–XSnX): A Novel Route for Ge1–XSnX Nanostructure Fabrication. Nano Lett. 2013, 13, 3783–3790. [Google Scholar]
- Wang, L.; Su, S.; Wang, W.; Gong, X.; Yang, Y.; Guo, P.; Zhang, G.; Xue, C.; Cheng, B.; Han, G.; et al. Strained germanium–tin (GeSn) p-channel metal-oxide-semiconductor field-effect-transistors (p-MOSFETs) with ammonium sulfide passivation. Solid-State Electron. 2013, 83, 66–70. [Google Scholar] [CrossRef]
- Kittel, C. Introduction to Solid State Physics; John Wiley & Sons Inc.: New York, NY, USA, 2005. [Google Scholar]
- Esteves, R.J.A.; Hafiz, S.; Demchenko, D.O.; Özgür, Ü.; Arachchige, I.U. Ultra-Small Ge1–XSnX Quantum Dots with Visible Photoluminescence. Chem. Commun. 2016, 52, 11665–11668. [Google Scholar] [CrossRef]
- Venkatesham, T.; Nakagawara, T.A.; Demchenko, D.O.; Özgür, Ü.; Arachchige, I.U. Ge1–XSnX Alloy Quantum Dots with Composition-Tunable Energy Gaps and near-Infrared Photoluminescence. Nanoscale 2018, 10, 20296–20305. [Google Scholar]
- Barth, S.; Seifner, M.S.; Bernardi, J. Microwave-Assisted Solution–Liquid–Solid Growth of Ge1–XSnX Nanowires with High Tin Content. Chem. Commun. 2015, 51, 12282–12285. [Google Scholar] [CrossRef]
- Meng, A.C.; Fenrich, C.; Braun, M.; McVittie, J.P.; Marshall, A.F.; Harris, J.S.; McIntyre, P.C. Core-Shell Germanium/Germanium–Tin Nanowires Exhibiting Room-Temperature Direct- and Indirect-Gap Photoluminescence. Nano Lett. 2016, 16, 7521–7529. [Google Scholar] [CrossRef]
- Gao, K.; Prucnal, S.; Huebner, R.; Baehtz, C.; Skorupa, I.; Wang, Y.; Helm, M.; Zhou, S.; Skorupa, W. Ge1–XSnX alloys synthesized by ion implantation and pulsed laser melting. Appl. Phys. Lett. 2014, 105, 42107. [Google Scholar] [CrossRef]
- Kormoš, L.; Kratzer, M.; Kostecki, K.; Oehme, M.; Šikola, T.; Kasper, E.; Schulze, J.; Teichert, C. Surface analysis of epitaxially grown GeSn alloys with Sn contents between 15% and 18%. Surf. Interface Anal. 2016, 49, 297–302. [Google Scholar] [CrossRef]
- Newton, K.A.; Sully, H.R.; Bridges, F.; Carter, S.A.; Kauzlarich, S.M. Structural Characterization of Oleylamine- and Dodecanethiol-Capped Ge1–xSnx Alloy Nanocrystals. J. Phys. Chem. C 2021, 125, 6401–6417. [Google Scholar] [CrossRef]
- Lu, X.; Korgel, A.B.A.; Johnston, K.P. High Yield of Germanium Nanocrystals Synthesized from Germanium Diiodide in Solution. Chem. Mater. 2005, 17, 6479–6485. [Google Scholar] [CrossRef]
- Esteves, R.J.A.; Ho, M.Q.; Arachchige, I.U. Nanocrystalline Group Iv Alloy Semiconductors: Synthesis and Characterization of Ge1–XSnX Quantum Dots for Tunable Bandgaps. Chem. Mater. 2015, 27, 1559–1568. [Google Scholar] [CrossRef]
- Nag, A.; Kovalenko, M.V.; Lee, J.-S.; Liu, W.; Spokoyny, B.; Talapin, D.V. Metal-Free Inorganic Ligands for Colloidal Nanocrystals: S2–, Hs–, Se2–, HSe–, Te2–, HTe–, TeS32–, OH–, and NH2– as Surface Ligands. J. Am. Chem. Soc. 2011, 133, 10612–10620. [Google Scholar] [CrossRef]
- Chizmeshya, A.V.G.; Bauer, M.R.; Kouvetakis, J. Experimental and Theoretical Study of Deviations from Vegard′s Law in the SnxGe1−x System. ChemInform 2003, 34. [Google Scholar] [CrossRef]
