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Abstract: The simplest possible structural transition that an electronic system can undergo is Wigner
crystallization. The aim of this short review is to discuss the main aspects of three recent experimets
on the one-dimensional Wigner molecule, starting from scratch. To achieve this task, the Luttinger
liquid theory of weakly and strongly interacting fermions is briefly addressed, together with the
basic properties of carbon nanotubes that are required. Then, the most relevant properties of Wigner
molecules are addressed, and finally the experiments are described. The main physical points
that are addressed are the suppression of the energy scales related to the spin and isospin sectors
of the Hamiltonian, and the peculiar structure that the electron density acquires in the Wigner
molecule regime.

Keywords: wigner crystal; bosonization; luttinger liquid

1. Introduction

The story of Wigner crystals is a very old one: indeed its roots are almost a century
old. In 1934, while studying the effects of electron interactions on the band structure of
metals, E. Wigner suggested that the electron liquid at very low densities should actually
crystallize [1], with electrons sharply localized around equilibrium positions. The model
considered by E. Wigner for electrons is the jellium, one of the most general and fundamen-
tal ones in condensed matter [2], in which the effects of the interacting electron liquid and
the neutralizing background provided by the lattice ion charges are taken into account [3].
As it turns out, the jellium model is governed by a single parameter: the Wigner-Seitz
radius rs which is defined in d spatial dimensions as the adimentionalized radius of the
d-sphere that contains on average just one electron, in units of the Bohr radius. Clearly,
for small rs the electron density is large and the opposite is true for large rs. Dimensional
analysis on the jellium model shows that the kinetic energy of electrons scales as r−2

s while
the electron repulsion scales as r−1

s : in the low density limit, when rs exceeds some critical
value, Coulomb interactions become dominant over the kinetic term and electrons man-
age to minimize their energy by arranging themselves in a crystal. At a theoretical level,
several different analytical and numerical methods have been employed to the problem
of determining at which rs electrons actually crystallize and what lattice structure they
eventually form: a very informative survey of these approaches can be found in Ref. [2].
The overall picture is that for d = 3 electrons arrange in a BCC lattice (the FCC phase is
almost degenerate in some calculations) when rs ∼ 100. Attaining such low densities in a
three-dimensional (3D) material has proven to be exceedingly difficult, especially because
of the unavoidable impurities and defects that would disrupt the electron crystalline phase.
Thus, so far there have not been direct evidences of a true 3D Wigner crystal.

The situation in d = 2 is more favourable: recent numerical estimates [4] place the
threshold for the formation of a Wigner crystal at rs ∼ 40 with a hexagonal lattice structure.
Confining electrons in a two-dimensional (2D) system [5] has the additional advantage to
potentially produce much cleaner systems. Finally, 45 years after the initial prediction by

Crystals 2021, 11, 20. https://doi.org/10.3390/cryst11010020 https://www.mdpi.com/journal/crystals

https://www.mdpi.com/journal/crystals
https://www.mdpi.com
https://doi.org/10.3390/cryst11010020
https://doi.org/10.3390/cryst11010020
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://doi.org/10.3390/cryst11010020
https://www.mdpi.com/journal/crystals
https://www.mdpi.com/2073-4352/11/1/20?type=check_update&version=2


Crystals 2021, 11, 20 2 of 19

E. Wigner, in 1979 C. Grimes and G. Adams provided the first experimental evidence [6]
of a Wigner crystal formed in a low-density 2D sheet of electrons floating atop the flat
surface of liquid He. For a detailed review of this key topic, see e.g., Refs. [7,8]. Another
paradigmatic d = 2 system which has provided an excellent template to study the physics
of Wigner crystals is the 2D electron liquid formed in metal-oxide silicon field effect
transistors (MOSFETs in short). Here, the most notable discovery of the quantized hall
effect [9] has triggered subsequent observations of the formation of Wigner crystals in the
bulk of quantum Hall bars both at integer [10] and fractional [11–14] filling factors.

The high level of control achieved in modern nanofabrication techniques of semi-
conductors has further enriched the playground of Wigner physics [15]. The further
confinement of a 2D electron system in the plane achieved in quantum dots [16,17] allows
the formation of Wigner molecules—the finite size counterpart of Wigner crystals—with
a number of electrons N that can be controlled with extreme precision [17–19]. The the-
oretical study of Wigner molecules is even more complicated than that of crystals: the
lack of translational invariance effectively turns the rs parameter introduced above a local
quantity, as the average spacing between electrons can strongly depends on their position
in the system.

As far as one dimension (the subject of this review) is concerned, the effects of electron-
electron interactions are extremely interesting. Indeed, even the metallic phases violate the
Fermi liquid paradigm usually accepted to describe the effects of interactions in the high
density limit in d = 2, 3. On the contrary, the low-energy sector is described by the so called
Luttinger liquid [20]. Interestingly, the Luttinger liquid also applies to bosonic [21], and spin
one-dimensional systems [22,23], thus providing a very powerful tool. The experimental
consequences of the Luttinger liquid behavior of fermionic systems can be found in very
different contexts, ranging from Bechgaard salts [24,25], to quantum wires [26–29], quantum
Hall edges [30–32], quantum spin Hall edges [33,34], and carbon nanotubes [35], even in
the presence of mechanical vibrations [36,37]. Interestingly, strongly out of equilibrium
scenarios can also be inspected within this framework [38–49]. While genuine long range
order cannot be established at non-zero temperature, typical correlation lengths exceeding
the size of the sample have been conjectured in very diverse contexts [50–54] and are
responsible for the so called one-dimensional Wigner molecule. Intuitively, such structure
is the one-dimensional counterpart of the Wigner molecule in higher dimensions. In order
to analyze the Wigner molecule, both analytical and numerical tools have been widely
employed, and a rather clear scenario has been developed. As we shall see, when equipped
with the bosonization technique, the Luttinger liquid model can become an extremely
powerful model to analytically tackle the study of Wigner molecules in 1D. Also this
aspect, in a certain sense, sets the d = 1 case apart from higher dimensionality where
computationally demanding numerical methods are unavoidable. However, it was only
very recently that the one-dimensional Wigner molecule could be experimentally realized
in three beautiful and diverse experiments.

