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Abstract: In this paper we investigate transmittance and reflectance spectra of multilayer hyperbolic
metamaterials in the presence of strong spatial dispersion. Our analysis revealed a number of
intriguing optical phenomena, which cannot be predicted with the local response approximation,
such as total reflectance for small angles of incidence or multiple transmittance peaks of resonant
character (instead of the respective local counterparts, where almost complete transparency is predicted
for small angles of incidence and the broad-angle transparency can be observed within a range of
larger angles of incidence). We believe that the observed effects may serve as a working principle in a
number of new potential applications, such as spatial filtering, biosensing, or beam steering.

Keywords: hyperbolic metamaterials; spatial dispersion; nonlocality; optical properties; spectral and
spatial filtering

1. Introduction

Over the last two decades, a great deal of attention has been devoted to optical metamaterials
providing new means for controlling wave propagation which are not achievable with conventional
media [1–3]. A special class of uniaxially anisotropic metamaterials, called hyperbolic metamaterials
(HMMs), have emerged as a particularly prospective media, due to their relatively high technological
feasibility as well as wide applicability, including diffractionless lensing [4], biosensing [5–8], optical
signal buffering/storing [9,10], efficient spectral [11], and spatial filtering [12], as well as many
others [13–21].

The most common approach to predict the electromagnetic response of an HMM structure
is the effective medium theory (EMT) which encompasses solely temporal dispersion, i.e.,
frequency-dependent effective electric permittivity tensor [13,22,23]. However, it has been shown that
a correct description of realistic structures of finite dimensions often requires consideration of spatial
dispersion, i.e., dependency of effective electric permittivity tensor components on wavevector [24–26].
Until now, a number of methods suitable for prediction of nonlocal response have been developed,
including approaches based on Mie scattering theory [27] or Drude hydrodynamic model [28], as well as
formalisms originating from the transfer matrix method [29,30].

The first studies devoted to spatial dispersion in hyperbolic media revealed that nonlocality
substantially alters the intended performance of the structure by e.g., occurrence of an additional
waveguide mode [31]. Further scientific efforts concerning nonlocality in HMMs were focused on
investigating electromagnetic phenomena that are not present when spatial dispersion is negligible,
such as direction controllable inverse transition radiation [32], spectral shift of intramolecular charge
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transfer emission [33], or the existence of Cherenkov radiation of controllable threshold [34]. Another
branch of studies in this field was dedicated to possibility of controlling spatial dispersion at will.
It has been shown that by proper layer arrangement in 1D HMM, e.g., Thue–Morse [35], or embedding
nonuniform nanorods in 2D HMMs, e.g., cone-shaped [36], the nonlocality in HMMs can be greatly
enhanced and employed, e.g., to obtain a stronger nonlinear response [36]. More recently, it has
been also demonstrated that nonlocality can be efficiently controlled in spatially uniform hyperbolic
metamaterials and may serve as a new mechanism for tailoring effective dispersion [37].

In this paper, we investigate the influence of nonlocality on reflectance and transmittance (RT) of
an HMM structure. To unveil effects arising in the presence of strong spatial dispersion observed in an
appropriately designed multilayer nanostructure [37], we perform numerical calculations based on
a modified transfer matrix method (TMM), suitable for uniaxially and biaxially anisotropic media,
for an HMM structure described with local and nonlocal EMT, respectively. By example of a multilayer
structure based on graphene and silicon nitride, we investigate optical effects which arise in the
presence of strong nonlocality, with a special emphasis on sensitivity of transmittance and reflectance
to the angle of incidence. It is worth to underline that, since we do not consider spatial dispersion of
constituent materials, all the observed nonlocal effects arise from appropriately chosen dimensions of
the unit cell (in this case, thicknesses of the respective layers) [37]. Our analysis reveals a number of
interesting nonlocality-induced effects, such as total reflectance for small angles of incidence or multiple
transmittance peaks of resonant character (instead of the respective local counterparts, where almost
complete transparency is predicted for small angles of incidence and the broad-angle transparency can
be observed within a range of larger angles of incidence). We believe that controlling spatial dispersion
in HMM structures opens new venues in various applications, e.g., requiring highly sensitive response
to the angle of incidence.

