Experimental and Theoretical Investigation of the Elastic Properties of HfV2O7
Abstract
1. Introduction
2. Computational and Experimental Details
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dove, M.T.; Fang, H. Negative thermal expansion and associated anomalous physical properties: Review of the lattice dynamics theoretical foundation. Rep. Prog. Phys. 2016, 79. [Google Scholar] [CrossRef] [PubMed]
- Grima, J.N.; Zammit, V.; Gatt, R. Negative Thermal Expansion. Xjenza 2006, 11, 17–29. [Google Scholar]
- Takenaka, K. Negative thermal expansion materials: Technological key for control of thermal expansion. Sci. Technol. Adv. Mater. 2012, 13. [Google Scholar] [CrossRef]
- Lind, C. Two Decades of Negative Thermal Expansion Research: Where Do We Stand? Materials 2012, 5, 1125–1154. [Google Scholar] [CrossRef]
- Jakubinek, M.; Whitman, C.; White, M. Negative thermal expansion materials - Thermal properties and implications for composite materials. J. Therm. Anal. Calorim. 2009, 99. [Google Scholar] [CrossRef]
- Turquat, C.; Muller, C.; Nigrelli, E.; Leroux, C.; Soubeyroux, J.L.; Nihoul, G. Structural investigation of temperature-induced phase transitions in HfV2O7. Eur. J. Phys. Appl. Phys. 2000, 10, 15–27. [Google Scholar] [CrossRef]
- Mittal, R.; Chaplot, S.L. Lattice dynamical calculation of negative thermal expansion in ZrV2O7 and HfV2O7. Phys. Rev. B 2008, 78. [Google Scholar] [CrossRef]
- Hemamala, U.L.C.; El-Ghussein, F.; Goedken, A.M.; Chen, B.; Leroux, C.; Kruger, M.B. High-pressure x-ray diffraction and Raman spectroscopy of HfV2O7. Phys. Rev. B 2004, 70. [Google Scholar] [CrossRef]
- Yamamura, Y.; Horikoshi, A.; Yasuzuka, S.; Saitoh, H.; Saito, K. Negative thermal expansion emerging upon structural phase transition in ZrV2O7 and HfV2O7. Dalton Trans. 2011, 40, 2242–2248. [Google Scholar] [CrossRef]
- Hisashige, T.; Yamaghuchi, T.; Tsuji, T.; Yamamura, Y. Phase Transition of Zr1-xHfxV2O7 Solid Solutions Having Negative Thermal Expansion. J. Ceram. Soc. Jpn. 2006, 114, 607–611. [Google Scholar] [CrossRef]
- Baran, E.J. The unit cell of hafnium divanadate. J. Less Common M. 1976, 46, 343–345. [Google Scholar] [CrossRef]
- Grima, J.N.; Ellul, B.; Attard, D.; Gatt, R.; Attard, M. Composites with needle-like inclusions exhibiting negative thermal expansion: A preliminary investigation. Compos. Sci. Technol. 2010, 70, 2248–2252. [Google Scholar] [CrossRef]
- Romao, C.P.; Miller, K.J.; Whitman, C.A.; White, M.A. Comprehensive Inorganic Chemistry II - Negative Thermal Expansion (Thermomiotic) Materials; Elsevier: Oxford, UK, 2013; Volume 4, pp. 128–151. [Google Scholar]
- Romao, C.P.; Marinkovic, B.A.; Werner-Zwanziger, U.; White, M.A. Thermal Expansion Reduction in Alumina-Toughened Zirconia by Incorporation of Zirconium Tungstate and Aluminum Tungstate. J. Am. Ceram. Soc. 2015, 98, 2858–2865. [Google Scholar] [CrossRef]