The aim of this short review is to make the main aspects of those three experiments
transparent to readers who are not familiar with the peculiarities of one-dimensional
systems. In particular, Section 2 gives an incomplete and intuitive introduction to the topic.
Sections 3 and 4 deal with the Luttinger liquid tools, while Sections 5 and 6 are focused
on the aspects that are more relevant for the experiments: the indicators of the Wigner
molecule and the properties carbon nanotubes. In Section 7, the three experiments are
discussed. Finally, Section 8 is devoted to the perspectives.

2. The Ground State Density

In order to understand the physics of the one-dimensional Wigner molecule, one
can start by inspecting a simple, abstract, yet far reaching model: 2N interacting spinful
electrons, confined on a segment of length L by an infinite potential. The Hamiltonian H of
the system is

H =
∫ L

0
dx[H(x)] + ε

∫ L

0
dxdy[V(x, y)], (1)
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with (h̄ = 1)

H(x) = ∑
s=±

ψ†
s (x)

(
− ∂2

x
2m

)
ψs(x) (2)

and
V(x, y) = ∑

s=±,τ=±
ψ†

s (x)ψ†
τ(y)v(x− y)ψτ(y)ψs(x). (3)

Here, ψ†
s (x) is the fermionic annihilation operator for an electron with spin projection s,

m is its (effective) mass, and v(x− y) is a generic repulsive inter-particle potential, invariant
under spin rotations. Not that v(x− y) in the solid state context is not the bare Coulomb
potential [2], due to both the ionic background and the unavoidable presence of gates.
Moreover, the spread of the wavefunctions in directions other than the one considered
and the higher confinement sub-bands also contribute to the actual shape of v(x− y) [55].
The strength of the interacting term is parametrized by ε. The precise form of v(x− y) is
here not specified further. While the properties of the observables do depend on the range
of v, for a preliminary discussion no further details are required.

Due to the infinite confining potential, the many-body wave function is forced to be
zero at the boundaries of the system. The hard wall boundary conditions then impose

ψs(0) = ψs(L) = 0. (4)

An important observable is the ground state local electron density ρ0(x) given by

ρ0(x) = 〈0| ∑
s=±

ψ†
s (x)ψs(x)|0〉, (5)

with |0〉 the many body ground state of H, with 2N particles. For ε = 0, the calculation of
ρ0(x) is very simple. One finds

ρ0(x) =
2N + 1

L
−

sin
(

2πx(N+1/2)
L

)
sin
(

πx
L
) . (6)

The ground-state density is characterized by N peaks, with a typical wavevector
2kF = 2πN/L which coincides with the Fermi momentum. Such wave vector is reminis-
cent of the Friedel oscillations [56,57] that develop around an impurity in a Fermi liquid.
Crucially, the number of peaks is half of the number of electrons in the system for this
regime. Qualitatively speaking, although the electron wavefunctions are not localized—a
fact confirmed also by the relatively small amplitude of the oscillations—each maximum
can be thought to accomodate two electrons with opposite spins. The situation is schemati-
cally shown in Figure 1a.

As electron-electron interactions are turned on and increased in strength, electrons
begin to repel each other and the number of peaks tend to double. The situation is
illustrated in Figure 1b. Finally, for strong interactions, electrons localize sharply around
given equilibrium positions: 2N peaks occur in the density and the oscillation wavevector
doubles to 4kF. As a consequence of this sharp localization, the minima of ρ0(x) become
negligible and the peak-valley ratio is maximized: we have entered the Wigner molecule
regime—represented schematically in Figure 1c. The crossover between the dominance
of the Friedel and the Wigner regimes [58] can be viewed as a structural transition which
takes up the role of the true phase transition which is prohibited in one spatial dimension
due to fluctuations. Another crucial aspect to observe here is that, in the Wigner regime,
electrons essentially do not overlap anymore. As a consequence, interactions between their
spins become negligible which implies that the 2(2N) distinct spin configurations for the
Wigner molecule become essentially degenerate [59].
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... ... ... ...

