High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Bonacina, L.; Mugnier, Y.; Courvoisier, F.; Le Dantec, R.; Extermann, J.; Lambert, Y.; Boutou, V.; Galez, C.; Wolf, J.P. Polar Fe(IO3)3 nanocrystals as local probes for nonlinear microscopy. Appl. Phys. B Lasers Opt. 2007, 87, 399–403. [Google Scholar] [CrossRef]
- Hebboul, Z.; Galez, C.; Benbertal, D.; Beauquis, S.; Mugnier, Y.; Benmakhlouf, A.; Bouchenafa, M.; Errandonea, D. Synthesis, characterization, and crystal structure determination of a new lithium zinc iodate polymorph LiZn(IO3)3. Crystals 2019, 9, 464. [Google Scholar] [CrossRef]
- Jia, Y.J.; Chen, Y.G.; Guo, Y.; Guan, X.F.; Li, C.; Li, B.; Liu, M.M.; Zhang, X.M. LiMII(IO3)3 (MII = Zn and Cd): Two Promising Nonlinear Optical Crystals Derived from a Tunable Structure Model of α-LiIO3. Angew. Chemie Int. Ed. 2019, 58, 17194–17198. [Google Scholar] [CrossRef] [PubMed]
- Hebboul, Z.; Ghozlane, A.; Turnbull, R.; Benghia, A.; Allaoui, S. Simple new method for the preparation of La(IO3)3 nanoparticles. Nanomaterials 2020, 10, 2400. [Google Scholar] [CrossRef] [PubMed]
- Patil, A.B. FTIR study of second group iodate crystals grown by gel method. Int. J. Grid Nad. Distrib. Comput. 2020, 13, 227–235. [Google Scholar]
- Benghia, A.; Hebboul, Z.; Chikhaoui, R.; Khaldoun Lefkaier, I.; Chouireb, A.; Goumri-Said, S. Effect of iodic acid concentration in preparation of zinc iodate: Experimental characterization of Zn(IO3)2, and its physical properties from density functional theory. Vacuum 2020, 181, 109660. [Google Scholar] [CrossRef]
- Kochuthresia, T.C.; Gautier-Luneau, I.; Vaidyan, V.K.; Bushiri, M.J. Raman and Ftir Spectral Investigations of Twinned M(IO3)2 (M = Mn, Ni, Co, AND Zn) Crystals. J. Appl. Spectrosc. 2016, 82, 941–946. [Google Scholar] [CrossRef]
- Shanmuga Sundar, G.J.; Kumar, S.M.R.; Packiya raj, M.; Selvakumar, S. Synthesis, growth, optical, mechanical and dielectric studies on NLO active monometallic zinc iodate [Zn(IO3)2] crystal for frequency conversion. Mater. Res. Bull. 2019, 112, 22–27. [Google Scholar] [CrossRef]
- Phanon, D.; Bentria, B.; Jeanneau, E.; Benbertal, D.; Mosset, A.; Gautier-Luneau, I. Crystal structure of M(IO3)2 metal iodates, twinned by pseudo-merohedry, with MII: MgII, MnII, CoII, NiII and ZnII. Z. Krist. 2006, 221, 635–642. [Google Scholar]
- Liang, J.K.; Wang, C.G. The structure of Zn(IO3)2 Crystal. Acta Chim. Sin. 1982, 40, 985–993. [Google Scholar]
- Mougel, F.; Kahn-Harari, A.; Aka, G.; Pelenc, D. Structural and thermal stability of Czochralski grown GdCOB oxoborate single crystals. J. Mater. Chem. 1998, 8, 1619–1623. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Saqib, H.; Rodriguez-Hernandez, P.; Munoz, A.; Nenert, G.; Yousef, I.; Popescu, C.; Errandonea, D. First-Order Isostructural Phase Transition Induced by High-Pressure in Fe(IO3)3. J. Phys. Chem. C 2020, 124, 8669–8679. [Google Scholar] [CrossRef]
- Liang, A.; Rahman, S.; Rodriguez-Hernandez, P.; Muñoz, A.; Manjón, F.J.; Nenert, G.; Errandonea, D. High-pressure Raman study of Fe(IO3)3: Soft-mode behavior driven by coordination changes of iodine atoms. J. Phys. Chem. C 2020, 124, 21329–21337. [Google Scholar] [CrossRef]
- Sagotra, A.K.; Errandonea, D.; Cazorla, C. Mechanocaloric effects in superionic thin films from atomistic simulations. Nat. Commun. 2017, 8, 963. [Google Scholar] [CrossRef] [PubMed]
- Ross, N.L.; Detrie, T.A.; Liu, Z. High-pressure raman and infrared spectroscopic study of prehnite. Minerals 2020, 10, 312. [Google Scholar] [CrossRef]
