A Short Review of One-Dimensional Wigner Crystallization
Abstract
1. Introduction
2. The Ground State Density
3. Standard Bosonization
4. Bosonization in the Strong Interaction Limit
5. Indicators of the Wigner Molecule
- (i)
- The electron density shows, in the Wigner molecule regime, a number of (well separated) peaks that equals the number of electrons in the system.
- (ii)
- The low-energy excitations, that are in the spin sector, have typical energies that are strongly suppressed with respect to the non-interacting case (the Wigner molecule, as mentioned, tends to be degenerate).
- (iii)
- More surprisingly, the following effect can be predicted [86]: when the temperature is low as compared to the bandwidth of the spin Hamiltonian, the conductance is characterized by the typical Luttinger liquid value. On the other hand, in the spin incoherent regime, the system behaves more like a spinless Luttinger liquid and the conductance tends to .
6. Carbon Nanotubes
7. Experiments
8. Perspectives
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Wigner, E. On the Interaction of Electrons in Metals. Phys. Rev. 1934, 46, 1002. [Google Scholar] [CrossRef]
- Giuliani, G.; Vignale, G. Quantum Theory of the Electron Liquid; Cambridge University Press: Cambridge, UK, 2005. [Google Scholar]
- Usually, in the jellium model the background of positive ions is treated as a continuum positive charge density, rather than considering in details the underlying lattice structure—Hence the name “jellium”.
- Drummond, N.D.; Needs, R.D. Hybrid Phase at the Quantum Melting of the Wigner Crystal. Phys. Rev. Lett. 2005, 94, 046801. [Google Scholar]
- At a practical level, a 2D electron system is obtained when the motion in one spatial dimension (the transverse direction) is constrained so that the discrete energy level separation corresponding to the motion in the transverse directions exceeds the other typical energy scales.
- Grimes, C.C.; Adams, G. Evidence for a Liquid-to-Crystal Phase Transition in a Classical, Two-Dimensional Sheet of Electrons. Phys. Rev. Lett. 1979, 42, 795. [Google Scholar] [CrossRef]
- Monarkha, Y.P.; Syvokon, V.E. A two-dimensional Wigner crystal. Low Temp. Phys. 2012, 38, 1067. [Google Scholar] [CrossRef]
- Solyom, J. Wigner crystals: New realizations of an old idea. Epj Conf. 2014, 78, 01009. [Google Scholar] [CrossRef]
- Klitzing, K.V.; Dorda, G.; Pepper, M. New Method for High-Accuracy Determination of the Fine-Structure Constant Based on Quantized Hall Resistance. Phys. Rev. Lett. 1980, 45, 494. [Google Scholar] [CrossRef]
- Andrei, E.Y.; Deville, G.; Glattli, D.C.; Williams, F.I.B.; Paris, E.; Etienne, B. Observation of a Magnetically Induced Wigner Solid. Phys. Rev. Lett. 1989, 60, 2765. [Google Scholar] [CrossRef]
- Zhu, H.; Chen, Y.P.; Jiang, P.; Engel, L.W.; Tsui, D.C.; Pfeiffer, L.N.; West, K.W. Observation of a Pinning Mode in a Wigner Solid with ν=1/3 Fractional Quantum Hall Excitations. Phys. Rev. Lett. 2010, 105, 126803. [Google Scholar] [CrossRef] [PubMed]
- Liu, Y.; Kamburov, D.; Hasdemir, S.; Shayegan, M.; Pfeiffer, L.N.; West, K.W.; Baldwin, K.W. Fractional Quantum Hall Effect and Wigner Crystal of Interacting Composite Fermions. Phys. Rev. Lett. 2014, 113, 246803. [Google Scholar] [CrossRef]
- Liu, Y.; Hasdemir, S.; Pfeiffer, L.N.; West, K.W.; Baldwin, K.W.; Shayegan, M. Observation of an Anisotropic Wigner Crystal. Phys. Rev. Lett. 2016, 117, 106802. [Google Scholar] [CrossRef]
- Knighton, T.; Wu, Z.; Huang, J.; Serafin, A.; Xia, J.S.; Pfeiffer, L.N.; West, K.W. Evidence of two-stage melting of Wigner solids. Phys. Rev. B 2018, 97, 085135. [Google Scholar] [CrossRef]
- Corrigan, J.; Dodson, J.P.; Ekmel Ercan, H.; Abadillo-Uriel, J.C.; Thorgrimsson, B.; Knapp, T.J.; Holman, N.; McJunkin, T.; Neyens, S.F.; MacQuarrie, E.R.; et al. Coherent control and spectroscopy of a semiconductor quantum dot Wigner molecule. arXiv arXiv:2009.13572.
