Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells
Abstract
:1. Introduction
2. Characterization Set-Up
3. Experimental Section
3.1. Thin Film Preparation
3.1.1. SnO2 Thin Film Deposition
3.1.2. PEIE Interlayer Fabrication
3.1.3. Inverted Device Elaboration
4. Results and Discussion
4.1. Single Layer
4.1.1. X-ray Diffraction Study
4.1.2. UV-Visible Study
4.1.3. SEM and AFM Micrographs
4.1.4. Hall Effect Study
4.2. Solar Cell Device Characterizations
4.2.1. XRD and GIXRD Study
4.2.2. J–V Characterization and EQE Measurements
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Adhikari, N.; Khatiwada, D.; Dubey, A.; Qiao, Q. Device and morphological engineering of organic solar cells for enhanced charge transport and photovoltaic performance. J. Photonics Energy 2015, 5, 057207. [Google Scholar] [CrossRef] [Green Version]
- Ghosh, S.; Serrano, L.; Ebenhoch, B.; Rotello, V.; Cooke, G.; Samuel, I.D.W. Organic solar cells based on acceptor-functionalized diketopyrrolopyrrole derivatives. J. Photonics Energy 2015, 5, 057215. [Google Scholar] [CrossRef]
- Kim, H.; Shin, M.; Kim, Y. Distinct Annealing Temperature in Polymer:Fullerene:Polymer Ternary Blend Solar Cells. J. Phys. Chem. C 2009, 113, 1620–1623. [Google Scholar] [CrossRef]
- Song, M.; You, D.S.; Lim, K.; Park, S.; Jung, S.; Kim, C.S.; Kim, N.-H.; Kim, D.-G.; Kim, J.-K.; Park, J.; et al. Highly efficient and bendable organic solar cells with solution-processed silver nanowire electrodes. Adv. Funct. Mater. 2013, 23, 4177–4184. [Google Scholar] [CrossRef]
- Zhou, Z.; Liu, W.; Zhou, G.; Zhang, M.; Qian, D.; Zhang, J.; Chen, S.; Xu, S.; Yang, C.; Gao, F.; et al. Subtle molecular tailoring induces significant morphology optimization enabling over 16% efficiency organic solar cells with efficient charge generation. Adv. Mater. 2019, 32, 1906324. [Google Scholar] [CrossRef] [PubMed]
- Liu, L.; Kan, Y.; Gao, K.; Wang, J.; Zhao, M.; Chen, H.; Zhao, C.; Jiu, T.; Jen, A.-K.-Y.; Li, Y. Graphdiyne derivative as multifunctional solid additive in binary organic solar cells with 17.3% efficiency and high reproductivity. Adv. Mater. 2020, 32, e1907604. [Google Scholar] [CrossRef]
- Xiao, J.; Chen, Z.; Zhang, G.; Li, Q.-Y.; Yin, Q.; Huang, F.; Xu, Y.-X.; Yip, H.; Cao, Y.; Jiang, X. Efficient device engineering for inverted non-fullerene organic solar cells with low energy loss. J. Mater. Chem. C 2018, 6, 4457–4463. [Google Scholar] [CrossRef]
- Huang, J.; Li, C.-Z.; Chueh, C.-C.; Liu, S.-Q.; Yu, J.; Jen, A.K.-Y. 10.4% power conversion efficiency of ITO-free organic photovoltaics through enhanced light trapping configuration. Adv. Energy Mater. 2015, 5, 1500406. [Google Scholar] [CrossRef]
- Song, M.; Kang, J.W.; Kim, D.-H.; Kwon, J.-D.; Park, S.-G.; Nam, S.; Jo, S.; Ryu, S.Y.; Kim, C.S. Self-assembled monolayer as an interfacial modification material for highly efficient and air-stable inverted organic solar cells. Appl. Phys. Lett. 2013, 102, 143303. [Google Scholar] [CrossRef]