- Lee, D.C.; Pietryga, J.M.; Robel, I.; Werder, D.J.; Schaller, R.D.; Klimov, V. Colloidal Synthesis of Infrared-Emitting Germanium Nanocrystals. J. Am. Chem. Soc. 2009, 131, 3436–3437. [Google Scholar] [CrossRef] [PubMed]
- Volodin, V.A.; Marin, D.; Sachkov, V.; Gorokhov, E.B.; Rinnert, H.; Vergnat, M. Applying an improved phonon confinement model to the analysis of Raman spectra of germanium nanocrystals. J. Exp. Theor. Phys. 2014, 118, 65–71. [Google Scholar] [CrossRef]
- Boote, B.W.; Men, L.; Andaraarachchi, H.P.; Bhattacharjee, U.; Petrich, J.W.; Vela, J.; Smith, E.A. Germanium–Tin/Cadmium Sulfide Core/Shell Nanocrystals with Enhanced Near-Infrared Photoluminescence. Chem. Mater. 2017, 29, 6012–6021. [Google Scholar] [CrossRef] [Green Version]
- Yang, Q.; Zhao, X.; Wu, X.; Li, M.; Di, Q.; Fan, X.; Zhu, J.; Song, X.; Li, Q.; Quan, Z. Facile Synthesis of Uniform Ge1–XSnX Alloy Nanocrystals with Tunable Bandgap. Chem. Mater. 2019, 31, 2248–2252. [Google Scholar] [CrossRef]
- Chen, C.-C.; Stone, K.; Lai, C.-Y.; Dobson, K.; Radu, D. Sulvanite (Cu3VS4) nanocrystals for printable thin film photovoltaics. Mater. Lett. 2018, 211, 179–182. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Chang, C.-Y.; Radu, D.R. Solution-Based Synthesis of Sulvanite Cu3TaS4 and Cu3TaSe4 Nanocrystals. Crystals 2021, 11, 51. [Google Scholar] [CrossRef]
- Liu, M.; Lai, C.-Y.; Selopal, G.S.; Radu, D.R. Synthesis and optoelectronic properties of Cu3VSe4 nanocrystals. PLoS ONE 2020, 15, e0232184. [Google Scholar] [CrossRef] [PubMed]
- Liu, M.; Radu, D.; Selopal, G.; Bachu, S.; Lai, C.-Y. Stand-Alone CuFeSe2 (Eskebornite) Nanosheets for Photothermal Cancer Therapy. Nanomaterials 2021, 11, 2008. [Google Scholar] [CrossRef] [PubMed]
- Lei, D.; Wang, W.; Zhang, Z.; Pan, J.; Gong, X.; Liang, G.; Tok, E.-S.; Yeo, Y.-C. Ge0.83Sn0.17 p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality. J. Appl. Phys. 2016, 119, 24502. [Google Scholar] [CrossRef] [Green Version]
Targeted Composition | GeI2 Amount | SnCl2 Amount | ||
---|---|---|---|---|
mg | mmol | mg | mmol | |
Ge0.88Sn0.12 | 172.3 | 0.528 | 13.6 | 0.072 |
Ge0.85Sn0.15 | 166.5 | 0.510 | 17.1 | 0.090 |
Ge0.82Sn0.18 | 160.6 | 0.492 | 20.5 | 0.108 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Attar, G.S.; Liu, M.; Lai, C.-Y.; Radu, D.R. Green Synthesis of Ge1−xSnx Alloy Nanoparticles for Optoelectronic Applications. Crystals 2021, 11, 1216. https://doi.org/10.3390/cryst11101216
Attar GS, Liu M, Lai C-Y, Radu DR. Green Synthesis of Ge1−xSnx Alloy Nanoparticles for Optoelectronic Applications. Crystals. 2021; 11(10):1216. https://doi.org/10.3390/cryst11101216
Chicago/Turabian StyleAttar, Gopal Singh, Mimi Liu, Cheng-Yu Lai, and Daniela R. Radu. 2021. "Green Synthesis of Ge1−xSnx Alloy Nanoparticles for Optoelectronic Applications" Crystals 11, no. 10: 1216. https://doi.org/10.3390/cryst11101216
APA StyleAttar, G. S., Liu, M., Lai, C.-Y., & Radu, D. R. (2021). Green Synthesis of Ge1−xSnx Alloy Nanoparticles for Optoelectronic Applications. Crystals, 11(10), 1216. https://doi.org/10.3390/cryst11101216