- Hawrylak, P.; Jacak, L.; Wojs, A. Quantum Dots; Springer: Berlin/Heidelberg, Germany, 1998. [Google Scholar]
- Kouwenhoven, L.P.; Austing, D.G.; Tarucha, S. Few-electron quantum dots. Rep. Prog. Phys. 2001, 64, 6. [Google Scholar] [CrossRef]
- Reimann, S.; Manninen, M. Electronic structure of quantum dots. Rev. Mod. Phys. 2002, 74, 1283. [Google Scholar] [CrossRef]
- Yannouleas, C.; Landman, U. Symmetry breaking and quantum correlations. Rep. Prog. Phys. 2007, 70, 2067. [Google Scholar] [CrossRef]
- Haldane, F.D.M. Effective Harmonic-Fluid Approach to Low-Energy Properties of One-Dimensional Quantum Fluids. Phys. Rev. Lett. 1981, 47, 1840. [Google Scholar] [CrossRef]
- Cazalilla, M.A.; Citro, R.; Giamarchi, T.; Orignac, E.; Rigol, M. One dimensional bosons: From condensed matter systems to ultracold gases. Rev. Mod. Phys. 2011, 83, 1405. [Google Scholar] [CrossRef]
- Haldane, F.D.M. General Relation of Correlation Exponents and Spectral Properties of One-Dimensional Fermi Systems: Application to the Anisotropic S=1/2 Heisenberg Chain. Phys. Rev. Lett. 1980, 45, 1358. [Google Scholar] [CrossRef]
- Konik, R.M.; Fendley, P. Haldane-gapped spin chains as Luttinger liquids: Correlation functions at finite field. Phys. Rev. B 2002, 66, 144416. [Google Scholar] [CrossRef]
- Vescoli, V.; Degiorgi, L.; Henderson, W.; Grüner, G.; Starkey, K.P.; Montgomery, L.K. Dimensionality-driven insulator-to-metal transition in the bechgaard salts. Science 1998, 281, 1181. [Google Scholar] [CrossRef]
- Schwartz, A.; Dressel, M.; Grüner, G.; Vescoli, V.; Degiorgi, L.; Giamarchi, T. On-chain electrodynamics of metallic (TMTSF)2X salts: Observation of Tomonaga-Luttinger liquid response. Phys. Rev. B 1998, 58, 1261. [Google Scholar] [CrossRef]
- Blumenstein, C.; Schäfer, J.; Mietke, S.; Meyer, S.; Dollinger, A.; Lochner, M.; Cui, X.Y.; Patthey, L.; Matzdorf, R.; Claessen, R. Atomically controlled quantum chains hosting a Tomonaga—Luttinger liquid. Nat. Phys. 2010, 7, 776. [Google Scholar] [CrossRef]
- Heedt, S.; Traverso Ziani, N.; Crépin, F.; Prost, W.; Schubert, J.; Grützmacher, D.; Trauzettel, B.; Schäpers, T. Signatures of interaction-induced helical gaps in nanowire quantum point contacts. Nat. Phys. 2017, 13, 563. [Google Scholar] [CrossRef]
- Guinea, F.; Santos, G.G.; Sassetti, M.; Ueda, M. Asymptotic Tunnelling Conductance in Luttinger Liquids. Europhys. Lett. 1995, 30, 561. [Google Scholar] [CrossRef]
- Braggio, A.; Grifoni, M.; Sassetti, M.; Napoli, F. Plasmon and charge quantization effects in a double-barrier quantum wire. Europhys. Lett 2000, 50, 236. [Google Scholar] [CrossRef]
- Kamata, H.; Kumada, N.; Hashisaka, M.; Muraki, K.; Fujisawa, T. Fractionalized wave packets from an artificial Tomonaga–Luttinger liquid. Nat. Nanotech. 2014, 9, 177. [Google Scholar] [CrossRef]
