Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics
Abstract
1. Introduction
2. Experiment
2.1. Synthesis of NPSG and SGC
2.2. Instruments and Measurements
3. Results and Discussion
3.1. Structure and Morphology
3.2. Spectral Properties
3.2.1. Absorption Properties
3.2.2. PLE/PL Properties
3.2.3. Energy Transfer Mechanism
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Shen, Y.; Zhang, Q.; Cheng, J.; Sheng, Q.; Liu, S.; Li, W.; Chewpraditkul, W.; Chen, D. Spectroscopic properties and energy transfer of Eu2+/Tb3+ co-doped high silica glass. Mater. Lett. 2013, 97, 151–153. [Google Scholar] [CrossRef]
- Guo, Q.; Zhao, C.; Liao, L.; Liu, H.; Mei, L. KLaSr3(PO4)3F (Re = Tb3+/Eu3+/Eu2+): Promising Multi-Color Luminescence Phosphors for n-UV/UV White LEDs. ChemistrySelect 2016, 1, 2883–2888. [Google Scholar] [CrossRef]
- Chen, S.-W.H.; Shen, C.-C.; Wu, T.; Liao, Z.-Y.; Chen, L.-F.; Zhou, J.-R.; Lee, C.-F.; Lin, C.-H.; Lin, C.-C.; Sher, C.-W.; et al. Full-color monolithic hybrid quantum dot nanoring micro light-emitting diodes with improved efficiency using atomic layer deposition and nonradiative resonant energy transfer. Photonics Res. 2019, 7, 416. [Google Scholar] [CrossRef]
- Behrendt, M.; Mahlik, S.; Szczodrowski, K.; Kuklinski, B.; Grinberg, M. Spectroscopic properties and location of the Tb(3+) and Eu(3+) energy levels in Y2O2S under high hydrostatic pressure. Phys. Chem. Chem. Phys. 2016, 18, 22266–22275. [Google Scholar] [CrossRef]
- Sahu, N.K.; Singh, N.S.; Ningthoujam, R.S.; Bahadur, D. Ce3+-Sensitized GdPO4:Tb3+ Nanorods: An Investigation on Energy Transfer, Luminescence Switching, and Quantum Yield. ACS Photonics 2014, 1, 337–346. [Google Scholar] [CrossRef]
- Yanes, A.C.; del-Castillo, J.; Ortiz, E. Energy transfer and tunable emission in BaGdF5: RE3+ (RE = Ce, Tb, Eu) nano-glass-ceramics. J. Alloy. Compd. 2019, 773, 1099–1107. [Google Scholar] [CrossRef]
- Yan, Y.L.; Wang, J.; Hojamberdiev, M.; Lu, Z.X.; Ren, B.; Xu, Y.H. Effect of SDS on morphology tailoring of GdVO4:Eu3+ powders under hydrothermal conditions in a wide pH range. J. Alloy. Compd. 2014, 597, 282–290. [Google Scholar] [CrossRef]
- Guo, J.; Wang, W.; Lin, H.; Liang, X. High-repetition-rate and high-power picosecond regenerative amplifier based on a single bulk Nd: GdVO4 crystal. High. Power Laser Sci. Eng. 2019, 7, e35. [Google Scholar] [CrossRef]
- Krumpel, A.H.; van der Kolk, E.; Cavalli, E.; Boutinaud, P.; Bettinelli, M.; Dorenbos, P. Lanthanide 4f-level location in AVO4:Ln3+(A = La, Gd, Lu) crystals. J. Phys. Condens. Matter 2009, 21, 115503. [Google Scholar] [CrossRef]
- Cho, S. Luminescence Properties of GdVO4 Blue Phosphors Doped with Tb3+ Ions. J. Nanosci. Nanotechnol. 2013, 13, 7165–7168. [Google Scholar] [CrossRef]
- Han, S.; Du, Y.; Yuan, J.; Tao, Y.; Wang, Y.; Yan, S.; Chen, D. Luminescence behavior of Eu3+ in silica glass containing GdVO4: Eu nanocrystals. J. Non-Cryst. Solids 2020, 532, 119894. [Google Scholar] [CrossRef]