- Hohenberg, P.; Kohn, W. Inhomogeneous Electron Gas. Phys. Rev. 1964, 136, B864–B871. [Google Scholar] [CrossRef]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, S. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132. [Google Scholar] [CrossRef]
- Lebedeva, I.V.; Lebedeva, A.V.; Popov, A.M.; Knizhnik, A.A. Comparison of performance of van der Waals-corrected exchange-correlation functionals for interlayer interaction in graphene and hexagonal boron nitride. Comput. Mater. Sci. 2017, 128, 45–58. [Google Scholar] [CrossRef]
- Lebègue, S.; Harl, J.; Gould, T.; Ángyán, J.G.; Kresse, G.; Dobson, J.F. Cohesive Properties and Asymptotics of the Dispersion Interaction in Graphite by Random Phase Approximation. Phys. Rev. Lett. 2010, 105. [Google Scholar] [CrossRef]
- Reckien, W.; Janetzko, F.; Peintinger, M.F.; Bredow, T. Implementation of Empirical Dispersion Corrections to Density Functional Theory for Periodic Systems. J. Comput. Chem. 2012, 33, 2023–2031. [Google Scholar] [CrossRef]
- Rosen, A.S.; Notestein, J.M.; Snurr, R.Q. Comprehensive Phase Diagrams of MoS2 Edge Sites Using Dispersion-Corrected DFT Free Energy Calculations. J. Phys. Chem. A 2018, 122, 15318–15329. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, Y.; Si, K.; Ren, Z.; Bai, J.; Xu, X. Elastic, electronic, and dielectric properties of bulk and monolayer ZrS2, ZrSe2, HfS2, HfSe2 from van der Waals density-functional theory. Phys. Status Solidi B 2017, 254. [Google Scholar] [CrossRef]
- Kresse, G.; Furthmüller, J. Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set. Phys. Rev. B 1996, 54, 1169–1186. [Google Scholar] [CrossRef] [PubMed]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized Gradient Approximation Made Simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [CrossRef] [PubMed]
- Monkhorst, H.J.; Pack, J.D. Special points for Brillouin-zone integrations. Phys. Rev. B 1976, 13, 5188–5192. [Google Scholar] [CrossRef]
- Birch, F. Finite Elastic Strain of Cubic Crystals. Phys. Rev. 1947, 71, 809–824. [Google Scholar] [CrossRef]
- Murnaghan, F.D. The Compressibility of Media under Extreme Pressures. Proc. Natl. Acad. Sci. USA 1944, 15, 244–247. [Google Scholar] [CrossRef]
- Kim, E.; Chen, C. Calculation of bulk modulus for highly anisotropic materials. Phys. Lett. A 2004, 326, 442–448. [Google Scholar] [CrossRef]
- Tkatchenko, A.; Scheffler, M. Accurate Molecular Van Der Waals Interactions from Ground-State Electron Density and Free-Atom Reference Data. Phys. Rev. Lett. 2009, 102. [Google Scholar] [CrossRef]
- Music, D.; Takahashi, T.; Vitos, L.; Asker, C.; Abrikosov, I.A.; Schneider, J.M. Elastic properties of Fe–Mn random alloys studied by ab initio calculations. Appl. Phys. Lett. 2007, 91. [Google Scholar] [CrossRef]
- Friák, M.; Hichel, T.; Körmann, F.; Udyansky, A.; Dick, A.; Pezold, J.V.; Ma, D.; Kim, O.; Counts, W.A.; Sob, M.; et al. Determining the Elasticity of Materials Employing Quantum-mechanical Approaches: From the Electronic Ground State to the Limits of Materials Stability. Steel Res. 2011, 82, 86–100. [Google Scholar] [CrossRef]