2. Theoretical Model

In this section, we present theoretical background for our analysis. Firstly, we shortly discuss
numerical models of the employed materials. Then, we present the local and nonlocal EMT formalisms,
which are later used to describe the HMM structure. In the last subsection, we demonstrate a modified
transfer matrix method (TMM), suitable for modelling propagation in planar biaxially anisotropic
media, which is necessary when spatial dispersion is to be considered.

2.1. Dielectric Functions of Constituent Materials

We have selected graphene and silicon nitride (SiN) as nonmagnetic materials (relative magnetic
permeability µr = 1) constituting the HMM structure, see Figure 1a. Complex relative electric
permittivity of graphene is calculated based on the well-known Kubo formula [38], while the dielectric
function of SiN is modelled based on the data available in the literature [39], which, within the
considered spectral range, can be approximated with the help of Sellmeier formula [39], see Figure 1b.

It is worth to underline that of graphene and SiN are considered only in terms of their local
response and have been chosen only as an example, which helps to demonstrate more general effects
arising from the effective nonlocality in an appropriately designed periodic multilayer structure [37].
Technological feasibility of such structures is not impaired with significant difficulties and similar
multilayer stacks have already been successfully manufactured [40,41]. Moreover, the chosen materials
can be fabricated by means of well-established chemical vapor deposition [42,43] or reactive magnetron
sputtering techniques [44,45].
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2.2. Effective Medium Theory

With the help of local effective medium theory, a structure consisting of periodically arranged
isotropic subwavelength layers (see Figure 1a) can be described as a uniform uniaxially anisotropic
medium with effective diagonal permittivity tensor εloc(ω) = diag

(
εloc

xx , εloc
yy, εloc

zz

)
, with components

of the following form [23]

εloc
xx = εloc

yy = εloc
‖

=
t1ε1(ω)+t2ε2(ω)

t1+t2
, εloc

zz =
ε1(ω)ε2(ω)(t1 + t2)

t1ε2(ω) + t2ε1(ω)
, (1)

where ε{1,2} and t{1,2} are relative electric permittivities and layer thicknesses of constituent materials.
However, this approximation is not correct when spatial dispersion becomes substantial, e.g., when
condition t/λ→0 is not fulfilled, where t = t1 + t2 is the dimension of the structure’s unit cell (which,
in this case, is the characteristic dimension of the structure) [46]. Thus, to predict the influence of
nonlocality on the optical properties of an HMM structure, we need to employ a more comprehensive
method, which allows for anticipating the impact of the wavevector on permittivity tensor components,
apart from their frequency-dependent behavior.

In our analysis we use the formalism proposed by Chern [30], in which a two-constituent
multilayer structure (see Figure 1a) can be effectively described as a biaxial anisotropic medium

ε(ω,
→

k ) = diag
(
εnloc

xx , εnloc
yy , εnloc
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)
having permittivity tensor components of the following form:
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α
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0t2
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+
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6 k2
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where kx, kz are components of the wavevector
→

k and ky = 0 (due to the fact, that x-z plane is the plane
of incidence; see Figure 1a, and α, β, and γ are given as:

α =
[

f 2
1 ε1(ω) +

(
1− f 2

1

)
ε2(ω)

][(
1− f 2

2

)
ε1(ω) + f 2

2 ε2(ω)
]
, (3a)

β =
1

ε1(ω)ε2(ω)
[(1− 2 f1 f2)ε1(ω) + 2 f1 f2ε2(ω)][2 f1 f2ε1(ω) + (1− 2 f1 f2)ε2(ω)], (3b)

γ = 1
ε1(ω)ε2(ω)

[ f 3
1 f2ε3

1(ω) + f1
(
1− 2 f 2

1 f2 + f 3
2

)
ε2

1(ω)ε2(ω)

+ f2
(
1− f1 f 2

2 + f 3
1

)
ε1(ω)ε2

2(ω) + f1 f 3
2 ε

3
2(ω)],

(3c)

and
fi = ti/t (4)

is the so-called filling factor, where i ∈ {1, 2}. It is worth to underline that such nonlocal EMT formalism
is suitable for correct description of multilayered nanostructures consisted of at least 2 unit cells [24].