- Chang, A.M. Chiral Luttinger liquids at the fractional quantum Hall edge. Rev. Mod. Phys. 2003, 75, 1449. [Google Scholar] [CrossRef]
- Rech, J.; Ferraro, D.; Jonckheere, T.; Vannucci, L.; Sassetti, M.; Martin, T. Minimal Excitations in the Fractional Quantum Hall Regime. Phys. Rev. Lett. 2017, 118, 076801. [Google Scholar] [CrossRef]
- Stühler, R.; Reis, F.; Müller, T.; Helbig, T.; Schwemmer, T.; Thomale, R.; Schäfer, J.; Claessen, R. Tomonaga–Luttinger liquid in the edge channels of a quantum spin Hall insulator. Nat. Phys. 2020, 16, 47. [Google Scholar] [CrossRef]
- Strunz, J.; Wiedenmann, J.; Fleckenstein, C.; Lunczer, L.; Beugeling, W.; Müller, V.L.; Shekhar, P.; Traverso Ziani, N.; Shamim, S.; Kleinlein, J.; et al. Interacting topological edge channels. Nat. Phys. 2020, 16, 83. [Google Scholar] [CrossRef]
- Postma, H.W.C.; Teepen, T.; Yao, Z.; Grifoni, M.; Dekker, C. Carbon nanotube single-electron transistors at room temperature. Science 2001, 293, 76. [Google Scholar] [CrossRef] [PubMed]
- Traverso Ziani, N.; Piovano, G.; Cavaliere, F.; Sassetti, M. Electrical probe for mechanical vibrations in suspended carbon nanotubes. Phys. Rev. B 2011, 84, 155423. [Google Scholar] [CrossRef]
- Donarini, A.; Yar, A.; Grifoni, M. Spectrum and Franck–Condon factors of interacting suspended single-wall carbon nanotubes. New J. Phys. 2012, 14, 023045. [Google Scholar] [CrossRef]
- Cazalilla, M.A. Effect of Suddenly Turning on Interactions in the Luttinger Model. Phys. Rev. Lett. 2006, 97, 156403. [Google Scholar] [CrossRef]
- Cazalilla, M.A.; Chung, M.-C. Quantum Quenches in the Luttinger model and its close relatives. J. Stat. Mech. 2016, 2016, 064004. [Google Scholar] [CrossRef]
- Perfetto, E.; Stefanucci, G. On the thermalization of a Luttinger liquid after a sequence of sudden interaction quenches. Europhys. Lett. 2011, 95, 10006. [Google Scholar] [CrossRef][Green Version]
- Kennes, D.M.; Meden, V. Luttinger liquid properties of the steady state after a quantum quench. Phys. Rev. B 2013, 88, 165131. [Google Scholar] [CrossRef]
- Kennes, D.M.; Klockner, C.; Meden, V. Spectral Properties of One-Dimensional Fermi Systems after an Interaction Quench. Phys. Rev. Lett. 2014, 113, 116401. [Google Scholar] [CrossRef]
- Schiro, M.; Mitra, A. Transient Orthogonality Catastrophe in a Time-Dependent Nonequilibrium Environment. Phys. Rev. Lett. 2014, 112, 246401. [Google Scholar] [CrossRef]
- Schiro, M.; Mitra, A. Transport across an impurity in one-dimensional quantum liquids far from equilibrium. Phys. Rev. B 2015, 91, 235126. [Google Scholar] [CrossRef]
- Porta, S.; Gambetta, F.M.; Cavaliere, F.; Traverso Ziani, N.; Sassetti, M. Out-of-equilibrium density dynamics of a quenched fermionic system. Phys. Rev. B 2016, 94, 085122. [Google Scholar] [CrossRef]
