Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials
Abstract
:1. Introduction
2. Theoretical Model
2.1. Dielectric Functions of Constituent Materials
2.2. Effective Medium Theory
2.3. Transfer Matrix Method
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shalaev, V.M. Optical negative-index metamaterials. Nat. Photonics. 2007, 1, 41–48. [Google Scholar] [CrossRef]
- Cummer, S.A.; Christensen, J.; Alù, A. Controlling sound with acoustic metamaterials. Nat. Rev. Mater. 2016, 1, 16001. [Google Scholar] [CrossRef] [Green Version]
- Zhu, S.; Zhang, X. Metamaterials: Artificial materials beyond nature. Natl. Sci. Rev. 2018, 5, 131. [Google Scholar] [CrossRef] [Green Version]
- Sun, J.; Litchinitser, N.M. Toward Practical, Subwavelength, Visible-Light Photolithography with Hyperlens. ACS Nano 2018, 12, 542–548. [Google Scholar] [CrossRef] [PubMed]
- Sreekanth, K.V.; Alapan, Y.; ElKabbash, M.; Ilker, E.; Hinczewski, M.; Gurkan, U.A.; De Luca, A.; Strangi, G. Extreme sensitivity biosensing platform based on hyperbolic metamaterials. Nat. Mater. 2016, 15, 621–627. [Google Scholar] [CrossRef] [Green Version]
- Baqir, M.A.; Farmani, A.; Fatima, T.; Raza, M.R.; Shaukat, S.F.; Mir, A. Nanoscale, tunable, and highly sensitive biosensor utilizing hyperbolic metamaterials in the near-infrared range. Appl. Opt. 2018, 57, 9447. [Google Scholar] [CrossRef]
- Kabashin, A.; Evans, P.; Pastkovsky, S.; Wurtz, G.A.; Hendren, W.; Atkinson, R.; Pollard, R.; Podolskiy, V.A.; Zayats, A.V. Plasmonic nanorod metamaterials for biosensing. Nat. Mater. 2009, 8, 867–871. [Google Scholar] [CrossRef]
- Shkondin, E.; Repän, T.; Esmail Aryaee Panah, M.; Lavrinenko, A.V.; Takayama, O. High aspect ratio plasmonic nanotrench structures with large active surface area for label-free mid-infrared molecular absorption sensing. ACS Appl. Nano Mater. 2018, 1, 1212–1218. [Google Scholar] [CrossRef] [Green Version]
- Neira, A.D.; Wurtz, G.A.; Zayats, A.V. Superluminal and stopped light due to mode coupling in confined hyperbolic metamaterial waveguides. Sci. Rep. 2015, 5, 17678. [Google Scholar] [CrossRef] [Green Version]
- Tyszka-Zawadzka, A.; Janaszek, B.; Szczepański, P. Tunable slow light in graphene-based hyperbolic metamaterial waveguide operating in SCLU telecom bands. Opt. Express 2017, 25, 7263. [Google Scholar] [CrossRef]
- Kieliszczyk, M.; Janaszek, B.; Tyszka-Zawadzka, A.; Szczepański, P. Tunable spectral and spatial filters for the mid-infrared based on hyperbolic metamaterials. Appl. Opt. 2018, 57, 1182–1187. [Google Scholar] [CrossRef]
- Ghoshroy, A.; Adams, W.; Zhang, X.; Güney, D.Ö. Hyperbolic metamaterial as a tunable near-field spatial filter to implement active plasmon-injection loss compensation. Phys. Rev. Appl. 2018, 10, 024018. [Google Scholar] [CrossRef] [Green Version]
- Lu, D.; Qian, H.; Wang, K.; Shen, H.; Wei, F.; Jiang, Y.; Fullerton, E.E.; Yu, P.K.L.; Liu, Z. Nanostructuring Multilayer Hyperbolic Metamaterials for Ultrafast and Bright Green InGaN Quantum Wells. Adv. Mater. 2018, 30, 1706411. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Barbillon, G.; Sakat, E.; Hugonin, J.-P.; Biehs, S.-A.; Ben-Abdallah, P. True thermal antenna with hyperbolic metamaterials. Opt. Express. 2017, 25, 23356. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Huo, P.; Zhang, S.; Liang, Y.; Lu, Y.; Xu, T. Hyperbolic Metamaterials and Metasurfaces: Fundamentals and Applications. Adv. Opt. Mater. 2019, 7, 1801616. [Google Scholar] [CrossRef]
- Pianelli, A.; Kowerdziej, R.; Dudek, M.; Sielezin, K.; Olifierczuk, M.; Parka, J. Graphene-based hyperbolic metamaterial as a switchable reflection modulator. Opt. Express 2020, 28, 6708. [Google Scholar] [CrossRef]
- Poddubny, A.; Iorsh, I.; Belov, P.; Kivshar, Y. Hyperbolic metamaterials. Nat. Photon. 2013, 7, 948–957. [Google Scholar] [CrossRef]