Figure 1. The transition from the Friedel to the Wigner regime for the ground state density profile
ρ0(x), for the case of 2N = 4 particle—see text for details. (a) For non-interacting electrons, Friedel
oscillations occur, characterized by N = 2 density peaks; (b) for moderate electrons, additional peaks
appear but with a small peak-valley ratio; (c) for strong interactions 2N peaks in the density develop.
Here, red (blue) dots represent electrons with spin up (down), a blurred dot denoting delocalized
electron wave functions, while a sharp dot implying strongly localized electrons. In panel (c), some
of the 16 possible degenerate spin configurations are shown as an example.
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To substantiate the qualitative scenario described above we report in Figure 2 the
results of Ref. [57] for the exact diagonalization of a system of four interacting electrons
bound in a box of length L with a slightly smoother confinement than hard walls. Several
density profiles are shown for different values of the parameter rs modeling the strength
of the interactions. For rs < aB, with aB the effective Bohr radius, the electrons are only
weakly interacting and the profile of a Friedel oscillations with two maxima is found.
As interactions increase, for rs ∼ aB four maxima appear, with a small peak-valley
ratio: electrons become to repel but are not yet quite localized. As rs is further increased,
the peak-valley ratio increases as the minima of the density tend to zero. This signals the
arrangement of electrons into a Wigner molecules. Interestingly, one can notice that peaks
at the edges of the molecule are higher than those in the center. This effect can be attributed
to the actual shape of the confinement. Indeed, as will be discussed in the last part of this
review, the actual shape of the confinement plays a crucial role in shaping the properties of
a Wigner molecule and produces effects that can be actually measured in experiments.

Figure 2. Electron density, n units 1/L, corresponding to four electrons on a segment, as a function
of position (x axis) and interaction strength (increasing rs corresponds to stronger interactions).
The transition between two and four peaks can be clearly seen. Figure adapted from [57].

The qualitative behavior of the ground state electron density of the model is somehow
intuitive and certainly useful for understanding the mechanisms leading to the Wigner
molecule. However, since one has to deal with many interacting fermions, transparent
effective models describing the formation of the Wigner molecule are not straightforward.
To better understand the electron density, its finite temperature counterpart, the trans-
port properties, and the energetics of the Wigner molecule, the bosonization technique,
as applied to Wigner molecules, should be briefly presented.

3. Standard Bosonization

Interacting gapless one-dimensional systems are described, at low energy, by a free
bosonic Hamiltonian, or, in the majority of the relevant fermionic cases, by a collection of
free bosons [20]. This statement is at the heart of the Luttinger liquid conjecture. The pecu-
liarity of one-dimensional systems emerges from the fact that most low energy excitations
of interacting one-dimensional systems are collective in nature [60]. Interacting spinful
electrons on a segment are not an exception to this paradigm.

In order to understand how the Luttinger liquid conjecture works, a good start-
ing point is represented by the exact mapping between interacting fermions with linear
dispersion (Dirac-like fermions—relevant for the rest of this review) and free bosons.
The treatment given here is based on Ref. [61]. Here, we refer to Dirac-like fermions instead
of Dirac fermions to stress the fact that we are not dealing with a fundamental theory with
linear dispersion. Natural cut offs, related to the presence of other confinement sub-bands
and to the existence of a lattice spacing, should always be considered.



Crystals 2021, 11, 20 6 of 19

We call the whole Hamiltonian HD = H(0)
D + H(I)

D . Considering again a system of
lenght L, the free part of the fermionic Hamiltonian is

H(0)
D =

∫ L

0
dx

[
∑

s=±
Ψ†

s (x)(−ivF∂xσz)Ψs(x),

]
, (7)

with Ψs(x) = (ψR,s(x), ψL,s(x))T a Fermi spinor composed by a right (R) and a left (L)
mover, vF the Fermi velocity, and σz the third Pauli matrix in the usual representation,
acting on the R/L space. The physical Fermi operator is, in conventional quantum wires
ψs(x) = eikF xψR,s(x) + e−ikF xψL,s(x), where kF, as in the previous section, represents the
Fermi momentum. Moreover, open boundary conditions ψs(0) = ψs(L) = 0 imply that
ψR,s(x) = −ψL,s(−x). More general twisted boundary conditions are relevant in the case
of topological insulators [62–65].

To write the interaction term that we now consider, it is useful to introduce charge (ρ)
spin (σ) density operators, defined as

ρρ/σ,R/L(x) =
1√
2
(ρ+,R/L(x)± ρ−,R/L(x)), (8)

with
ρ±,R/L(x) = ψ†

R/L,±(x)ψR/L,±(x) (9)

the spin and chirality resolved density operators.
By reserving the possibility of having spin dependent interactions, that can emerge

for example due to spin-orbit coupling [60] we write the short range interaction term as

H(I)
D =

∫ L

0
dx
[
H(I)

1 (x) +H(I)
2 (x)

]
, (10)

with

H(I)
1 (x) = ∑

ν=ρ,σ

gν

2
(ρν,R(x)ρν,R(x) + ρν,L(x)ρν,L(x)), (11)

H(I)
2 (x) = ∑

ν=ρ,σ
g̃νρν,R(x)ρν,L(x). (12)

Note that the interaction terms are here written in a density-density form rather than in
the usual form emerging from second quantization. This choice enables to effectively take
into account finite range interactions by means of an apparently local term [66]. The effect
of finite range interactions is irrelevant in the renormalization group sense [60].

Astonishingly, the Hamiltonian HD can be diagonalized exactly [66] and cast into
the form

HD = ∑
ν=ρ,σ

(
∑
q>0

(
vνqd†

ν,qdν,q

)
+

πvν,N

4L
N2

ν

)
. (13)

The left moving field is readily calculated from this. Here, dν,q are bosonic operators,
Nρ/σ = N+±N−, with N± the number operator of electrons with spin±, as counted from the
Fermi level. Moreover, q = nπ/L (n is a positive integer), vν = (vF + gν/(2π))/ cosh(2φν),
vν,N = vνe−2φν with tanh(2φν) = −g̃ν/(2π(vF + gν/(2π))).