- Chochos, C.L.; Singh, R.; Gregoriou, V.G.; Kim, M.; Katsouras, A.; Serpetzoglou, E.; Konidakis, I.; Stratakis, E.; Cho, K.; Avgeropoulos, A. Enhancement of the power-conversion efficiency of organic solar cells via unveiling an appropriate rational design strategy in indacenodithiophene-alt-quinoxaline π-conjugated polymers. ACS Appl. Mater. Interfaces 2018, 10, 10236–10245. [Google Scholar] [CrossRef]
- Huang, C.; Liao, X.; Gao, K.; Zuo, L.; Lin, F.; Shi, X.; Li, C.-Z.; Liu, H.; Li, X.; Liu, F.; et al. highly efficient organic solar cells based on S,N-heteroacene non-fullerene acceptors. Chem. Mater. 2018, 30, 5429–5434. [Google Scholar] [CrossRef]
- Yan, C.; Barlow, S.; Wang, Z.; Yan, H.; Jen, A.K.-Y.; Marder, S.R.; Zhan, X. Non-fullerene acceptors for organic solar cells. Nat. Rev. Mater. 2018, 3, 18003. [Google Scholar] [CrossRef]
- Xie, Y.; Yang, F.; Li, Y.; Uddin, M.A.; Bi, P.; Fan, B.; Cai, Y.; Hao, X.-T.; Woo, H.Y.; Li, W.; et al. Morphology control enables efficient ternary organic solar cells. Adv. Mater. 2018, 30, 1803045. [Google Scholar] [CrossRef] [PubMed]
- Song, X.; Gasparini, N.; Ye, L.; Yao, H.; Hou, J.; Ade, H.; Baran, D. Controlling blend morphology for ultrahigh current density in nonfullerene acceptor-based organic solar cells. ACS Energy Lett. 2018, 3, 669–676. [Google Scholar] [CrossRef]
- Kaur, N.; Singh, M.; Pathak, D.; Wagner, T.; Nunzi, J.-M. Organic materials for photovoltaic applications: Review and mechanism. Synth. Met. 2014, 190, 20–26. [Google Scholar] [CrossRef]
- Choi, H.; Mai, C.-K.; Kim, H.-B.; Jeong, J.; Song, S.; Bazan, G.C.; Kim, J.Y.; Heeger, A.J. Conjugated polyelectrolyte hole transport layer for inverted-type perovskite solar cells. Nat. Commun. 2015, 6, 7348. [Google Scholar] [CrossRef] [Green Version]
- Lim, T.; Kim, C.; Song, M.; Ryu, S.Y.; Ju, S. Organic solar cells with surface-treated graphene thin film as interfacial layer. Synth. Met. 2015, 205, 1–5. [Google Scholar] [CrossRef]
- Yin, Z.; Wei, J.; Zheng, Q. Interfacial Materials for Organic Solar Cells: Recent Advances and Perspectives. Adv. Sci. 2016, 3, 1500362. [Google Scholar] [CrossRef] [Green Version]
- Liao, W.-P.; Wu, J.-J. Efficient electron collection in hybrid polymer solar cells: In-situ-generated ZnO/Poly(3-hexylthiophene) scaffolded by a TIO2 nanorod array. J. Phys. Chem. Lett. 2013, 4, 1983–1988. [Google Scholar] [CrossRef]
- Jouane, Y.; Schmerber, G.; Heiser, T.; Chapuis, Y.-A.; Colis, S.; Kern, P.; Dinia, A. Room temperature ZnO growth by rf magnetron sputtering on top of photoactive P3HT: PCBM for organic solar cells. J. Mater. Chem. 2011, 21, 1953–1958. [Google Scholar] [CrossRef]
- Yang, H.; Zhu, S.; Pan, N. Studying the mechanisms of titanium dioxide as ultraviolet-blocking additive for films and fabrics by an improved scheme. J. Appl. Polym. Sci. 2004, 92, 3201–3210. [Google Scholar] [CrossRef]