The introduced EMT formalisms will be further employed to provide local and nonlocal electric
permittivity tensors, which are required to calculate transmittance and reflectance by means of the
transfer matrix method (as discussed in the next section).

2.3. Transfer Matrix Method

In the principal coordinate system, permittivity tensor of a biaxial optical medium is of the
diagonal form, i.e., ε = diag

(
εx, εy, εz

)
. In such a medium, two plane waves of orthogonal

polarizations may exist, i.e., a transverse electric (TE) wave with field components Ey and Hx, and a
transverse magnetic (TM) wave with field components Hy and Ex. In our case, we assume that time
dependence of the waves is exp(-jωt) and the considered structure is nonuniform only in the z direction;
thus, we have ∂

∂x = jkx, ∂
∂y = jky . Because the plane of incidence is in the x-z plane, ∂

∂y = jky = 0.
According to [47], starting from Maxwell equations, we may relate the field components Ey, Hx, Hy,
and Ex as follows:

∂Ex

∂z′
=

µr −
kx

2

εz

Hy, (5a)

∂Ey

∂z′
= µrHx, (5b)

∂Hx

∂z′
=

εy −
kx

2

µr

Ey, (5c)

∂Hy

∂z′
= εxEx, (5d)

where
→

H = − j
√
µ0
ε0

→

H, k0 = ω
√
ε0µ0, z′ = k0z, kx = kx

k0
and µr denotes relative magnetic

permeability (here, we consider nonmagnetic medium; thus, we have µr = 1).
The Equations (5a–d) can be reformulated as a single matrix equation:

∂ψ

∂z′
−Ωψ = 0, (6)

where

Ω =


0 0 0 1− kx

2

εz

0 0 1 0

0 εy − kx
2

0 0
−εx 0 0 0

, ψ =


Ex(z′)
Ey(z′)
Hx(z′)
Hy(z′)

 . (7)
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Solution to the Equation (7) can be written in the following form:

ψ(z′) = eΩz′ψ(0). (8)

In order to solve this equation, we need to formulate an eigenvalue problem:

ψ(z′) = Weλz′c, (9)

where c = W−1ψ(0) is a vector of field amplitudes, while W and λ are eigen-vector and eigen-value
matrices of Ω, respectively. Now, by employment of appropriate boundary conditions, i.e., ψin =

ψlayer(0) and ψlayer(k0L) = ψout (see Figure 2) and Equation (9), we can formulate a matrix equation
describing the relationship between amplitudes in input (cin) and output (cout) media (see Figure 2):

cout = W−1
outWlayere

λlayerk0LW−1
layerWin · cin, (10)

where L is the thickness of an anisotropic film, c{in,out} =
[

cTE+
{in,out} cTE−

{in,out} cTM+
{in,out} cTM−

{in,out}

]
, while

W{in,out,layer} are eigen-vector matrices of Ω{in,out,layer} of the input/output medium and the anisotropic
layer, respectively (see Figure 2). Thus, the transfer matrix for an anisotropic layer (see Figure 2) takes
the following form

T =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44

 = W−1
outWlayere

λlayerk0LWlayerWin. (11)
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Thus, the reflectance coefficients for TE and TM polarization can be straightforwardly derived
from matrix multiplication [48]:


cTE+

in
cTE−

in
cTM+

in
cTM−

in

 =


t11 t12 t13 t14

t21 t22 t23 t24

t31 t32 t33 t34

t41 t42 t43 t44


−1

·


cTE+

out
0

cTM+
out
0

, (12)



Crystals 2020, 10, 577 6 of 14

resulting in:

RTE =
cTM+

in =0

∣∣∣∣∣∣∣ cTE−
in

cTE+
in

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣ t21t33 − t23t31

t11t33 − t13t31

∣∣∣∣∣2 (13)

and

RTM =
cTE+

in =0

∣∣∣∣∣∣∣ cTM−
in

cTM+
in

∣∣∣∣∣∣∣
2

=

∣∣∣∣∣ t21t43 − t41t13

t11t33 − t13t31

∣∣∣∣∣2. (14)

Having noted that the losses of the considered materials are low (see Figure 1b), we can estimate
transmittance of the anisotropic film as follows:

TTE ≈ 1−RTE, (15)

TTM ≈ 1−RTM. (16)

The Equations (13)–(16) will be further employed for the analysis of RT characteristics of the
HMM structure depicted in the Figure 1a.