Here, the key result is the spin-charge separation phenomenon: a Hamiltonian of
interacting spinful fermions is mapped onto that of two species (ν = ρ, σ) of non-interacting
bosons that do not talk to each other. The parameters that control all correlation functions
are the so called Luttinger parameters Kν = e2φν . Rather generally, 0 < Kρ ≤ 1, for repulsive
interactions, with the equal sign valid in the case of non-interacting fermions. On the other
hand, in the absence of spin-orbit coupling that implies [60,67] Kσ > 1, one can usually set
Kσ = 1. Another important parameter is the velocity at which the bosons propagate. It will
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indeed turn out that in the Wigner molecule regime the velocity of the spin excitations is
strongly suppressed with respect to the one of the charge ones [59]. This crucial aspect
will be discussed in the next section. It is now useful to give the bosonic form of the Fermi
operator and of the density operator. One finds

ψR,s(x) =
ηs√
2πα

e−iθs ei πNs x
L ei

Φρ(x)+sΦσ(x)√
2 . (14)

Here, α is a cutoff length, the operator θs satisfies [θs, Ns′ ] = iδs,s′ and ηs satisfies
ηsηs′ + ηs′ηs = 2δs,s′ implementing the correct anticommutation relations of the fermionic
field ψR,s(x). The boson fields Φρ(x), Φσ(x) are (nq = Lq/π)

Φν(x) = ∑
q>0

e−αq/2√
Kνnq

[
(cos (qx)− iKν sin (qx))d†

ν,q + h.c.
]

.

Now the total particle density operator ρD(x) = ∑s=± ρs(x), with ρs(x) = ∑ν=ρ,σ ρs,ν(x)
can be bosonized. One has (identifying α = k−1

F ) [68]

ρs(x) =
kF
π

+
1
π

∂x ϕs(x) + ρF
s (x) . (15)

Here, the second term of Equation (15) corresponds to the long-wave part and is
proportional to the derivative of the antisymmetric field

ϕs(x) =
ϕρ(x) + sϕσ(x)

√
2

, (16)

ϕρ/σ(x) =
1
2

[
Φρ/σ(−x)−Φρ/σ(x)

]
, (17)

while ρF
s (x) is the contribution due to Friedel oscillations given (neglecting the zero modes

in comparison to kFL) by

ρF
s (x) = − kF

π
cos[2kFx− 2ϕs(x)− 2h(x)], (18)

where

h(x) =
1
2

tan−1
[

sin(2πx/L)
eπα/L − cos(2πx/L)

]
. (19)

We are now in the position to compute the ground state average electron density in
this linearized model, ρ

(0)
D (x) = 〈0D|ρD(x)|0D〉, with |0D〉 the interacting ground state.

Assuming the system filled up to the Fermi momentum kF one has [61]

ρ
(0)
D (x) =

2kF
π

(1− cos(2kFx− 2h(x)))

 sinh πα
2L√

sinh2 πα
2L + sin2 πx

L


Kρ+Kσ

2

. (20)

Two aspects are here particularly important. Firstly, only Friedel oscillations are
present: no 4kF Wigner oscillations are visible. Moreover, the peak to valley ratio of the
Friedel oscillations is governed by an enveloping function with a power law dependence
on the interaction parameter with the non-universal exponent (Kρ + Kσ)/2 ' (Kρ + 1)/2.
The Dirac-like model for interacting electrons is hence not appropriate for the description of
strongly interacting quantum wires. Indeed, while the second point is observed in strongly
interacting quantum wires, the absence of Wigner oscillations implies the need of moving
to more involved models.
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Several extensions can be made in order to assess a general form of Luttinger liq-
uid beyond the solution of the linear Dirac-like model. At the level of the Hamiltonian,
umklapp-like HU terms, reading as

HU ∼ ∑
s=±

∫ L

0
dx
[
e−4ikF xψ†

R,sψ†
R,−s(x)ψL,−sψL,s(x)

]
+ h.c. ∼ cos

[
4kFx− 2

√
2ϕρ(x)− 4h(x)

]
(21)

can be introduced [60]. While such a modification indeed allows for a positive result in
terms of the incipience of the Wigner molecule [69,70], at a closer inspection, the mechanism
involves hole states [71]. Indeed, since HU is translationally invariant, it mixes right and left
movers with the same momentum and hence, necessarily, electron and hole states. While
this road is definitely meaningful in the case of carbon nanotubes [72] and topological
insulators [73–76], it can hardly apply to standard quantum wires.