- Shekhar, P.; Atkinson, J.; Jacob, Z. Hyperbolic metamaterials: Fundamentals and applications. Nano Converg. 2014, 1, 14. [Google Scholar] [CrossRef]
- Ferrari, L.; Wu, C.; Lepage, D.; Zhang, X.; Liu, Z. Hyperbolic metamaterials and their applications. Prog. Quantum Electron. 2015, 40, 1–40. [Google Scholar] [CrossRef]
- Takayama, O.; Lavrinenko, A.V. Optics with hyperbolic materials. JOSA B 2019, 36, F38–F48. [Google Scholar] [CrossRef] [Green Version]
- Guo, Z.; Jiang, H.; Chen, H. Hyperbolic metamaterials: From dispersion manipulation to applications. J. Appl. Phys. 2020, 127, 071101. [Google Scholar] [CrossRef] [Green Version]
- Campione, S.; Klem, J.F.; Liu, S.; Montano, I.; Sinclair, M.B.; Luk, T.S. Experimental Evidence of the Lorentz-Like Effective Medium Resonance in Semiconductor Hyperbolic Metamaterials Using Strong Coupling to Plasmonic Metasurfaces. IEEE Trans. Antennas Propag. 2020, 68, 1748–1754. [Google Scholar] [CrossRef]
- Janaszek, B.; Kieliszczyk, M.; Tyszka-Zawadzka, A.; Szczepański, P. Multiresonance response in hyperbolic metamaterials. Appl. Opt. 2018, 57, 2135. [Google Scholar] [CrossRef]
- Elser, J.; Podolskiy, V.A.; Salakhutdinov, I.; Avrutsky, I. Nonlocal effects in effective-medium response of nanolayered metamaterials. Appl. Phys. Lett. 2007, 90, 191109. [Google Scholar] [CrossRef] [Green Version]
- Correas-Serrano, D.; Gomez-Diaz, J.S.; Tymchenko, M.; Alù, A. Nonlocal response of hyperbolic metasurfaces. Opt. Express 2015, 23, 29434. [Google Scholar] [CrossRef] [PubMed]
- Shalin, A.S.; Ginzburg, P.; Orlov, A.A.; Iorsh, I.; Belov, P.A.; Kivshar, Y.S.; Zayats, A.V. Scattering suppression from arbitrary objects in spatially dispersive layered metamaterials. Phys. Rev. B 2015, 91, 125426. [Google Scholar] [CrossRef]
- Geng, T.; Zhuang, S.; Gao, J.; Yang, X. Nonlocal effective medium approximation for metallic nanorod metamaterials. Phys. Rev. B 2015, 91, 245128. [Google Scholar] [CrossRef] [Green Version]
- Yan, W.; Asger Mortensen, N.; Wubs, M. Hyperbolic metamaterial lens with hydrodynamic nonlocal response. Opt. Express 2013, 21, 15026. [Google Scholar] [CrossRef] [Green Version]
- Chebykin, A.V.; Orlov, A.A.; Simovski, C.R.; Kivshar, Y.S.; Belov, P.A. Nonlocal effective parameters of multilayered metal-dielectric metamaterials. Phys. Rev. B 2012, 86, 115420. [Google Scholar] [CrossRef] [Green Version]
- Chern, R.-L. Spatial dispersion and nonlocal effective permittivity for periodic layered metamaterials. Opt. Express 2013, 21, 16514. [Google Scholar] [CrossRef]
- Pollard, R.J.; Murphy, A.; Hendren, W.R.; Evans, P.R.; Atkinson, R.; Wurtz, G.A.; Zayats, A.V.; Podolskiy, V.A. Optical Nonlocalities and Additional Waves in Epsilon-Near-Zero Metamaterials. Phys. Rev. Lett. 2009, 102, 127405. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Gong, S.; Hu, M.; Wu, Z.; Pan, H.; Wang, H.; Zhang, K.; Zhong, R.; Zhou, J.; Zhao, T.; Liu, D.; et al. Direction controllable inverse transition radiation from the spatial dispersion in a graphene-dielectric stack. Photonics Res. 2019, 7, 1154. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, Y.U.; Fages, F.; Ribierre, J.-C.; Wu, J.W.; D’Aléo, A. Blue-Shifting Intramolecular Charge Transfer Emission by Nonlocal Effect of Hyperbolic Metamaterials. Nano Lett. 2018, 18, 1476–1482. [Google Scholar] [CrossRef] [PubMed]
- Hu, H.; Gao, D.; Lin, X.; Hou, S.; Zhang, B.; Wang, Q.J.; Luo, Y. Directing Cherenkov photons with spatial nonlocality. Nanophotonics 2020, 20200135. [Google Scholar] [CrossRef]
- Savoia, S.; Castaldi, G.; Galdi, V. Optical nonlocality in multilayered hyperbolic metamaterials based on Thue-Morse superlattices. Phys. Rev. B 2013, 87, 235116. [Google Scholar] [CrossRef] [Green Version]
- Wells, B.; Kudyshev, Z.A.; Litchinitser, N.; Podolskiy, V.A. Nonlocal Effects in Transition Hyperbolic Metamaterials. ACS Photonics 2017, 4, 2470–2478. [Google Scholar] [CrossRef]
