Mechanical Properties of DO3 Based on First Principles
Abstract
:1. Introduction
2. Computational and Method
3. Results and Discussion
3.1. Structure
3.2. Elastic Properties
3.3. Tension and Compression Properties
3.4. Band Structure
3.5. Electron Density
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Kurganskii, S.I.; Pereslavtseva, N.S. Electronic structure of FeSi2. Phys. Solid State 2002, 44, 704–708. [Google Scholar] [CrossRef]
- Lavoie, C.; D Heurle, F.M.; Detavernier, C.; Cabral, C., Jr. Towards implementation of a nickel silicide process for CMOS technologies. Microelectron. Eng. 2003, 70, 144–157. [Google Scholar] [CrossRef]
- Weijs, P.; Van Leuken, H.; De Groot, R.A.; Fuggle, J.C.; Reiter, S.; Wiech, G.; Buschow, K. X-ray-emission studies of chemical bonding in transition-metal silicides. Phys. Rev. B 1991, 44, 8195. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Chabal, Y.J.; Hamann, D.R.; Rowe, J.E.; Schlüter, M. Photoemission and band-structure results for Ni Si 2. Phys. Rev. B 1982, 25, 7598. [Google Scholar] [CrossRef]
- Rellick, J.B.; McMahon, C.J. Intergranular embrittlement of iron-carbon alloys by impurities. Metall. Trans. 1974, 5, 2439–2450. [Google Scholar] [CrossRef]
- Kubaschewski, O. Iron—Binary Phase Diagrams; Springer: Berlin/Heidelberg, Germany, 2013. [Google Scholar]
- Raja, M.M.; Kamat, S.V. Structure, Magnetic, and Electrical Properties of Heusler-Type Fe3−xCoxSi Ferromagnetic Alloys. Metall. Mater. Trans. A 2015, 46, 4688–4697. [Google Scholar] [CrossRef]
- Liou, S.H.; Malhotra, S.S.; Shen, J.X.; Hong, M.; Kwo, J.; Chen, H.S.; Mannaerts, J.P. Magnetic properties of epitaxial single crystal ultrathin Fe3Si films on GaAs (001). J. Appl. Phys. 1993, 73, 6766–6768. [Google Scholar] [CrossRef] [Green Version]
- Cui, S.; Ouyang, G.; Ma, T.; Macziewski, C.R.; Levitas, V.I.; Zhou, L.; Kramer, M.J.; Cui, J. Thermodynamic and kinetic analysis of the melt spinning process of Fe-6.5 wt.% Si alloy. J. Alloys Compd. 2019, 771, 643–648. [Google Scholar] [CrossRef]
- Zhang, Z.; Wang, W.; Fu, H.; Xie, J. Effect of quench cooling rate on residual stress, microstructure and mechanical property of an Fe–6.5 Si alloy. Mater. Sci. Eng. A 2011, 530, 519–524. [Google Scholar] [CrossRef]
- Raviprasad, K.; Aoki, K.; Chattopadhyay, K. The nature of dislocations and effect of order in rapidly solidified Fe–(5.5–7.5) wt.% Si alloys. Mater. Sci. Eng. A 1993, 172, 125–135. [Google Scholar] [CrossRef]
- Fu, H.; Zhang, Z.; Yang, Q.; Xie, J. Strain-softening behavior of an Fe–6.5 wt% Si alloy during warm deformation and its applications. Mater. Sci. Eng. A 2011, 528, 1391–1395. [Google Scholar] [CrossRef]
- Narita, K.; Enokizono, M. Effect of ordering on magnetic properties of 6.5-percent silicon-iron alloy. IEEE Trans. Magn. 1979, 15, 911–915. [Google Scholar] [CrossRef]
- Johnson, D.F.; Carter, E.A. First principles assessment of carbon absorption into FeAl and Fe3Si: Toward prevention of cementite formation and metal dusting of steels. J. Phys. Chem. C 2010, 114, 4436–4444. [Google Scholar] [CrossRef]
- Ma, R.; Xie, Q.; Huang, J.; Yan, W.Y.; Guo, X.T. Theoretical study on the electronic structures and magnetism of Fe3Si intermetallic compound. J. Alloys Compd. 2013, 552, 324–328. [Google Scholar] [CrossRef]
- Dennler, S.; Hafner, J. First-principles study of lattice dynamics and diffusion in DO3-type Fe3Si. Phys. Rev. B 2006, 73, 174303. [Google Scholar] [CrossRef]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Krist. 2005, 220, 567–570. [Google Scholar] [CrossRef] [Green Version]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865. [Google Scholar] [CrossRef] [Green Version]