3. Results and Discussion

Here, we employed local and nonlocal EMT approaches to investigate influence of spatial
dispersion on optical parameters of a hyperbolic metamaterial composed of periodically arranged
layers of silicon nitride (SiN) and graphene, i.e., ε1 = εSiN(ω) and ε2 = εgraphene(ω) (see Figure 1a).
It is worth to reiterate that the obtained nonlocal response did not originate from the properties of
constituent materials, but is a consequence of an appropriately designed multilayer arrangement,
which led to a strong violation of the locality condition, i.e., t/λ→0 [37]. In this case, to observe a strong
nonlocal response (according to [37]), we chose sufficiently thick layers constituting the unit cell, i.e.,
t1 = tSiN = 150 nm and t2 = tgraphene = 0.35 nm (thickness of a graphene monolayer [49]). The total
thickness of the HMM structure was set as ttotal = 1.5 µm, which corresponds to 10 graphene/SiN
bilayers—a number of unit cells ensuring validity of the EMT approach [20,40]. To determine the
effects arising in the presence of nonlocality, the local and nonlocal permittivity tensor components of
the considered HMM structure as well as respective RT characteristics plotted vs. wavelength were
collated in the Figure 3a–d.

In general, effective permittivity tensor components obtained with local and nonlocal EMT become
convergent for sufficiently long wavelengths (since t/λ→0) [37]. In the case discussed, due to strong
nonlocal response provided by the proper design of the unit cell, the convergence within the considered
spectral range occurs only for the permittivity tensor components εloc

‖
and εnloc

xx , εnloc
yy (εnloc

xx → εloc
‖

and εnloc
yy → εloc

‖
) (see Figure 3a,b). However, the local and nonlocal permittivity tensor components

εloc
zz and εnloc

zz still differ considerably, causing inconsistency between respective RT characteristics
over the wide spectral range (see Figure 3c,d). A particularly substantial difference can be observed
within the range of shorter wavelengths (λ < 1µm), where a polarization-dependent RT as well as a
total reflection, i.e., R≈1, occur, when nonlocality is considered. Since the nonlocal EMT inexplicitly
considers plasmonic resonances, this effect may be related to the coupling between SPPs propagating
at adjacent graphene/SiN interfaces [37,50,51].
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Figure 3. Effective permittivity tensor components (a,b) and RT characteristics (c,d) plotted against
wavelength for a structure described with local (a,c) and nonlocal EMT (b,d), respectively. The angle of
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For shorter wavelengths (λ < 1 µm), the influence of nonlocality on RT is more evident; thus, we
focused our further analysis on this spectral range. For this purpose, reflectance and transmittance
(RT) coefficients within λ = 0.5–0.7 µm and different angles of incidence, i.e., θinc= 0◦ (Figure 4a–d),
θinc = 45◦ (Figure 4e–g), θinc = 85◦ (Figure 4h–l) were calculated for a HMM structure described with
local (Figure 4a,c,e,g–i,k) and nonlocal EMT model (Figure 4b,d,f,h,j,l).