Another possibility to explore is to express the Fermionic operator as a series of
different powers of the bosonic operators [77,78]. Qualitatively speaking, one has

ψR,s(x) ∼
∞

∑
mρ=1

ei
πNsmρ x

L eimρ
Φρ(x)+sΦσ(x)√

2 . (22)

As a consequence, the density operator becomes a series as well [78]. The most
relevant in the context of our discussion is

ρ2(x) ∼ cos
(

4kFx−
√

2(ϕρ(x)− ϕσ(x))
)

, (23)

and we note that this term displays the correct 4kF wavelength to produce Wigner oscil-
lations [78]. It is important to note that we have repeatedly use the ∼ sign instead of the
equal sign since the proposed extensions to the interacting Dirac model are not universal
and the precise forms are hence model dependent. The ρ2(x) therm alone, however, cannot
produce 4kF oscillation dominating over the Friedel contribution, even for strong repulsive
interactions. Another possible route is to observe the Dirac-like model presented above
neglects many interaction terms, most notably

Hg1 ∼ ∑
s=±

∫ L

0
dx
[
ψ†

L,sψ†
R,−sψL,−sψR,s

]
+ h.c. ∼

∫ L

0
dx
[
cos
(

2
√

2(ϕσ(x)− 4h(x))
)]

. (24)

The perturbative effect of Hg1 on the density contribution ρ2(x) is to introduce aver-
ages that do not involve the spin field Φσ(x) and that can become dominant for strong
interactions [60]. A more faithful expression for the density operator, that implicitly takes
into account Hg1 is

ρc(x) =
2kF
π

+ ∑
s

1
π

∂x ϕs(x) + ξ(Kρ)∑
s

ρF
s (x) + (1− ξ(Kρ))ρW(x), (25)

where 0 < ξ(Kρ) < 1 is a model dependent phenomenological parameter ensuring that
the density is zero at the boundaries [79,80], with ξ(1) = 1 (no Wigner term). The Wigner
contribution to the density is given by

ρW(x) = −2kF
π

cos
(

4kFx− 2
√

2ϕρ(x)− 4h(x)
)

. (26)

While containing a free parameter (ξ(Kρ)), the density operator ρc(x) is extremely
powerful in the description of quantum wires in view of its very good agreement with
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numerical results [69]. Indeed, one can compute the ground state average ρ
(0)
W (x) of the

ρW(x) contribution and hence assess the total ground state density. The result is

ρ
(0)
W (x) = −2kF

π
cos(4kFx− 4h(x))

 sinh πα
2L√

sinh2 πα
2L + sin2 πx

L

2Kρ

. (27)

To summarize, the total average density ρ
(0)
c (x) is hence

ρ
(0)
c (x) =

2kF
L

+ ξ(Kρ)

− cos(2kFx− 2h(x))

 sinh πα
2L√

sinh2 πα
2L + sin2 πx

L


Kρ+Kσ

2

+ (1− ξ(Kρ))ρ
(0)
W (x) (28)

The most important aspect is here that Wigner oscillations dominate over Friedel oscil-
lations for [78] Kρ < 1/3, that is for strong repulsive interactions. Here, strong interaction
means that the interaction must be not only parametrically strong, but also of non-zero
range. Indeed, in the bosonization of the Hubbard model with on site repulsion the smallest
value that Kρ can reach is [81] Kρ = 1/2. For unscreened Coulomb interactions, on the
other hand, one has [81] Kρ → 0. A closer inspection of the latter situation reveals that
the Wigner contribution to the density-density correlation function decays as 1/

√
ln(x),

slower than any power law [58].
While the picture now appears convincing thanks to the introduction of the Wigner

contribution in the density, a conceptual point remains open: the introduction of such a
term is based on a perturbative argument, but in the Wigner molecule regime its effect is far
from perturbative! In other words, how is it justified that one can start from a bosonization
scheme that is valid in the weak interaction regime and push its validity all the way to a
crystalline system? Moreover, a major point remains unclear: Why are the spin excitations
way slower than the charge excitations? In order to answer these questions, in the next
section we will describe a bosonization scheme that has a strongly interacting starting
point. In this short review, more formal nonperturbative approaches [82–84] will not be
discussed, since effective models suffice for correctly interpreting the experimental results.

4. Bosonization in the Strong Interaction Limit

Let us now take a step back and consider a more intuitive perspective. The simplest
model one can adopt for describing the 1D Wigner molecule consists in a chain of elec-
trons [85–87], free to oscillate around their equilibrium positions, and interacting via a small
antiferromagnetic coupling due to the Lieb-Mattis theorem, stating that the ground state
of one-dimensional electrons cannot be spin polarized [88]. The model is schematically
shown in Figure 3.

The equilibrium position xeq
l of the l-th electron in the chain is given by xeq

l = a ∗ l,
where a is the average inter-particle distance. The displacement (operator) of the l-th
particle from its equilibrium position is ul , such that its position xl is xl = xeq

l + ul .
The Hamiltonian H consists in two contributions: H = Hc + Hs. Hc describes the

‘phonons’ of the chain of electrons and Hs describes the spin contribution. Considering
a chain of N electrons which perform small oscillations about the equilibrium positions
(elastic limit)

Hc =
N−1

∑
l=0

p2
l

2m
+

mω2
0

2
(ul+1 − ul)

2, (29)
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where pl is the momentum of the l-th electron, m, as before, is the effective mass in the
material, and ω0 is an effective frequency. Concerning the spin sector, one can rather
generically write the Heisenberg Hamiltonian

Hs = J0

N−1

∑
l=0

Sl · Sl+1, (30)

where Sl is the spin operator attached to the l-th electron of the chain and J0 is a positive
parameter. The residual spin coupling Hs is governed by the exchange parameter J0, which
is small in comparison to the typical energies of the charge sector Hc. For a more accurate
analysis of J0, see for example Ref. [86].

Figure 3. Schematic representation of the chain of electrons suitable as a starting point to describe a
one-dimensional Wigner molecule in the regime of strong interactions.