- Calzona, A.; Acciai, M.; Carrega, M.; Cavaliere, F.; Sassetti, M. Time-resolved energy dynamics after single electron injection into an interacting helical liquid. Phys. Rev. B 2016, 94, 035404. [Google Scholar] [CrossRef]
- Dora, B.; Haque, M.; Zarand, G. Crossover from Adiabatic to Sudden Interaction Quench in a Luttinger Liquid. Phys. Rev. Lett. 2011, 106, 156406. [Google Scholar] [CrossRef] [PubMed]
- Bacsi, A.; Dora, B. Quantum quench in the Luttinger model with finite temperature initial state. Phys. Rev. B 2013, 88, 155115. [Google Scholar] [CrossRef]
- Porta, S.; Gambetta, F.M.; Traverso Ziani, N.; Kennes, D.M.; Sassetti, M.; Cavaliere, F. Nonmonotonic response and light-cone freezing in fermionic systems under quantum quenches from gapless to gapped or partially gapped states. Phys. Rev. B 2018, 97, 035433. [Google Scholar] [CrossRef]
- Meyer, J.S.; Matveev, K.A.J. Wigner crystal physics in quantum wires. Phys. Condens. Matter 2009, 21, 023203. [Google Scholar] [CrossRef]
- Ronetti, F.; Vannucci, L.; Ferraro, D.; Jonckheere, T.; Rech, J.; Martin, T.; Sassetti, M. Crystallization of levitons in the fractional quantum Hall regime. Phys. Rev. B 2018, 98, 075401. [Google Scholar] [CrossRef]
- Loosa, P.-F.; Gill, P.M.W. Uniform electron gases. I. Electrons on a ring. J. Chem. Phys. 2013, 138, 164124. [Google Scholar] [CrossRef]
- Porta, S.; Privitera, L.; Traverso Ziani, N.; Sassetti, M.; Cavaliere, F.; Trauzettel, B. Feasible model for photoinduced interband pairing. Phys. Rev. B 2019, 100, 024513. [Google Scholar] [CrossRef]
- Vu, D.; Das Sarma, S. One-dimensional few-electron effective Wigner crystal in quantum and classical regimes. Phys. Rev. B 2020, 101, 125113. [Google Scholar] [CrossRef]
- Mayrhofer, L.; Grifoni, M. Linear and nonlinear transport across carbon nanotube quantum dots. Eur. Phys. J. B 2007, 56, 107. [Google Scholar] [CrossRef]
- Friedel, J. Effect of impurities on the electronic density in metals. Nuovo Cimento 1958, 7, 287. [Google Scholar] [CrossRef]
- Jauregui, K.; Häusler, W.; Kramer, B. Wigner Molecules in Nanostructures. Europhys. Lett. 1993, 24, 581. [Google Scholar] [CrossRef]
- Schulz, H.J. Wigner crystal in one dimension. Phys. Rev. Lett. 1993, 71, 1864. [Google Scholar] [CrossRef] [PubMed]
- Fiete, G.A. Colloquium: The spin-incoherent Luttinger liquid. Rev. Mod. Phys. 2007, 79, 801. [Google Scholar] [CrossRef]
- Giamarchi, T. Quantum Physics in One Dimension; Science: Oxford, UK, 2004. [Google Scholar]
- Fabrizio, M.; Gogolin, A.O. Interacting one-dimensional electron gas with open boundaries. Phys. Rev. B 1995, 51, 17827. [Google Scholar] [CrossRef]
- Dolcetto, G.; Traverso Ziani, N.; Biggio, M.; Cavaliere, F.; Sassetti, M. Coulomb blockade microscopy of spin-density oscillations and fractional charge in quantum spin Hall dots. Phys. Rev. B 2013, 87, 235423. [Google Scholar] [CrossRef]
- Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B. Chiral anomaly in real space from stable fractional charges at the edge of a quantum spin Hall insulator. Phys. Rev. B 2016, 94, 241406. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Fleckenstein, C.; Vigliotti, L.; Trauzettel, B.; Sassetti, M. From fractional solitons to Majorana fermions in a paradigmatic model of topological superconductivity. Phys. Rev. B 2020, 101, 195303. [Google Scholar] [CrossRef]
- Fleckenstein, C.; Traverso Ziani, N.; Privitera, L.; Sassetti, M.; Trauzettel, B. Transport signatures of a Floquet topological transition at the helical edge. Phys. Rev. B 2020, 101, 201401. [Google Scholar] [CrossRef]
- Voit, J. One-dimensional Fermi liquids. Rep. Prog. Phys. 1995, 58, 977. [Google Scholar] [CrossRef]
- Fleckenstein, C.; Traverso Ziani, N.; Trauzettel, B. Z4 parafermions in Weakly Interacting Superconducting Constrictions at the Helical Edge of Quantum Spin Hall Insulators. Phys. Rev. Lett. 2020, 122, 066801. [Google Scholar] [CrossRef]
- Gindikin, Y.; Sablikov, V.A. Deformed Wigner crystal in a one-dimensional quantum dot. Phys. Rev. B 2007, 76, 045122. [Google Scholar] [CrossRef]
- Söffing, S.A.; Bortz, M.; Schneider, I.; Struck, A.; Eggert, S.F. Wigner crystal versus Friedel oscillations in the one-dimensional Hubbard model. Phys. Rev. B 2009, 79, 195114. [Google Scholar] [CrossRef]
- Kane, C.; Balents, L.; Fisher, M.P.A. Coulomb Interactions and Mesoscopic Effects in Carbon Nanotubes. Phys. Rev. Lett. 1997, 79, 5086. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Fleckenstein, C.; Dolcetto, G.; Trauzettel, B. Fractional charge oscillations in quantum dots with quantum spin Hall effect. Phys. Rev. B 2017, 95, 205418. [Google Scholar] [CrossRef]
- Egger, R.; Gogolin, A.O. Effective Low-Energy Theory for Correlated Carbon Nanotubes. Phys. Rev. Lett. 1997, 79, 5082. [Google Scholar] [CrossRef]
- Zhang, F.; Kane, C.L. Time-Reversal-Invariant Z4 Fractional Josephson Effect. Phys. Rev. Lett. 2014, 113, 036401. [Google Scholar] [CrossRef]
- Orth, C.P.; Tiwari, R.P.; Meng, T.; Schmidt, T.L. Non-Abelian parafermions in time-reversal-invariant interacting helical systems. Phys. Rev. B 2015, 91, 081406. [Google Scholar] [CrossRef]
- Dolcetto, G.; Traverso Ziani, N.; Biggio, M.; Cavaliere, F.; Sassetti, M. Spin textures of strongly correlated spin Hall quantum dots. Phys. Stat. Sol. (RRL) 2013, 7, 1059. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Crepin, F.; Trauzettel, B. Fractional Wigner crystal in the Helical Luttinger Liquid. Phys. Rev. Lett. 2015, 115, 206402. [Google Scholar] [CrossRef] [PubMed]
- Kane, C.L.; Fisher, M.P.A. Transport in a one-channel Luttinger liquid. Phys. Rev. Lett. 1992, 68, 1220. [Google Scholar] [CrossRef] [PubMed]