- Peter, S.; Pracht, G.; Lange, N.; Lutz, H.D. Zinkiodate ± Schwingungsspektren (IR, Raman) und Kristallstruktur von Zn(IO3)2∙2H2O Zinc Iodates ± Infrared and Raman Spectra, Crystal Structure. Z. Anorg. Allg. Chem. 2000, 626, 208–215. [Google Scholar] [CrossRef]
- Asaumi, K.; Kondo, Y. Effect of very high pressure on the optical absorption spectra in CsI. Solid State Commun. 1981, 40, 715–718. [Google Scholar] [CrossRef]
- Celeste, A.; Borondics, F.; Capitani, F. Hydrostaticity of pressure-transmitting media for high pressure infrared spectroscopy. High Press. Res. 2019, 39, 608–618. [Google Scholar] [CrossRef]
- Mao, H.K.; Xu, J.; Bell, P.M. Calibration of the ruby pressure gauge to 800 kbar under quasi-hydrostatic conditions. J. Geophys. Res. 1986, 91, 4673–4676. [Google Scholar] [CrossRef]
- Bushiri, M.J.; Kochuthresia, T.C.; Vaidyan, V.K.; Gautier-Luneau, I. Raman scattering structural studies of nonlinear optical M(IO3)3 (M = Fe, Ga, and In) and linear optical β-In(IO3)3. J. Nonlinear Opt. Phys. Mater. 2014, 23, 1450039. [Google Scholar] [CrossRef]
- Crettez, J.M.; Gard, R.; Remoissenet, M. Near and far infrared investigations from α and β lithium iodate crystals. Solid State Commun. 1972, 11, 951–954. [Google Scholar] [CrossRef]
- Pimenta, M.A.; Oliveira, M.A.S.; Bourson, P.; Crettez, J.M. Raman study of Li1−xHxIO3 crystals. J. Phys. Condens. Matter 1997, 9, 7903–7912. [Google Scholar] [CrossRef]
- Errandonea, D.; Muñoz, A.; Rodríguez-Hernández, P.; Gomis, O.; Achary, S.N.; Popescu, C.; Patwe, S.J.; Tyagi, A.K. High-Pressure Crystal Structure, Lattice Vibrations, and Band Structure of BiSbO. Inorg. Chem. 2016, 55, 4958–4969. [Google Scholar] [CrossRef] [PubMed]
- Errandonea, D.; Manjón, F.J.; Garro, N.; Rodríguez-Hernández, P.; Radescu, S.; Mujica, A.; Muñoz, A.; Tu, C.Y. Combined Raman scattering and ab initio investigation of pressure-induced structural phase transitions in the scintillator ZnWO4. Phys. Rev. B Condens. Matter Mater. Phys. 2008, 78, 054116. [Google Scholar] [CrossRef]
- Cavalcante, L.S.; Moraes, E.; Almeida, M.A.P.; Dalmaschio, C.J.; Batista, N.C.; Varela, J.A.; Longo, E.; Siu Li, M.; Andrés, J.; Beltrán, A. A combined theoretical and experimental study of electronic structure and optical properties of β-ZnMoO4 microcrystals. Polyhedron 2013, 54, 13–25. [Google Scholar] [CrossRef]
- Tschauner, O.; Errandonea, D.; Serghiou, G. Possible superlattice formation in high-temperature treated carbonaceous MgB2 at elevated pressure. Physica B 2006, 371, 88–94. [Google Scholar] [CrossRef]
- Errandonea, D.; Meng, Y.; Somayazulu, M.; Häusermann, D. Pressure-induced → ω transition in titanium metal: A systematic study of the effects of uniaxial stress. Physica B 2005, 355, 116–125. [Google Scholar] [CrossRef]
- Mendes Fílho, J.; Lemos, V.; Cerdeira, F.; Katiyar, R.S. Raman and x-ray studies of a high-pressure phase transition in β-LiIO3 and the study of anharmonic effects. Phys. Rev. B 1984, 30, 7212–7218. [Google Scholar] [CrossRef]
- Shen, Z.X.; Wang, X.B.; Tang, S.H.; Li, H.P.; Zhou, F. High pressure raman study and phase transitions of KIO3 non-linear optical single crystals. Rev. High Press. Sci. Technol. No Kagaku To Gijutsu 1998, 7, 751–753. [Google Scholar] [CrossRef]
- Sans, J.A.; Vilaplana, R.; Lora da Silva, E.; Popescu, C.; Cuenca-Gotor, V.P.; Andrada-Chacoón, A.; Munñoz, A.; Sánchez-Benitez, J.; Gomis, O.; Pereira, A.L.J.; et al. Characterization and decomposition of the natural van der Waals SnSb2Te4 under compression. Inorg. Chem. 2020, 59, 9900–9918. [Google Scholar] [CrossRef]