- Fast, L.; Wills, J.M.; Johansson, B.; Eriksson, O. Elastic constants of hexagonal transition metals: Theory. Phys. Rev. B 1995, 51, 17431–17438. [Google Scholar] [CrossRef]
- Mehl, M.J.; Osburn, J.E.; Papaconstantopoulos, D.A.; Klein, B.M. Structural properties of ordered high-melting-temperature intermetallic alloys from first-principles total-energy calculations. Phys. Rev. B 1990, 41, 10311–10323. [Google Scholar] [CrossRef] [PubMed]
- Hill, R. A general method of analysis for metal-working processes. J. Mech. Phys. Solids 1963, 11, 305–326. [Google Scholar] [CrossRef]
- Oliver, W.C.; Pharr, G.M. An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J. Mater. Res. 1992, 7, 1564–1583. [Google Scholar] [CrossRef]
- Paier, J.; Marsman, M.; Hummer, K.; Kessel, G.; Gerber, C.; Ángyán, J.G. Screened hybrid density functionals applied to solids. J. Chem. Phys. 2006, 124. [Google Scholar] [CrossRef]
- Pryde, A.K.A.; Hammonds, K.D.; Dove, M.R.; Henne, V.; Gale, J.D.; Warren, M.C. Origin of the negative thermal expansion in ZrW2O8 and ZrV2O7. J. Phys.: Condens. Matter 1996, 8, 10973–10982. [Google Scholar] [CrossRef]
- Albe, K. Theoretical study of boron nitride modifications at hydrostatic pressures. Phys. Rev. B 1997, 55, 6203–6210. [Google Scholar] [CrossRef]
- Ooi, N.; Rairkar, A.; Adams, J.B. Density functional study of graphite bulk and surface properties. Carbon 2006, 44, 231–242. [Google Scholar] [CrossRef]
- Reeswinkel, T.; Music, D.; Schneider, J.M. Ab initio calculations of the structure and mechanical properties of vanadium oxides. J. Phys. Condens. Matter 2009, 21. [Google Scholar] [CrossRef]
- Mehmood, F.; Pachter, R. Density functional theory study of chemical sensing on surfaces of single-layer MoS2 and graphene. J. Appl. Phys. 2014, 115. [Google Scholar] [CrossRef]
- Thinius, S.; Islam, M.M.; Heitjans, P.; Bredow, T. Theoretical Study of Li Migration in Lithium-Graphite Intercalation Compounds with Dispersion-Corrected DFT Methods. J. Phys. Chem. A 2014, 118, 2273–2280. [Google Scholar] [CrossRef]
- Nguyen, C.V.; Hieu, N.N.; Nguyen, D.T. Dispersion-Corrected Density Functional Theory Investigations of Structural and Electronic Properties of Bulk MoS2: Effect of Uniaxial Strain. Nanoscale Res. Lett. 2015. [Google Scholar] [CrossRef] [PubMed]
- Oviedo, J.P.; KC, S.; Lu, N.; Wang, J.; Cho, K.; Wallace, R.M.; Kim, M.J. In Situ TEM Characterization of Shear-Stress-Induced Interlayer Sliding in the Cross Section View of Molybdenum Disulfide. ACS Nano 2015, 9, 1543–1551. [Google Scholar] [CrossRef] [PubMed]
- Londero, E.; Schröder, E. Role of van der Waals bonding in the layered oxide V2O5: First-principles density-functional calculations. Phys. Rev. B 2010, 82. [Google Scholar] [CrossRef]
- Londero, E.; Schröder, E. Vanadium pentoxide (V2O5): A van der Waals density functional study. Comput. Phys. Commun. 2011, 182, 1805–1809. [Google Scholar] [CrossRef]