- Wang, J.-C.; Weng, W.-T.; Tsai, M.-Y.; Lee, M.-K.; Horng, S.-F.; Perng, T.-P.; Kei, C.-C.; Yu, C.-C.; Meng, H.-F. Highly efficient flexible inverted organic solar cells using atomic layer deposited ZnO as electron selective layer. J. Mater. Chem. 2010, 20, 862–866. [Google Scholar] [CrossRef] [Green Version]
- Tran, V.-H.; Eom, S.H.; Yoon, S.C.; Kim, S.-K.; Lee, S.-H. Enhancing device performance of inverted organic solar cells with SnO2/Cs2CO3 as dual electron transport layers. Org. Electron. 2019, 68, 85–95. [Google Scholar] [CrossRef]
- Hu, Z.; Zhang, J.; Hao, Z.; Hao, Q.; Geng, X.; Zhao, Y. Highly efficient organic photovoltaic devices using F-doped SnO2 anodes. Appl. Phys. Lett. 2011, 98, 123302. [Google Scholar] [CrossRef]
- Yang, F.; Forrest, S.R. Organic Solar Cells Using Transparent SnO2–F Anodes. Adv. Mater. 2006, 18, 2018–2022. [Google Scholar] [CrossRef]
- Huang, S.; Tang, Y.; Dang, Y.; Xu, X.; Dong, Q.; Kang, B.; Silva, S. Low-temperature solution-processed mg:sno2 nanoparticles as an effective cathode interfacial layer for inverted polymer solar cell. ACS Sustain. Chem. Eng. 2018, 6, 6702–6710. [Google Scholar] [CrossRef]
- Tran, V.-H.; Khan, R.; Lee, I.-H.; Lee, S.-H. Low-temperature solution-processed ionic liquid modified SnO2 as an excellent electron transport layer for inverted organic solar cells. Sol. Energy Mater. Sol. Cells 2018, 179, 260–269. [Google Scholar] [CrossRef]
- Huang, S.; Tang, Y.; Yu, A.; Wang, Y.; Shen, S.; Kang, B.; Silva, S.; Lu, G. Solution-processed SnO2 nanoparticle interfacial layers for efficient electron transport in ZnO-based polymer solar cells. Org. Electron. 2018, 62, 373–381. [Google Scholar] [CrossRef]
- Jin, W.-Y.; Ginting, R.T.; Jin, S.-H.; Kang, J.-W. Highly stable and efficient inverted organic solar cells based on low-temperature solution-processed PEIE and ZnO bilayers. J. Mater. Chem. A 2016, 4, 3784–3791. [Google Scholar] [CrossRef]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.W.; Khan, T.M.; Kippelen, B. High performance polymeric charge recombination layer for organic tandem solar cells. Energy Environ. Sci. 2012, 5, 9827–9832. [Google Scholar] [CrossRef]
- Udum, Y.; Denk, P.; Adam, G.; Apaydin, D.H.; Nevosad, A.; Teichert, C.; White, M.; Sariciftci, N.S.; Scharber, M.C. Inverted bulk-heterojunction solar cell with cross-linked hole-blocking layer. Org. Electron. 2014, 15, 997–1001. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Lee, W.; Jung, J.W. High performance polymer solar cells employing a low-temperature solution-processed organic–inorganic hybrid electron transport layer. J. Mater. Chem. A 2016, 4, 16612–16618. [Google Scholar] [CrossRef]
- Lim, K.-G.; Ahn, S.; Lee, T.-W. Energy level alignment of dipolar interface layer in organic and hybrid perovskite solar cells. J. Mater. Chem. C 2018, 6, 2915–2924. [Google Scholar] [CrossRef]