- Janaszek, B.; Szczepański, P. Effect of nonlocality in spatially uniform anisotropic metamaterials. Opt. Express 2020, 28, 15447. [Google Scholar] [CrossRef]
- Hanson, G.W. Dyadic Green’s Functions for an Anisotropic, Non-Local Model of Biased Graphene. IEEE Trans. Antennas Propag. 2008, 56, 747–757. [Google Scholar] [CrossRef]
- Luke, K.; Okawachi, Y.; Lamont, M.R.E.; Gaeta, A.L.; Lipson, M. Broadband mid-infrared frequency comb generation in a Si3N4 microresonator. Opt. Lett. 2015, 40, 4823. [Google Scholar] [CrossRef]
- Chang, Y.-C.; Liu, C.-H.; Liu, C.-H.; Zhang, S.; Marder, S.R.; Narimanov, E.E.; Zhong, Z.; Norris, T.B. Realization of mid-infrared graphene hyperbolic metamaterials. Nat. Commun. 2016, 7, 10568. [Google Scholar] [CrossRef] [Green Version]
- Mroczyński, R.; Iwanicki, D.; Fetliński, B.; Ożga, M.; Świniarski, M.; Gertych, A.; Zdrojek, M.; Godlewski, M. Optimization of Ultra-Thin Pulsed-DC Magnetron Sputtered Aluminum Films for the Technology of Hyperbolic Metamaterials. Crystals 2020, 10, 384. [Google Scholar] [CrossRef]
- Muñoz, R.; Gómez-Aleixandre, C. Review of CVD Synthesis of Graphene: Review of CVD Synthesis of Graphene. Chem. Vap. Depos. 2013, 19, 297–322. [Google Scholar] [CrossRef] [Green Version]
- Du, H. Oxidation Studies of Crystalline CVD Silicon Nitride. J. Electrochem. Soc. 1989, 136, 1527. [Google Scholar] [CrossRef]
- Mroczyński, R.; Beck, R. Silicon Oxynitride Layers Fabricated by Plasma Enhanced Chemical Vapor Deposition (PECVD) for CMOS Devices. In Proceedings of the ECS Transactions; ECS: Vienna, Austria, 2009; pp. 797–804. [Google Scholar]
- Mroczyński, R.; Szymańska, M.; Głuszewski, W. Reactive magnetron sputtered hafnium oxide layers for nonvolatile semiconductor memory devices. J. Vac. Sci. Technol. B Nanotechnol. Microelectron. Mater. Process. Meas. Phenom. 2015, 33, 01A113. [Google Scholar] [CrossRef]
- Agranovich, V.M.; Ginzburg, V. Spatial Dispersion in Crystal Optics. In Crystal Optics with Spatial Dispersion, and Excitons, 2nd ed.; Springer-Verlag Berlin Heidelberg: New York, NY, USA, 1984; ISBN 978-3-662-02406-5. [Google Scholar]
- Berreman, D.W. Optics in Stratified and Anisotropic Media: 4 × 4-Matrix Formulation. J. Opt. Soc. Am. 1972, 62, 502. [Google Scholar] [CrossRef]
- Yeh, P. Optics of Anisotropic Layered Media. In Optical Waves in Layered Media, 1st ed.; Wiley: New York, NY, USA, 1988; ISBN 978-0-471-82866-2. [Google Scholar]
- Janaszek, B.; Tyszka-Zawadzka, A.; Szczepański, P. Tunable graphene-based hyperbolic metamaterial operating in SCLU telecom bands. Opt. Express 2016, 24, 24129. [Google Scholar] [CrossRef]
- Maier, S.A. Surface plasmon polaritons at metal/insulator interfaces. In Plasmonics: Fundamentals and Applications, 1st ed.; Springer: New York, NY, USA, 2007; ISBN 978-0387-33150-8. [Google Scholar]
- Prade, B.; Vinet, J.Y.; Mysyrowicz, A. Guided optical waves in planar heterostructures with negative dielectric constant. Phys. Rev. B 1991, 44, 13556. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janaszek, B.; Kieliszczyk, M.; Tyszka-Zawadzka, A.; Szczepański, P. Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials. Crystals 2020, 10, 577. https://doi.org/10.3390/cryst10070577
Janaszek B, Kieliszczyk M, Tyszka-Zawadzka A, Szczepański P. Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials. Crystals. 2020; 10(7):577. https://doi.org/10.3390/cryst10070577
Chicago/Turabian StyleJanaszek, Bartosz, Marcin Kieliszczyk, Anna Tyszka-Zawadzka, and Paweł Szczepański. 2020. "Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials" Crystals 10, no. 7: 577. https://doi.org/10.3390/cryst10070577
APA StyleJanaszek, B., Kieliszczyk, M., Tyszka-Zawadzka, A., & Szczepański, P. (2020). Influence of Nonlocality on Transmittance and Reflectance of Hyperbolic Metamaterials. Crystals, 10(7), 577. https://doi.org/10.3390/cryst10070577