- Safi, I.; Schulz, H.J. Interacting electrons with spin in a one-dimensional dirty wire connected to leads. Phys. Rev. B 1999, 59, 3040. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Cavaliere, F.; Sassetti, M. Signatures of Wigner correlations in the conductance of a one-dimensional quantum dot coupled to an AFM tip. Phys. Rev. B 2012, 86, 125451. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Cavaliere, F.; Sassetti, M. Temperature-induced emergence of Wigner correlations in a STM-probed one-dimensional quantum dot. New J. Phys. 2013, 15, 063002. [Google Scholar] [CrossRef]
- Schulz, H.J. Correlation exponents and the metal-insulator transition in the one-dimensional Hubbard model. Phys. Rev. Lett. 1990, 64, 2831. [Google Scholar] [CrossRef]
- Aizenman, M.; Jansen, S.; Jung, P. Symmetry Breaking in Quasi-1D Coulomb Systems. Ann. Henri Poincaré 2010, 11, 1453. [Google Scholar] [CrossRef][Green Version]
- Jansen, S.; Jung, P. Wigner Crystallization in the Quantum 1D Jellium at All Densities. Comm. Math. Phys. 2014, 331, 1133. [Google Scholar] [CrossRef]
- Hirsch, C.; Jansen, S.; Jung, P. Large deviations in the quantum quasi-1D jellium. arXiv 2009, arXiv:2009.14144. [Google Scholar]
- Fiete, G.A.; Le Hur, K.; Balents, L. Coulomb drag between two spin-incoherent Luttinger liquids. Phys. Rev. B 2006, 73, 165104. [Google Scholar] [CrossRef]
- Matveev, K.A. Conductance of a Quantum Wire in the Wigner-Crystal Regime. Phys. Rev. Lett. 2004, 92, 106801. [Google Scholar] [CrossRef] [PubMed]
- Häusler, W. Correlations in quantum dots. Z. Phys. B 1996, 99, 551. [Google Scholar] [CrossRef]
- Lieb, E.; Mattis, D. Theory of Ferromagnetism and the Ordering of Electronic Energy Levels. Phys. Rev. 1962, 125, 164. [Google Scholar] [CrossRef]
- Mahan, G.D. Electron–optical phonon interaction in carbon nanotubes. Phys. Rev. B 2003, 68, 125409. [Google Scholar] [CrossRef]
- Franchini, F. An Introduction to Integrable Techniques for One-Dimensional Quantum Systems; Springer: Berlin/Heidelberg, Germany, 2017; Volume 940. [Google Scholar]
- Porta, S.; Cavaliere, F.; Sassetti, M.; Traverso Ziani, N. Topological classification of dynamical quantum phase transitions in the xy chain. Sci. Rep. 2020, 10, 1. [Google Scholar] [CrossRef]
- Matveev, K.A.; Furusaki, A.; Glazman, L.I. Asymmetric Zero-Bias Anomaly for Strongly Interacting Electrons in One Dimension. Phys. Rev. Lett. 2007, 98, 096403. [Google Scholar] [CrossRef]
- Matveev, K.A.; Furusaki, A.; Glazman, L.I. Bosonization of strongly interacting one-dimensional electrons. Phys. Rev. B 2007, 76, 155440. [Google Scholar] [CrossRef]
- Secchi, A.; Rontani, M. Spectral function of few electrons in quantum wires and carbon nanotubes as a signature of Wigner localization. Phys. Rev. B 2012, 85, 121410. [Google Scholar] [CrossRef]
- Cavaliere, F.; Traverso Ziani, N.; Negro, F.; Sassetti, M. Thermally enhanced Wigner oscillations in two-electron 1D quantum dots. J. Phys. Condens. Matter 2014, 26, 505301. [Google Scholar] [CrossRef]