- Venkatesan, S.; Ngo, E.; Khatiwada, D.; Zhang, C.; Qiao, Q. Enhanced Lifetime of Polymer Solar Cells by Surface Passivation of Metal Oxide Buffer Layers. ACS Appl. Mater. Interfaces 2015, 7, 16093–16100. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Fuentes-Hernandez, C.; Shim, J.; Meyer, J.; Giordano, A.J.; Li, H.; Winget, P.; Papadopoulos, T.A.; Cheun, H.; Kim, J.; et al. A universal method to produce low-work function electrodes for organic electronics. Science 2012, 336, 327–332. [Google Scholar] [CrossRef]
- Courtright, B.A.E.; Jenekhe, S.A. Polyethylenimine Interfacial Layers in Inverted Organic Photovoltaic Devices: Effects of Ethoxylation and Molecular Weight on Efficiency and Temporal Stability. ACS Appl. Mater. Interfaces 2015, 7, 26167–26175. [Google Scholar] [CrossRef]
- Bouras, K.; Schmerber, G.; Rinnert, H.; Aureau, D.; Park, H.; Ferblantier, G.; Colis, S.; Fix, T.; Park, C.; Kim, W.K.; et al. Structural, optical and electrical properties of Nd-doped SnO2 thin films fabricated by reactive magnetron sputtering for solar cell devices. Sol. Energy Mater. Sol. Cells 2016, 145, 134–141. [Google Scholar] [CrossRef]
- Bouras, K.; Schmerber, G.; Aureau, D.; Rinnert, H.; Ferblantier, G.; Fix, T.; Colis, S.; Bazylewski, P.; Leedahl, B.; Etcheberry, A.; et al. Insight into photon conversion of Nd 3+ doped low temperature grown p and n type tin oxide thin films. RSC Adv. 2016, 6, 67157–67165. [Google Scholar] [CrossRef]
- Tran, V.-H.; Ambade, R.B.; Ambade, S.; Lee, S.-H.; Lee, I.H. Low-temperature solution-processed SnO2 nanoparticles as a cathode buffer layer for inverted organic solar cells. ACS Appl. Mater. Interfaces 2017, 9, 1645–1653. [Google Scholar] [CrossRef]
- Chu, C.-W.; Yang, H.; Hou, W.-J.; Huang, J.; Li, G.; Yang, Y. Control of the nanoscale crystallinity and phase separation in polymer solar cells. Appl. Phys. Lett. 2008, 92, 103306. [Google Scholar] [CrossRef] [Green Version]
- Seidler, N.; Lazzerini, G.M.; Destri, G.L.; Marletta, G.; Cacialli, F. Enhanced crystallinity and film retention of P3HT thin-films for efficient organic solar cells by use of preformed nanofibers in solution. J. Mater. Chem. C 2013, 1, 7748. [Google Scholar] [CrossRef] [Green Version]
- Müllerová, J.; Kaiser, M.; Nadazdy, V.; Siffalovic, P.; Majkova, E. Optical absorption study of P3HT:PCBM blend photo-oxidation for bulk heterojunction solar cells. Sol. Energy 2016, 134, 294–301. [Google Scholar] [CrossRef]
- Li, L.; Lu, G.; Yang, X. Improving performance of polymer photovoltaic devices using an annealing-free approach via construction of ordered aggregates in solution. J. Mater. Chem. 2008, 18, 1984. [Google Scholar] [CrossRef]
- Kanai, K.; Miyazaki, T.; Suzuki, H.; Inaba, M.; Ouchi, Y.; Seki, K. Effect of annealing on the electronic structure of poly(3-hexylthiophene) thin film. Phys. Chem. Chem. Phys. 2010, 12, 273–282. [Google Scholar] [CrossRef] [PubMed]