- Han, S.; Yan, S.; Wang, Y.; Zou, Y.; Du, Y.; Li, Y.; Chen, D. High emission cross-section YVO4: Nd nanocrystalline glass prepared by high-silica porous glass. Mater. Lett. 2019, 253, 388–391. [Google Scholar] [CrossRef]
- Quandt, A.; Ferrari, M.; Righini, G.C. Advancement of Glass-Ceramic Materials for Photonic Applications. In Sol-gel Based Nanoceramic Materials: Preparation, Properties and Applications; Mishra, A.K., Ed.; Springer International Publishing: Cham, Switzerland, 2017; pp. 133–155. [Google Scholar]
- Dymshits, O.; Shepilov, M.; Zhilin, A. Transparent glass-ceramics for optical applications. MRS Bull. 2017, 42, 200–205. [Google Scholar] [CrossRef]
- Zur, L.; Tran, L.T.N.; Meneghetti, M.; Varas, S.; Armellini, C.; Ristic, D.; Chiasera, A.; Scotognella, F.; Pelli, S.; Conti, G.N.; et al. Glass and glass-ceramic photonic systems. In Proceedings of the Society of Photo-Optical Instrumentation Engineers, San Francisco, CA, USA, 22 February 2017. [Google Scholar]
- Liu, X.; Zhou, J.; Zhou, S.; Yue, Y.; Qiu, J. Transparent glass-ceramics functionalized by dispersed crystals. Prog. Mater. Sci. 2018, 97, 38–96. [Google Scholar] [CrossRef]
- Zhou, S.; Jiang, N.; Zhu, B.; Yang, H.; Ye, S.; Lakshminarayana, G.; Hao, J.; Qiu, J. Multifunctional bismuth-doped nanoporous silica glass: From blue-green, orange, red, and white light sources to ultra-broadband infrared amplifiers. Adv. Funct. Mater. 2008, 18, 1407–1413. [Google Scholar] [CrossRef]
- Han, Y.; Sun, J.; Ye, S.; Zhang, Q. A stimuli responsive material of perovskite quantum dots composited nano-porous glass. J. Mater. Chem. C 2018, 6, 11184–11192. [Google Scholar] [CrossRef]
- Qiao, Y.; Wen, L.; Wu, B.; Ren, J.; Chen, D.; Qiu, J. Preparation and spectroscopic properties of Yb-doped and Yb–Al-codoped high silica glasses. Mater. Chem. Phys. 2008, 107, 488–491. [Google Scholar] [CrossRef]
- Chu, Y.; Yang, Y.; Liao, L.; Liu, Y.; Ma, Y.; Hu, X.; Wang, Y.; Xing, Y.; Peng, J.; Li, H.; et al. 3D Nanoporous Silica Rods for Extra-Large-Core High-Power Fiber Lasers. ACS Photonics 2018, 5, 4014–4021. [Google Scholar] [CrossRef]
- Liu, S.; Wang, M.; Zhou, Q.; Feng, S.; Yu, C.; Wang, L.; Hu, L.; Chen, D. Ytterbium-doped silica photonic crystal fiber laser fabricated by the nanoporous glass sintering technique. Laser Phys. 2014, 24, 065801. [Google Scholar] [CrossRef]
- Wang, Y.; Chen, G.; Li, J. Development and prospect of high-power doped fibers. High. Power Laser Sci. Eng. 2018, 6, e40. [Google Scholar] [CrossRef]
- Qiao, Y.; Da, N.; Chen, D.; Zhou, Q.; Qiu, J.; Akai, T. Spectroscopic properties of neodymium doped high silica glass and aluminum codoping effects on the enhancement of fluorescence emission. Appl. Phys. B 2007, 87, 717–722. [Google Scholar] [CrossRef]