- Xu, X.; Goddard III, W.A. The extended Perdew-Burke-Ernzerhof functional with improved accuracy for thermodynamic and electronic properties of molecular systems. J. Chem. Phys. 2004, 121, 4068–4082. [Google Scholar] [CrossRef] [Green Version]
- Vanderbilt, D. Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys. Rev. B 1990, 41, 7892. [Google Scholar] [CrossRef]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188. [Google Scholar] [CrossRef]
- Pfrommer, B.G.; Côté, M.; Louie, S.G.; Cohen, M.L. Relaxation of crystals with the quasi-Newton method. J. Comput. Phys. 1997, 131, 233–240. [Google Scholar] [CrossRef] [Green Version]
- Zhang, P.; Meng, F.; Gong, Z.; Ji, G.; Yang, J.; Tang, X. Pressure and tension effects on mechanical properties of ZrAl2. Aip. Adv. 2014, 4, 117141. [Google Scholar] [CrossRef]
- Shin, J.S.; Bae, J.S.; Kim, H.J.; Lee, H.; Lee, T.D.; Lavernia, E.J.; Lee, Z.H. Ordering–disordering phenomena and micro-hardness characteristics of B2 phase in Fe–(5–6.5%) Si alloys. Mater. Sci. Eng. A 2005, 407, 282–290. [Google Scholar] [CrossRef]
- Swann, P.R.; Grånäs, L.; Lehtinen, B. The B 2 and D O3 Ordering Reactions in Iron–Silicon Alloys in the Vicinity of the Curie Temperature. Met. Sci. 1975, 9, 90–96. [Google Scholar] [CrossRef]
- Moroni, E.G.; Wolf, W.; Hafner, J.; Podloucky, R. Cohesive, structural, and electronic properties of Fe–Si compounds. Phys. Rev. B 1999, 59, 12860–12871. [Google Scholar] [CrossRef]
- Rausch, J.B.; Kayser, F.X. Elastic constants and electrical resistivity of Fe3Si. J. Appl. Phys. 1977, 48, 487. [Google Scholar] [CrossRef]
- Hadi, M.A.; Kelaidis, N.; Naqib, S.H.; Chroneos, A.; Islam, A. Mechanical behaviors, lattice thermal conductivity and vibrational properties of a new MAX phase Lu2SnC. J. Phys. Chem. Solids 2019, 129, 162–171. [Google Scholar] [CrossRef]
- Chong, X.; Jiang, Y.; Zhou, R.; Feng, J. First principles study the stability, mechanical and electronic properties of manganese carbides. Comp. Mater. Sci. 2014, 87, 19–25. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; Teubner Leipzig: New York, NY, USA, 1928; Volume 962. [Google Scholar]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. ZAMM-J. Appl. Math. Mech./Zeitschrift für Angewandte Mathematik und Mechanik 1929, 9, 49–58. [Google Scholar] [CrossRef]
- Hill, R. The elastic behaviour of a crystalline aggregate. Proc. Phys. Soc. Sect. A 1952, 65, 349. [Google Scholar] [CrossRef]
- Zhou, X.; Qian, G.; Dong, X.; Zhang, L.; Tian, Y.; Wang, H. Ab initio study of the formation of transparent carbon under pressure. Phys. Rev. B 2010, 82, 134126. [Google Scholar] [CrossRef] [Green Version]
- Liu, F.; Zhang, Y.; Tao, H. One-step compressive growth of two-dimensional iron carbide and its bond evolution analysis. J. Phys. Chem. Solids 2020, 143, 109419. [Google Scholar] [CrossRef]
- Li, Y.L.; Cai, J.; MO, D.; Wang, Y. First principle study on the predicted phase transition of MN (M=Zr, La and Th). J. Phys. Condens. Matter 2019, 31, 33. [Google Scholar] [CrossRef] [PubMed]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Q.; Huang, G.; Li, S. Mechanical Properties of DO3 Based on First Principles. Crystals 2020, 10, 488. https://doi.org/10.3390/cryst10060488
Zhang Q, Huang G, Li S. Mechanical Properties of DO3 Based on First Principles. Crystals. 2020; 10(6):488. https://doi.org/10.3390/cryst10060488
Chicago/Turabian StyleZhang, Qingdong, Gang Huang, and Shuo Li. 2020. "Mechanical Properties of DO3 Based on First Principles" Crystals 10, no. 6: 488. https://doi.org/10.3390/cryst10060488
APA StyleZhang, Q., Huang, G., & Li, S. (2020). Mechanical Properties of DO3 Based on First Principles. Crystals, 10(6), 488. https://doi.org/10.3390/cryst10060488