- Fang, H.; Dove, M.T.; Phillips, A.E. Common origin of negative thermal expansion and other exotic properties in ceramic and hybrid materials. Phys. Rev. B 2014, 89. [Google Scholar] [CrossRef]
- Korthuis, V.; Khosrovani, N.; Sleight, A.W.; Roberts, N.; Dupree, R.; Warren, W.W. Negative Thermal Expansion and Phase Transitions in the ZrV2-xPxO7 Series. Chem. Mater. 1995, 7, 412–417. [Google Scholar] [CrossRef]
- Drymiotis, F.R.; Ledbetter, H.; Betts, J.B.; Kumura, R.; Lashley, J.C.; Migliori, A.; Ramirez, A.P.; Kowach, G.R.; Duijn, J.v. Monocrystal Elastic Constants of the Negative-Thermal-Expansion Compound Zirconium Tungstate (ZrW2O8). Phys. Rev. Lett. 2004, 93. [Google Scholar] [CrossRef]
- Gallington, L.C.; Chapman, K.W.; Morelock, C.R.; Chupas, P.H.; Wilkinson, A.P. Dramatic softening of the negative thermal expansion material HfW2O8 upon heating through its WO4 orientational order-disorder phase transition. J. Appl. Phys. 2014, 115. [Google Scholar] [CrossRef]
- Nadler, M.R.; Kempter, C.P. Niobium. Anal. Chem. 1959, 31, 1922. [Google Scholar] [CrossRef]
- Voigt, W. Lehrbuch der Kristallphysik; Springer Fachmedien Wiesbaden GmbH: Leipzig, Germany, 1910. [Google Scholar] [CrossRef]
- Reuss, A. Berechnung der Fließgrenze von Mischkristallen auf Grund der Plastizitätsbedingung für Einkristalle. J. Appl. Math. Mech. 1929, 9, 49–58. [Google Scholar] [CrossRef]
Neighbor | Bond | Equilibrium [Å] | Compressed at 5 GPa [Å] | Change [%] |
---|---|---|---|---|
1st | V-O(-Hf) | 1.703 | 1.685 | −1.0 |
V-O(-V) | 1.776 | 1.781 | 0.3 | |
Hf-O | 2.077 | 2.043 | −1.6 | |
2nd | O-O(1) | 2.791 | 2.710 | −2.9 |
O-O(2) | 2.830 | 2.872 | 1.5 | |
O-O(3) | 2.932 | 2.819 | −3.9 | |
O-O(4) | 2.944 | 2.959 | 0.5 |
Property | DFT-SC | DFT-FR | DFT-D3 | DFT-TS |
---|---|---|---|---|
a [Å] | 8.856 | 8.956 | 8.918 | 8.926 |
B [GPa] | 140 | 77 | 73 | 56 |
B’ | 4.3 | −3.2 | −5.6 | −5.2 |
C11 [GPa] | 277 | 209 | 130 | 99 |
C12 [GPa] | 72 | 11 | 44 | 34 |
C44 [GPa] | 72 | 69 | 28 | 24 |
v | 0.25 | 0.11 | 0.30 | 0.29 |
E [GPa] | 208 | 178 | 87 | 69 |
G [GPa] | 83 | 80 | 33 | 27 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ravensburg, A.L.; Keuter, P.; Music, D.; Miljanovic, D.J.; Schneider, J.M. Experimental and Theoretical Investigation of the Elastic Properties of HfV2O7. Crystals 2020, 10, 172. https://doi.org/10.3390/cryst10030172
Ravensburg AL, Keuter P, Music D, Miljanovic DJ, Schneider JM. Experimental and Theoretical Investigation of the Elastic Properties of HfV2O7. Crystals. 2020; 10(3):172. https://doi.org/10.3390/cryst10030172
Chicago/Turabian StyleRavensburg, Anna L., Philipp Keuter, Denis Music, Danilo J. Miljanovic, and Jochen M. Schneider. 2020. "Experimental and Theoretical Investigation of the Elastic Properties of HfV2O7" Crystals 10, no. 3: 172. https://doi.org/10.3390/cryst10030172
APA StyleRavensburg, A. L., Keuter, P., Music, D., Miljanovic, D. J., & Schneider, J. M. (2020). Experimental and Theoretical Investigation of the Elastic Properties of HfV2O7. Crystals, 10(3), 172. https://doi.org/10.3390/cryst10030172