- Galeener, F.L. Raman and ESR studies of the thermal history of amorphous SiO2. J. Non-Cryst. Solids 1985, 71, 373–386. [Google Scholar] [CrossRef]
- Hehlen, B. Inter-tetrahedra bond angle of permanently densified silicas extracted from their Raman spectra. J. Phys. Condens Matter 2010, 22, 025401. [Google Scholar] [CrossRef] [PubMed]
- Chemtob, S.M.; Rossman, G.R.; Stebbins, J.F. Natural hydrous amorphous silica: Quantitation of network speciation and hydroxyl content by 29Si MAS NMR and vibrational spectroscopy. Am. Mineral. 2012, 97, 203–211. [Google Scholar] [CrossRef]
- Nasikas, N.K.; Retsinas, A.; Papatheodorou, G.N. Y3Al5O12–SiO2 Glasses: Structure and Polyamorphism. J. Am. Ceram. Soc. 2014, 97, 2054–2060. [Google Scholar] [CrossRef]
- Zheng, S.; Li, J.; Yu, C.; Zhou, Q.; Chen, D. Preparation and characterizations of Nd:YAG ceramic derived silica fibers drawn by post-feeding molten core approach. Opt. Express 2016, 24, 24248–24254. [Google Scholar] [CrossRef]
- Jin, B.M.; Erdei, S.; Bhalla, A.S.; Ainger, F.W. Raman study of oxygen deficient YVO4 single crystals. Mater. Res. Bull. 1995, 30, 1293–1300. [Google Scholar] [CrossRef]
- Grandhe, B.K.; Bandi, V.R.; Jang, K.; Ramaprabhu, S.; Yi, S.-S.; Jeong, J.-H. Enhanced red emission from YVO4:Eu3+ nano phosphors prepared by simple Co-Precipitation Method. Electron. Mater. Lett. 2011, 7, 161–165. [Google Scholar] [CrossRef]
- Thakur, S.; Gathania, A.K. Synthesis and Characterization of YVO4-Based Phosphor Doped with Eu3+ Ions for Display Devices. J. Electron. Mater. 2015, 44, 3444–3449. [Google Scholar] [CrossRef]
- Sevic, D.; Rabasovic, M.S.; Krizan, J.; Savic-Sevic, S.; Mitric, M.; Gilic, M.; Hadzic, B.; Romcevic, N. Characterization and luminescence kinetics of Eu3+ doped YVO4 nanopowders. Mater. Res. Bull. 2017, 88, 121–126. [Google Scholar] [CrossRef]
- Wang, Z.; Li, Y.; Zhu, Q.; Wang, X.; Liao, M. Hydrothermal crystallization of VO43− stabilized t-Gd(P,V)O4:Eu3+ nanocrystals for remarkably improved and color tailorable luminescence. Chem. Eng. J. 2019, 357, 84–93. [Google Scholar] [CrossRef]
- Blasse, G.; Grabmaier, B.C. How Does a Luminescent Material Absorb Its Excitation Energy? In Luminescent Materials; Springer: Berlin/Heidelberg, Germany, 1994; pp. 10–32. [Google Scholar]
- Reisfeld, R.; Boehm, L. The determination of the nephelauxetic effect in oxide glasses by Sn2+, Sb3+, Tl+, Pb2+ and Bi3+ ions. J. Non-Cryst. Solids 1975, 17, 209–214. [Google Scholar] [CrossRef]
- Nakajima, T.; Isobe, M.; Tsuchiya, T.; Ueda, Y.; Manabe, T. Correlation between Luminescence Quantum Efficiency and Structural Properties of Vanadate Phosphors with Chained, Dimerized, and Isolated VO4 Tetrahedra. J. Phys. Chem. C 2010, 114, 5160–5167. [Google Scholar] [CrossRef]
- Kang, F.; Li, L.; Han, J.; Lei, D.Y.; Peng, M. Emission color tuning through manipulating the energy transfer from VO43− to Eu3+ in single-phased LuVO4:Eu3+ phosphors. J. Mater. Chem. C 2017, 5, 390–398. [Google Scholar] [CrossRef]