When temperature and external voltages are low compared to the bandwidths of the
spin and charge Hamiltonians one can consider the low energy limit of the theory. As long
as Hc is concerned, the quantities ul are replaced by the field u(x), defined as a slowly
varying field, with the condition ul = u(la). A new rescaled field is now introduced

θ(x) =
π√
2a

u(x) (31)

and one gets

Hc ∼ Hρ =
∫ L

0

dx
2π

[
gρvρ(πΠ(x))2 +

vρ

gρ

(
d

dx
θ(x)

)2
]

, (32)

with θ(x) a bosonic field, Π(x) its conjugate and

gρ =
π

2ma2(ω0)
∼ EF

ω0
∼ 1

rs
, (33)

with EF = π(2ma2)−1 and vρ ∼ rsvF. Furthermore, vF = 1
ma is the Fermi velocity of a

Fermi gas containing N electrons, confined in a segment of length L. Overall, the procedure
is the same one performed for obtaining the dispersion relation of the phonons of a one-
dimensional chain of identical equivalent particles [89].

A crucial point to observe here is that Hρ has the same form of the Hamiltonian of
the charge sector introduced in the previous section, but in this model the interaction
parameter gρ > 0 can become as small as wanted as the rs parameter is increased.

Also the low energy theory for Hs can be expressed in terms of a free bosonic theory.
The most accurate way to do so is to extract it from the exact Bethe-ansatz solution of the
1D Heisenberg Hamiltonian [90]. However a good physical insight into the problem can be
obtained by mapping the Heisenberg Hamiltonian Hs onto interacting spinless fermions,
and hence using standard bosonization techniques to map the interacting fermion onto a
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free bosonic Hamiltonian. The mapping onto the interacting spinless fermions is carried out
using the Wigner–Jordan transformation [90], that first simply translates the spin operators
onto linear combinations of the the Pauli matrices (Equation (34)), and then expresses the
algebra in terms of fermionic operators. Explicitly

σ±j =
Sx

j ± iSy
j

2
, (34)

σ+
j = eiπ ∑l<j ψ†

l ψl ψj =
j−1

∏
l=1

(1− 2ψ†
l ψl)ψj, (35)

σ−j = e−iπ ∑l<j ψ†
l ψl ψ†

j =
j−1

∏
l=1

(1− 2ψ†
l ψl)ψ

†
j , (36)

Sz
j =

1
2

(
1− 2ψ†

j ψj

)
, (37)

where ψj are spinless fermions.
At the end of this procedure one obtains a bosonized low energy Hamiltonian Hσ

given by [90,91]

Hs ∼ Hσ =
∫ dx

2π

[
vσgσ(πΠs(x))2 +

vσ

gσ

(
d

dx
θs(x)

)2
]

, (38)

with θs(x) a bosonic field, Πs(x) its conjugate, gσ = 1 and vσ = aJ0/(2) ∝ J0.
The total Hamiltonian is hence given, in the low energy sector, by the Hamiltonian

of a two channel Luttinger liquid with one Luttinger parameter, gρ, satisfying 0 < gρ < 1,
one Luttinger parameter satisfying gσ = 1 and vσ � vρ. The last condition is due to the
fact that vρ is, for small rs, bigger than the Fermi velocity, while vσ tends to zero as J tends
to zero, that is in the relevant strongly interacting case.

It can also be shown that the the electron operator ψs(x), which destroys an electron
with spin s at the position x along the one-dimensional system, admits a representation in
terms of bosonic operators. Such a mapping gives the usual expression characterizing the
Luttinger liquid fermionic operator [92,93].

To recapitulate in one sentence what we have learned so far: the Luttinger liquid
picture, which is well known to be valid for weak interactions, is also valid for strong
electron-electron interaction. The most important difference between the weak interaction
and the strong interaction regimes is that latter the velocities of the spin mode is very small
with respect to the velocity of the charge mode.

There are now interesting aspects that should be mentioned.
First of all, depending on rs, is might be meaningful to bosonize the spin Hamiltonian,

or not. Indeed, when the temperature scale becomes comparable to the bandwidth of the
spin Hamiltonian, its high energy structure matters and the full spin properties must be
addressed. When interactions become even stronger, the bandwidth can become negligible
with respect to temperature. In this case, the spin Hamiltonian is just approximated by
the identity operator. This regime is called spin incoherent regime [59,85]. Within this
approximation, the Wigner molecule becomes strongly degenerate.

A second aspect to address is the particle density in the model presented in this
section. While in the standard bosonization scheme it is difficult to justify the presence
of 4kF oscillations, in the current model Friedel oscillations appear to be absent. It can be
shown that they emerge thanks to the following mechanism: When the oscillations of the
electrons around their equilibrium positions become significant, the coupling J acquires a
dependence on the operators ul . A spin-Peierls’ mechanism can hence drive an effective
dimerization of the chain and let 2kF oscillations to emerge.
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In this context, it is worth to notice that, since Friedel oscillations are sensitive to
the spin sector, differently from Wigner oscillations, their signatures are more likely to be
‘melted’ by temperature [80,94–96].

5. Indicators of the Wigner Molecule

We can now summarize, on the basis of the discussion carried out in the former
sections, the signatures of the Wigner molecule that are most likely to be observed in
an experiment.