Assignment | ω (cm−1) This Work IR | ω (cm−1) [5] IR | ω (cm−1) [6] IR | ω (cm−1) [7] IR | ω (cm−1) [7] Raman | ω (cm−1) [8] IR> | ω (cm−1) [16] Raman |
---|---|---|---|---|---|---|---|
Lattice modes | 61 | ||||||
67 | |||||||
73 | |||||||
80 | 80 | ||||||
98(2) | |||||||
107(2) | 101 | 100 | |||||
116(2) | 113 | 111 | |||||
125(2) | |||||||
135(2) | 132 | 139 | |||||
145(2) | 141 | 148 | |||||
158(2) | 152 | 155 | |||||
172(2) | 173 | 173 | |||||
183(2) | 180 | ||||||
193(2) | 189 | 187 | |||||
208(2) | |||||||
220(2) | |||||||
236(2) | |||||||
247(2) | |||||||
258(2) | 255 | ||||||
269(2) | 267 | 265 | |||||
ν2 | 322(2) | 327 | 327 | 327 | |||
336(2) | |||||||
348(2) | |||||||
353(2) | 354 | 354 | 351 | ||||
366 | |||||||
388(2) | 391 | ||||||
ν4 | 402(2) | 405 | |||||
425(2) | 418 | 418 | 424 | 422 | |||
440(2) | 432 | ||||||
452(2) | 444 | ||||||
524 |
ω (cm−1) Phase I 0.9 GP | dω/dP (cm−1/GPa) | ω (cm−1) Phase II 3.6 GPa | dω/dP (cm−1/GPa) | ω (cm−1) Phase III 8.8 GPa | dω/dP (cm−1/GPa) | ω (cm−1) Phase IV 13 GPa | dω/dP (cm−1/GPa) |
---|---|---|---|---|---|---|---|
158(2) | 1.5(1) | 163(2) | 5.3(1) | 188(2) | 0.6(1) | 190(2) | 4.2(1) |
172(2) | 2.1(1) | 178(2) | 3.8(1) | 197(2) | 3.0(1) | 210(2) | 2.0(1) |
183(2) | 3.3(1) | 192(2) | 3.6(1) | 212(2) | 2.2(1) | 222(2) | 1.1(1) |
193(2) | 4.0(1) | 204(2) | 3.7(1) | 223(2) | 7.8(1) | 255(2) | 3.3(1) |
207(2) | 5.3(1) | 221(2) | 2.9(1) | 236(2) | 8.0(1) | 269(2) | 2.1(1) |
220(2) | 7.8(1) | 241(2) | 7.2(1) | 280(2) | 5.3(1) | 302(2) | 2.4(1) |
236(2) | 7.5(1) | 257(2) | 6.8(1) | 292(2) | 2.3(1) | -- | -- |
247(2) | 8.7(1) | 272(2) | 6.2(1) | 302(2) | 3.1(1) | -- | -- |
258(2) | 8.6(1) | 283(2) | 6.1(1) | 312(2) | 3.2(1) | 326(2) | 4.9(1) |
269(2) | 7.9(1) | 291(2) | 6.4(1) | 323(2) | 5.7(1) | 348(2) | 4.1(1) |
322(2) | 4.1(1) | 331(2) | 4.2(1) | 347(2) | 5.6(1) | 373(2) | 6.4(1) |
336(2) | 3.4(1) | 345(2) | 3.1(1) | 368(2) | 6.0(1) | 393(2) | 5.6(1) |
353(2) | 3.8(1) | 364(2) | 4.9(1) | 389(2) | 7.1(1) | 419(2) | 4.9(1) |
361(2) | 4.6(1) | 375(2) | 6.4(1) | 407(2) | 5.2(1) | 429(2) | 6.3(1) |
388(2) | 4.8(1) | 401(2) | 5.2(1) | 424(2) | 1.8(1) | 450(2) | 3.4(1) |
425(2) | 4.6(1) | 439(2) | 4.4(1) | 465(2) | 0.5(1) | 471(2) | 4.3(1) |
440(2) | 4.4(1) | 453(2) | 4.7(1) | 477(2) | 0.7(1) | 482(2) | 4.8(1) |
452(2) | 4.5(1) | 464(2) | 4.4(1) | 488(2) | 6.5(1) | 509(2) | 5.1(1) |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, A.; Turnbull, R.; Bandiello, E.; Yousef, I.; Popescu, C.; Hebboul, Z.; Errandonea, D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals 2021, 11, 34. https://doi.org/10.3390/cryst11010034
Liang A, Turnbull R, Bandiello E, Yousef I, Popescu C, Hebboul Z, Errandonea D. High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals. 2021; 11(1):34. https://doi.org/10.3390/cryst11010034
Chicago/Turabian StyleLiang, Akun, Robin Turnbull, Enrico Bandiello, Ibraheem Yousef, Catalin Popescu, Zoulikha Hebboul, and Daniel Errandonea. 2021. "High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation" Crystals 11, no. 1: 34. https://doi.org/10.3390/cryst11010034
APA StyleLiang, A., Turnbull, R., Bandiello, E., Yousef, I., Popescu, C., Hebboul, Z., & Errandonea, D. (2021). High-Pressure Spectroscopy Study of Zn(IO3)2 Using Far-Infrared Synchrotron Radiation. Crystals, 11(1), 34. https://doi.org/10.3390/cryst11010034