- Yu, S.; Yang, W.; Li, L.; Zhang, W. Improved chemical stability of ITO transparent anodes with a SnO2 buffer layer for organic solar cells. Sol. Energy Mater. Sol. Cells 2016, 144, 652–656. [Google Scholar] [CrossRef]
- Goo, J.S.; Shin, S.-C.; You, Y.-J.; Shim, J.W. Polymer surface modification to optimize inverted organic photovoltaic devices under indoor light conditions. Sol. Energy Mater. Sol. Cells 2018, 184, 31–37. [Google Scholar] [CrossRef]
- Ha, J.; Kim, H.; Lee, H.; Lim, K.-G.; Lee, T.-W.; Yoo, S. Device architecture for efficient, low-hysteresis flexible perovskite solar cells: Replacing TiO2 with C60 assisted by polyethylenimine ethoxylated interfacial layers. Sol. Energy Mater. Sol. Cells 2017, 161, 338–346. [Google Scholar] [CrossRef]
Samples | n (1020cm−3) | ρ (10−3Ω·cm) | μ (cm2/V·s) |
---|---|---|---|
10 nm | −1.83 ± 0.03 | 1.87 ± 0.02 | 4.72 ± 0.02 |
20 nm | −2.62 ± 0.02 | 1.78 ± 0.03 | 11.12 ± 0.02 |
30 nm | −2.13 ± 0.04 | 5.54 ± 0.02 | 4.70 ± 0.03 |
40 nm | −2.15 ± 0.03 | 6.24 ± 0.04 | 4.30 ± 0.02 |
60 nm | −1.78 ± 0.02 | 8.33 ± 0.02 | 4.20 ± 0.03 |
ETLs | Thickness of SnO2 (nm) | JSC * (mA/cm2) | VOC * (V) | FF * (%) | PCE * (%) |
---|---|---|---|---|---|
SnO2 | 20 | 1.25 ± 0.10 | 0.22 ± 0.05 | 30.0 ± 0.9 | 0.08 ± 0.10 |
PEIE | - | 6.25 ± 0.09 | 0.55 ± 0.01 | 55.8 ± 0.4 | 1.91 ± 0.07 |
SnO2/PEIE | 10 | 7.08 ± 0.02 | 0.56 ± 0.01 | 63.1 ± 0.8 | 2.50 ± 0.07 |
20 | 7.86 ± 0.05 | 0.57 ± 0.02 | 63.5 ± 0.5 | 2.84 ± 0.04 | |
30 | 6.55 ± 0.01 | 0.56 ± 0.01 | 66.6 ± 0.6 | 2.44 ± 0.04 | |
40 | 6.54 ± 0.02 | 0.56 ± 0.01 | 66.3 ± 0.6 | 2.42 ± 0.06 | |
60 | 5.60 ± 0.01 | 0.55 ± 0.03 | 42.8 ± 0.7 | 1.31 ± 0.02 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Anefnaf, I.; Aazou, S.; Schmerber, G.; Refki, S.; Zimmermann, N.; Heiser, T.; Ferblantier, G.; Slaoui, A.; Dinia, A.; Abd-Lefdil, M.; et al. Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells. Crystals 2020, 10, 731. https://doi.org/10.3390/cryst10090731
Anefnaf I, Aazou S, Schmerber G, Refki S, Zimmermann N, Heiser T, Ferblantier G, Slaoui A, Dinia A, Abd-Lefdil M, et al. Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells. Crystals. 2020; 10(9):731. https://doi.org/10.3390/cryst10090731
Chicago/Turabian StyleAnefnaf, Ikram, Safae Aazou, Guy Schmerber, Siham Refki, Nicolas Zimmermann, Thomas Heiser, Gérald Ferblantier, Abdelilah Slaoui, Aziz Dinia, Mohammed Abd-Lefdil, and et al. 2020. "Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells" Crystals 10, no. 9: 731. https://doi.org/10.3390/cryst10090731
APA StyleAnefnaf, I., Aazou, S., Schmerber, G., Refki, S., Zimmermann, N., Heiser, T., Ferblantier, G., Slaoui, A., Dinia, A., Abd-Lefdil, M., & Sekkat, Z. (2020). Polyethylenimine-Ethoxylated Interfacial Layer for Efficient Electron Collection in SnO2-Based Inverted Organic Solar Cells. Crystals, 10(9), 731. https://doi.org/10.3390/cryst10090731