- Kylänpää, I.; Cavaliere, F.; Traverso Ziani, N.; Sassetti, M.; Räsänen, E. Thermal effects on the Wigner localization and Friedel oscillations in many-electron nanowires. Phys. Rev. B 2016, 94, 115417. [Google Scholar] [CrossRef]
- Diaz-Marquez, A.; Battaglia, S.; Bendazzoli, G.L.; Evangelisti, S.; Leininger, T.; Berger, J.A. Signatures of Wigner localization in one-dimensional systems. J. Chem. Phys. 2018, 148, 124103. [Google Scholar] [CrossRef] [PubMed]
- Azor, M.E.; Brooke, L.; Evangelisti, S.; Leininger, T.; Loos, P.F.; Suaud, N.; Berger, J.A. A Wigner molecule at extremely low densities: A numerically exact study. SciPost Phys. Core 2019, 1, 001. [Google Scholar] [CrossRef]
- Iijima, S. Helical microtubules of graphitic carbon. Nature 1991, 354, 56. [Google Scholar] [CrossRef]
- Bockrath, M.; Cobden, D.H.; McEuen, D.L.; Chopra, N.G.; Zettl, A.; Thess, A.; Smalley, R.E. Single-Electron Transport in Ropes of Carbon Nanotubes. Science 1997, 725, 1922. [Google Scholar] [CrossRef] [PubMed]
- Tans, S.J.; Devoret, M.H.; Dai, H.; Thess, A.; Smalley, R.E.; Geerligs, L.J.; Dekker, C. Individual single-wall carbon nanotubes as quantum wires. Nature 1997, 386, 474. [Google Scholar] [CrossRef]
- Saito, R.; Dresselhaus, G.; Dresselhaus, M.S. Physical Properties of Carbon Nanotubes; Imperial College Press: London, UK, 1998. [Google Scholar]
- Cobden, D.H.; Nygard, J. Shell Filling in Closed Single-Wall Carbon Nanotube Quantum Dots. Phys. Rev. Lett. 2002, 89, 046803. [Google Scholar] [CrossRef]
- Charlier, J.-C.; Blase, X.; Roche, S. Electronic and transport properties of nanotubes. Rev. Mod. Phys. 2007, 79, 677. [Google Scholar] [CrossRef]
- Hüttel, A.K.; Steele, G.A.; Witkamp, B.; Poot, M.; Kouwenhoven, L.P.; van der Zant, H.S.J. Bending-Mode Vibration of a Suspended Nanotube Resonatorpubs. Nano Lett. 2009, 9, 2547. [Google Scholar]
- Laird, A.E.; Kuemmeth, F.; Steele, G.A.; Grove-Rasmussen, K.; Nygard, J.; Flensberg, K.; Kouwenhoven, L.P. Quantum transport in carbon nanotubes. Rev. Mod. Phys. 2015, 87, 703. [Google Scholar] [CrossRef]
- Rohling, N.; Burkard, G. Universal quantum computing with spin and valley states. New J. Phys. 2012, 14, 083008. [Google Scholar] [CrossRef]
- Wang, Y. Exact solution of a spin-ladder model. Phys. Rev. B 1999, 60, 9236. [Google Scholar] [CrossRef]
- Batchelor, M.T.; Guan, X.W.; Oelkers, N.; Ying, Z.J. Quantum Phase Diagram of an Exactly Solved Mixed Spin Ladder. J. Stat. Phys. 2004, 116, 571. [Google Scholar] [CrossRef]
- Traverso Ziani, N.; Cavaliere, F.; Sassetti, M. Theory of the STM detection of Wigner molecules in spin-incoherent CNTs. Europhys. Lett. 2013, 102, 47006. [Google Scholar] [CrossRef]
- Secchi, A.; Rontani, M. Wigner molecules in carbon-nanotube quantum dots. Phys. Rev. B 2010, 82, 035417. [Google Scholar] [CrossRef]