- Zhu, M.; Hu, C.; Li, J.H.; Feng, Y.Q.; Kong, H.L.; Ullah, S.; Li, M.F.; You, F.; Teng, B.; Zhong, D.G.; et al. Synthesis and annealing effects on the optical spectroscopy properties of red-emitting Gd(P0.5V0.5)O4: X at.% Eu3+. J. Mater. Sci. Mater. Electron. 2018, 29, 20607–20614. [Google Scholar] [CrossRef]
- Li, Y.-C.; Chang, Y.-H.; Chang, Y.-S.; Lin, Y.-J.; Laing, C.-H. Luminescence and Energy Transfer Properties of Gd3+ and Tb3+ in LaAlGe2O7. J. Phys. Chem. C 2007, 111, 10682–10688. [Google Scholar] [CrossRef]
- Tang, G.; Qian, G.; Shi, Z.; Liu, Y.; Huang, B.; He, Y.; Jiang, L.; Sun, M.; Qian, Q.; Yang, Z. Heavily Tb3+ doped multi-component phosphate glass fibers for green fiber lasers. Opt. Mater. Express 2019, 9, 362. [Google Scholar] [CrossRef]
- Zhu, C.; Chaussedent, S.; Liu, S.; Zhang, Y.; Monteil, A.; Gaumer, N.; Yue, Y. Composition dependence of luminescence of Eu and Eu/Tb doped silicate glasses for LED applications. J. Alloy. Compd. 2013, 555, 232–236. [Google Scholar] [CrossRef]
- Liu, C.; Hou, D.; Yan, J.; Zhou, L.; Kuang, X.; Liang, H.; Huang, Y.; Zhang, B.; Tao, Y. Energy Transfer and Tunable Luminescence of NaLa(PO3)4:Tb3+/Eu3+ under VUV and Low-Voltage Electron Beam Excitation. J. Phys. Chem. C 2014, 118, 3220–3229. [Google Scholar] [CrossRef]
- Shim, K.S.; Yang, H.K.; Moon, B.K.; Jeong, J.H.; Yi, S.S.; Kim, K.H. Improved photoluminescence of pulsed-laser-ablated Y1−xGdxVO4:Eu3+ thin film phosphors by Gd substitution. Appl. Phys. A 2007, 88, 623–626. [Google Scholar] [CrossRef]
Sample | Tb3+ (×1020 ion/cm3) | Gd3+ (×1020 ion/cm3) | V5+(VO43−) (×1020 ion/cm3) | Crystallization or Not |
---|---|---|---|---|
T | 0.3 | 0 | 0 | Uncrystallized |
G | 0 | 1 | 0 | Uncrystallized |
GV | 0 | 1 | 1 | Crystallized |
0.3TV | 0.3 | 0 | 1 | Crystallized |
0.1TGV | 0.1 | 1 | 1 | Crystallized |
0.2TGV | 0.2 | 1 | 1 | Crystallized |
0.3TGV | 0.3 | 1 | 1 | Crystallized |
0.4TGV | 0.4 | 1 | 1 | Crystallized |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Han, S.; Tao, Y.; Du, Y.; Yan, S.; Chen, Y.; Chen, D. Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics. Crystals 2020, 10, 396. https://doi.org/10.3390/cryst10050396
Han S, Tao Y, Du Y, Yan S, Chen Y, Chen D. Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics. Crystals. 2020; 10(5):396. https://doi.org/10.3390/cryst10050396
Chicago/Turabian StyleHan, Shuai, Yiting Tao, Ying Du, Sasa Yan, Yanping Chen, and Danping Chen. 2020. "Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics" Crystals 10, no. 5: 396. https://doi.org/10.3390/cryst10050396
APA StyleHan, S., Tao, Y., Du, Y., Yan, S., Chen, Y., & Chen, D. (2020). Luminescence Behavior of GdVO4: Tb Nanocrystals in Silica Glass-Ceramics. Crystals, 10(5), 396. https://doi.org/10.3390/cryst10050396