(i) The electron density shows, in the Wigner molecule regime, a number of (well sepa-
rated) peaks that equals the number of electrons in the system.

(ii) The low-energy excitations, that are in the spin sector, have typical energies that are
strongly suppressed with respect to the non-interacting case (the Wigner molecule,
as mentioned, tends to be degenerate).

(iii) More surprisingly, the following effect can be predicted [86]: when the temperature
is low as compared to the bandwidth of the spin Hamiltonian, the conductance is
characterized by the typical 2e2/h Luttinger liquid value. On the other hand, in the
spin incoherent regime, the system behaves more like a spinless Luttinger liquid and
the conductance tends to e2/h.

On a more theoretical perspective, features of the localization tensor, the particle-
hole entropy, and the current noise can also be linked to the formation of a Wigner
molecule [97,98].

6. Carbon Nanotubes

Before addressing the experimental evidences of the Wigner molecule, an important
clarification is in order. The theories just summarized do not completely apply to the
one-dimensional system that is most often employed to study the Wigner molecule: carbon
nanotubes [35,99–106]. While all the basic arguments addressed in the preceding sections
are qualitatively correct even in the case of carbon nanotubes, a careful analysis would be
required in order to make quantitative predictions.

Carbon nanotubes, in their single wall versions, are, qualitatively speaking, cylinders
made of rolled up graphene sheets. Depending on the direction of the axis of the cylinder
with respect to the lattice, they can be either metallic or semiconducting, with the semicon-
ducting ones being the most interesting for Wigner crystallization. The typical length is up
to the micrometer scale, while the diameter can be below the nanometer. From the point of
view of quantum confinement, they can hence be brought into the one-dimensional regime,
similarly to semiconducting quantum wires. From the point of view of Wigner crystal-
lization they have several advantages with respect to quantum wires: they can be grown
with a negligible amount of defects, they are intrinsically strongly interacting, and they
can be suspended between contacts, so as to minimize the screening effects. However, it
is worth noticing that, due to the underlying honeycomb lattice, electrons at low energy
necessitate an extra index: the valley degree of freedom. This property, that is shared by
carbon nanotubes and graphene, is due to the fact that there are two inequivalent points
in the Brillouin zone that need to be considered in a low energy expansion. From the
perspective of the density oscillations, this means that the number of peaks is not doubled,
but becomes four times bigger in the transition between Friedel and Wigner oscillations.
From the point of view of the spin physics, the presence of the valley degree of freedom
implies that, even in the simplest case, the Heisenberg Hamiltonian must be replaced by
more involved models such as [107]

HCNT
s = J

N−1

∑
l=0

Sl · Sl+1 + τl · τl+1 + Sl · Sl+1τl · τl+1. (39)

Here τl represents the isospin term associated to the valley degree of freedom. This
Hamiltonian is more complicated than the Heisenberg Hamiltonian In Equation (29),
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nevertheless it is integrable, and it can be shown that its low energy sector can be described
in terms of a three channel Luttinger liquid [108–110]. Thus, when the phonons of the
chain are included in the Hamiltonian, the picture drawn for weakly interacting CNTs is
recovered even for the Wigner molecule in CNTs.

Spin-orbit coupling, that can be significant in carbon nanotubes, couples the spin and
the valley degree of freedom and can further enrich the physics, mainly lifting degeneracies
and altering the transport properties in the Kondo regime [111–114]. Another relevant topic
is the behavior of the electrons hosted by carbon nanotubes in the presence of an external
magnetic field. Being associated to the chirality, the valley degree of freedom is related to
an orbital magnetic field, so that a suitable gyromagnetic factor gorb should be taken into
account. The scale of gorb strongly depends on the radius R of the nanotube according to
the qualitative rule gorb = 7R[nm] [115], although it can be dependent on the confinement.
On the other hand, the coupling between the magnetic field and the spin degree of freedom
is parametrized by [115] gs ∼ 2. In the prototypical cases, hence, the coupling to the valley
degree of freedom is stronger than the one to the spin degree of freedom.

7. Experiments

In this section, we describe three prominent experiments that revealed, with differ-
ent techniques, a one-dimensional Wigner molecule. All experiments are performed on
suspended, high quality, semiconducting carbon nanotubes.

In Ref. [116], by Deshphande and Bockrath, the nanotube is contacted with a source-
drain voltage Vsd and brought in the Coulomb blockade regime—see Figure 4a. A gate,
biased at the voltage Vg, allows to control the number of holes in the system in the range
between 0 and around 30. The focus of the experiment is measuring the linear differential
conductance dI/dVsd as a function of the gate voltage and of a magnetic field applied
parallel to the axis of the nanotube. From such a measure, the energy levels of the systems
can be resolved. The experimental results are shown in Figure 5a. Three distinct regions
can be distinguished. For a low density of holes (the region I) a Wigner crystal develops.
In this regime, the coupling constant J is very small, so that at any finite magnetic field
the electrons tunneling into the nanotube are polarized both in the spin and in the valley
degree of freedom. Indeed, a single slope is visible. As the filling is increased J/kB (with kB
the Boltzmann constant) increases up to several tens of Kelvin and two regions appear: one
where the valley degree of freedom is polarized, while the spin is antiferromagnetically
ordered. In the picture this is highlighted as region II, between the red and the yellow lines,
where consecutive lines have different positive slopes. Moreover, below the yellow line
the spin degree of freedom is not polarized. For even higher numbers of holes, a regime
where both the spin and the valley degrees of freedom are antiferromagnetic (region
III) appears. A quantitative analysis of the phase boundaries is rather involved: while
in the original article the results are interpreted in terms of solitons in a homogeneous,
multi-flavour Luttinger liquid [117], it was later recognized that it is crucial to take into
account the effects of confinement [118]. Indeed, the holes are confined in the nanotube by
means of two Schottky barriers, that can be modelled as inducing a parabolic confinement.
The holes will hence be denser close to the center of the nanotube and more diluted at the
edges. In the spin-isospin Hamiltonian, it is then important to keep a position dependent
J. Consequently, it can happen that in the nanotube a phase separation can be present.
By taking this effect into account, in Ref. [118] it was possible to obtain a precise agreement
between the experimental results and the theoretical calculations.