- Secchi, A.; Rontani, M. Intervalley scattering induced by Coulomb interaction and disorder in carbon-nanotube quantum dots. Phys. Rev. B 2013, 88, 125403. [Google Scholar] [CrossRef]
- Gambetta, F.M.; Traverso Ziani, N.; Barbarino, S.; Cavaliere, F.; Sassetti, M. Anomalous Friedel oscillations in a quasihelical quantum dot. Phys. Rev. B 2015, 91, 235421. [Google Scholar] [CrossRef]
- Kornich, V.; Pedder, C.J.; Schmidt, T.L. Spin-orbit coupling in quasi-one-dimensional Wigner crystals. Phys. Rev. B 2017, 95, 045413. [Google Scholar] [CrossRef]
- Jespersen, T.; Grove, F.; Paaske, J.; Muraki, K.; Fujisawa, T.; Nygard, J.; Flensberg, K. Gate-dependent spin–orbit coupling in multielectron carbon nanotubes. Nat. Phys. 2011, 7, 348. [Google Scholar] [CrossRef]
- Deshpande, V.V.; Bockrath, M. The one-dimensional Wigner crystal in carbon nanotubes. Nat. Phys. 2008, 4, 314. [Google Scholar] [CrossRef]
- Levitov, S.L.; Tsvelik, A.M. Narrow-Gap Luttinger Liquid in Carbon Nanotubes. Phys. Rev. Lett. 2003, 90, 016401. [Google Scholar] [CrossRef]
- Sarkány, L.; Szirmai, E.; Moca, C.P.; Glazman, L.I.; Zarand, G. Wigner crystal phases in confined carbon nanotubes. Phys. Rev. B 2017, 95, 115433. [Google Scholar] [CrossRef]
- Pecker, S.; Kuemmeth, F.; Secchi, A.; Rontani, M.; Ralph, D.C.; McEuen, P.L.; Ilani, S. Observation and spectroscopy of a two-electron Wigner molecule in an ultraclean carbon nanotube. Nat. Phys. 2013, 9, 576. [Google Scholar] [CrossRef]
- Shapir, I.; Hamo, A.; Pecker, S.; Moca, C.P.; Legeza, O.; Zarand, G.; Ilani, S. Imaging the electronic Wigner crystal in one dimension. Science 2019, 364, 870. [Google Scholar] [CrossRef] [PubMed]
- Qian, J.; Halperin, B.I.; Heller, E.J. Imaging and manipulating electrons in a one-dimensional quantum dot with Coulomb blockade microscopy. Phys. Rev. B 2010, 81, 125323. [Google Scholar] [CrossRef]
- Boyd, E.E.; Westervelt, R.M. Extracting the density profile of an electronic wave function in a quantum dot. Phys. Rev. B 2011, 84, 205308. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ziani, N.T.; Cavaliere, F.; Becerra, K.G.; Sassetti, M. A Short Review of One-Dimensional Wigner Crystallization. Crystals 2021, 11, 20. https://doi.org/10.3390/cryst11010020
Ziani NT, Cavaliere F, Becerra KG, Sassetti M. A Short Review of One-Dimensional Wigner Crystallization. Crystals. 2021; 11(1):20. https://doi.org/10.3390/cryst11010020
Chicago/Turabian StyleZiani, Niccolo Traverso, Fabio Cavaliere, Karina Guerrero Becerra, and Maura Sassetti. 2021. "A Short Review of One-Dimensional Wigner Crystallization" Crystals 11, no. 1: 20. https://doi.org/10.3390/cryst11010020
APA StyleZiani, N. T., Cavaliere, F., Becerra, K. G., & Sassetti, M. (2021). A Short Review of One-Dimensional Wigner Crystallization. Crystals, 11(1), 20. https://doi.org/10.3390/cryst11010020