Reflectance and transmittance spectra predicted with the help of nonlocal EMT substantially
differed from the respective characteristics determined with the local approach, see Figure 4a–l.
It can be observed that, in contrast to local approach, nonlocal response, even for normal incidence,
was polarization-dependent and highly dispersive, i.e., small changes of wavelength caused a significant
modification of both reflectance and transmittance (see Figure 4a–d). What is more, the presence of
nonlocality led to the occurrence of a rejection band, i.e., the spectral range where R ≈ 1 (see Figure 4a–f).
It is also noteworthy that, in comparison to local RT, changing the angle incidence led to a much
stronger alteration of nonlocal RT, which was caused by dependency of nonlocal permittivity tensor
components on arrangement of wavevector of the incident radiation (see Equation (2a–c)). Thus,
a responsible design should incorporate nonlocality to correctly predict spatial and spectral behavior
of a multilayer HMM structure.
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Let us now consider influence of the angle of incidence on optical properties of the considered
structure. For this aim, permittivity tensor components along with transmittance and reflectance of the
structure described with local (Figure 5a,c,e) and nonlocal EMT (Figure 5b,d,f) were plotted versus
angle of incidence at a fixed wavelength of λ0 = 0.55 µm. For the purpose of analysis, we considered
free space (nin = 1) as the incident medium.

The properties of the structure observed in the angular domain were still substantially influenced
by the presence of nonlocality, compare Figure 5a,c,e and Figure 5b,d,f. It can be observed that, within
the range of small angles, the structure reveals complete reflection for TM polarization, i.e., R ≈ 1,
which was drastically different from the response predicted with the help of local approach, i.e.,
almost complete transparency T ≈ 1, compare Figure 5c,e and Figure 5d,f. What is more, the nonlocal
reflectance and transmittance for TE polarization were also significantly different from the respective
local characteristics. Furthermore, for larger angles of incidence, instead of a single broad minimum
of reflectance predicted with the local approach, we obtained multiple minima of narrow width for
both light polarizations, which may be useful in terms of potential applications, e.g., highly sensitive
spatial filter.
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To fully explore the influence of spatial dispersion, we calculated local and nonlocal transmittance
as a function of angle of incidence for incident media characterized with various refractive indices
nin = 1.5 (Figure 6a,b), 2 (Figure 6c,d), and 3 (Figure 6e,f). The influence of nonlocality was particularly
significant for TM polarization, for which we can observe multiple narrow peaks of transmittance that
cannot be predicted with local EMT approach, compare Figure 6a,c,e and Figure 6b,d,f. On the other
hand, we can observe an opposite effect for nonlocal TE polarization transmittance, for which the
angular sensitivity was diminished with respect to its local counterpart, i.e., nonlocal transmittance is
less sensitive to the angle of incidence.
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In general, increasing the refractive index of the incident medium substantially alters transmittance
of an arbitrary optical system. However, in our case, a clear-cut tendency in alteration of nonlocal
transmittance cannot be observed, since the change of the refractive index, and thus the magnitude
of the incident wavevector, modifies nonlocal permittivity tensor components of the medium
(see Equation (2a–c)). Additionally, due to different material properties perceived by the incident wave,
we can also observe a wider acceptance cone, i.e., higher value of the critical angle for total internal
refraction, compare Figure 6e,f. It is worth noting that nonlocal transmittance of TM polarization
preserves a discrete character, i.e., multiple narrow peaks, for an arbitrary medium, which may serve
as a mechanism for experimental verification of the presence of nonlocality. Thus, the consideration of
nonlocal effects allows us not only to predict a possible deviation from the intended performance, but
also to exploit additional effects arising from nonlocality for the purpose of new potential applications
requiring, e.g., highly efficient spatial discrimination. We believe that the nonlocality in HMMs can be
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viewed as an advantage and may help to deploy new exciting applications requiring tailored spatial
and spectral response.

4. Conclusions

Within this paper, we have investigated local and nonlocal optical response of an HMM structure.
By example of a multilayer structure based on graphene and SiN, represented by respective local
dielectric functions, we demonstrated a substantial difference between local and nonlocal response by
revealing effects arising in the presence of strong spatial dispersion arising in an appropriately designed
HMM structure, such as a rejection band within the range of shorter wavelengths or highly selective
angular transmittance characteristics. We believe that these distinctive features of nonlocal response
that cannot be predicted with the help of local approximation, may serve as a working principle for a
number of new potential applications, such as spatial filtering, biosensing, or beam steering.
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