A complementary signature of the Wigner molecule was obtained by S. Pecker et al. [119].
In this case, the system is again a nanotube which however hosts only two electrons.
The experimental setup is shown in Figure 4b. The quantity measured to assess the
presence of a Wigner molecule is the the energy gap between the ground state and the first
excited state. This quantity is interesting since the two states correspond to a spin 1 singlet
and triplet respectively, which should eventually become degenerate in the deep Wigner
regime. In details, the idea is the following: If interactions were absent, said gap would
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simply correspond to the single particle level spacing, a quantity easily obtained measuring
the properties of the nanotube when only one electron occupies it. On the other hand,
in the Wigner molecule regime, the strongly suppressed energy difference is controlled
by the effective exchange parameter J. Measurements are shown in Figure 5b where the
energy gap is reported as a function of a detuning parameter ε. Here, the high detuning
regime corresponds to the physical situation discussed in the present review, with the two
electrons confined onto a portion of the nanotube. In this regime, The Authors report a gap
suppression of a factor 10 between the single particle levels and the two particle levels and
are able to link this behavior to the formation of a Wigner molecule comparing their results
with an exact diagonalization of the system. The physical mechanism is hence the collapse
of the spin and isospin sectors of the Hamiltonian.

Both the above experiments provide significant and convincing evidence of the forma-
tion of a Wigner molecule, basically focusing on one of the hallmarks discussed previously:
the tendency to develop a marked degeneracy of spin multiplets in the molecular regime.
Neither of the two however has been able to pinpoint the most direct evidence of a Wigner
molecule, namely the spatial localization and separation of electrons. This gap has been
filled by the experiment by Shapir et al. [120].

Figure 4. The experimental setup for the three key experiments assessing the properties of Wigner molecules in one-
dimensional system discussed in this review: (a) a suspended semiconducting nanotube in the hole regime [116]; (b) a
suspended tunable carbon nanotube [119]; (c) a complex setup, with a nanotube split into two parts which respectively
act as the region where the Wigner molecule is formed and as a charge detector with an additional transverse suspended
nanotube capacitively coupled to the Wigner molecule [120].

The setup of this experiment, shown in Figure 4c, is way more complex and consists
of two nanotubes with different purposes. The first nanotube is split into two segments:
one hosts the Wigner molecule to be probed while the other—electrically insulated and
independently contacted, serves as a detector of the number of electrons forming the
Wigner molecule. The detection is performed locating linear conductance peaks as a



Crystals 2021, 11, 20 15 of 19

function of the bias applied to the back gates below the molecule. The second nanotube is
suspended above the first one perpendicularly to it and is free to move along the region
where the molecule sits. Independently biased and capacitively coupled to the molecule,
it acts as a scanning gate probe for the system, allowing to locally shift the electron
density of the molecule. The equilibrium number of electrons in the Wigner molecule
as a function of the gate voltage then depends on the position of the scanning nanotube.
The experimental result is shown in Figure 5c: the conductance map essentially allows to
visualize the electron density [121,122] providing a direct probe of the Wigner molecule
in one dimension. What is indeed observed is a number of peaks that equals the number
of electrons in the system. The minima are not expected to be close to zero even in the
strongly interacting regime [120].

(a)

(b) (c)

Figure 5. (a) Differential conductance as a function of gate voltage and magnetic field as measured in Ref. [116]. The three
regions are highlighted with the red and the yellow curves. (b) Differential conductance as a function of gate voltage and a
detuning parameter in Ref. [119]. The key aspect is here the energy scale highlighted by the black arrow, that demonstrates
the suppression of the energy of the spin excitations. (c) Current in the control nanotube as a function of gate voltage
position of the scanning nanotube for three electrons in the system as measured in [120]. The characteristic three peak
structure is clearly visible.

8. Perspectives

The three representative experiments discussed reveal an interesting issue: the typical
rs inspected are either smaller than 5, or around 20. In the first case, the spin excitations
are well visible. On the other hand, in the second case, the system is in the spin incoherent
regime. A full analysis of how the spin incoherent regime develops is hence still missing.
Connected to this point, a fundamental question is also emerging: the dimerization of the
Wigner molecule happens via a spin-Peierls’ mechanism. From the point of view of the
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spectrum, a gap should correspondingly open in the spectrum. A quantum phase transition
could hence mark the appearance of the Wigner molecule in one dimension. While the
gap is supposed to be undetectably small, clarifying this point would be conceptually
extraordinarily important.

Finally, the peculiar temperature dependence of the conductance characterizing the
Wigner molecule has also not been observed yet.
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