A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties
Abstract
:1. Introduction
2. Materials and Methods
2.1. Synthesis of Ag-NHC Complex 1
2.2. Biochemical Studies
2.3. X-ray Crystallography
3. Results and Discussion
3.1. Synthesis
3.2. NMR Study
3.3. FTIR Study
3.4. UV-Vis Study
3.5. Description of the Crystal Structure of Ag-NHC Complex 1
3.6. Enzyme Inhibition Studies
- For the hCA I isoenzyme, Ag-NHC complex 1 had Ki and IC50 values of 1.14±0.26 and 0.93 µM, respectively (Table 2). Additionally, for the hCA II isoform, Ag-NHC complex 1 had Ki and IC50 values 1.88±0.20 and 1.26 nM, respectively (Table 2). In this work, acetazolamide (AZA) as a positive CA inhibitor, which used for therapy of epileptic seizure, altitude sickness, glaucoma, dural ectasia, and idiopathic intracranial hypertension, had IC50 values of 54.88 and 48.22 µM for hCA I, and hCA II. Also, AZA showed Ki values of 50.17±4.17 and 42.15±8.11 µM against both isoenzymes, respectively (Table 2). IC50 values of Ag-NHC complex 1 and AZA exhibited the following order: Ag-NHC complex 1 (0.9300, r2: 0.9786 µM) < AZA (54.88, r2: 0.9880 µM) for hCA I while these compound exhibited for hCA II the following order: Ag-NHC complex 1 (1.26 µM, r2: 0.9435 µM) < AZA (48.22 nM, r2: 0.9878 µM).
- There are multiple synthetical drugs like tacrine, donepezil, and rivastigmine based on for the duration of cognitive dysfunction and memory loss related to AD. These components have been reported to have side effects such as gastrointestinal disorders related to biocompatibility issues [61,62,63]. Ag-NHC complex 1 effectively inhibited both cholinergic BChE and AChE enzymes. It was obtained that Ki values were 25.32±3.76 µM for AChE and 41.31±7.42 µM for BChE, respectively (Table 2). In addition, Tacrine (TAC) was used as positive control BChE and AChE inhibitor it had Ki values 47.18±8.37 and 69.08±13.40 µM, respectively. IC50 values of Ag-NHC complex 1 and Tacrine exhibited the following order: Ag-NHC complex 1 (36.41 µM, r2: 0.9745) < Tacrine (76.20 µM, r2: 0.9874) for AChE while these compound exhibited for BChE the following order: Ag-NHC complex 1 (50.25 µM, r2: 0.9790) < Tacrine (96.40 µM, r2: 0.9424).
- The α-glycosidase inhibitors as oral antidiabetic compounds, which inhibit upper gastrointestinal enzymes that break down the carbohydrate polysaccharides into glucose units. Indeed, the absorption of glucose is delayed postprandial glucose levels [64,65,66,67]. For glycosidase, Ag-NHC complex 1 and acarbose have IC50 values of 8.11 (r2: 0.9252) and 22.80 µM, respectively. Their Ki values were found as 10.75±2.47 and 12.60±0.70 µM, respectively. (Table 2). The results have clearly documented that Ag-NHC complex 1 had shown effective inhibitory effects against α-glycosidase inhibition than that of acarbose (IC50: 22.80 µM) as a standard α-glycosidase inhibitor [40]. IC50 values of Ag-NHC complex 1 and acarbose exhibited the following order: Ag-NHC complex 1 (8.11 µM, r2: 0.9252) < Acarbose for α-glycosidase [68,69].
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Asekunowo, P.O.; Haque, R.A. Counterion-induced modulation in biochemical properties of nitrile functionalized silver (I)-N-heterocyclic carbene complexes. J. Coord. Chem. 2014, 67, 3649–3663. [Google Scholar] [CrossRef]
- Melaiye, A.; Simons, R.S.; Milsted, A.; Pingitore, F.; Wesdemiotis, C.; Tessier, C.A.; Youngs, W.J. Formation of water-soluble pincer Silver(I)-Carbene complexes: A novel antimicrobial agent. J. Med. Chem. 2004, 47, 973–977. [Google Scholar] [CrossRef] [PubMed]
- Habib, A.; Iqbal, M.A.; Bhatti, H.N.; Kamal, A.; Kamal, S. Synthesis of alkyl/aryl linked binuclear Silver(I)-N-heterocyclic carbene complexes and evaluation of their antimicrobial, hemolytic and thrombolytic potential. Inorg. Chem. 2020, 111, 107670. [Google Scholar] [CrossRef]
- Haque, R.A.; Iqbal, M.A.; Mohamad, F.; Razali, M.R. Antibacterial and DNA cleavage activity of carbonyl functionalized N-heterocyclic carbene-silver (I) and selenium compounds. J. Mol. Struct. 2018, 1155, 362–370. [Google Scholar] [CrossRef]
- Alisir, S.H.; Sariboga, B.; Caglar, S.; Buyukgungor, O. Synthesis, characterization, photoluminescent properties and antimicrobial activities of two novel polymeric silver (I) complexes with diclofenac. J. Mol. Struct. 2017, 1130, 156–164. [Google Scholar] [CrossRef]
- Yıldırım, I.; Aktas, A.; Barut Celepci, D.; Kırbag, S.; Kutlu, T.; Gok, Y.; Aygün, M. Synthesis, characterization, crystal structure, and antimicrobial studies of 2-morpholinoethylsubstituted benzimidazolium salts and their silver(I)-N-heterocyclic carbene complexes. Res. Chem. Intermed. 2017, 43, 6379–6393. [Google Scholar]
- Aktas, A.; Keleştemur, U.; Gok, Y.; Balcıoglu, S.; Ates, B.; Aygun, M. 2-Morpholinoethyl-substituted N-heterocyclic carbene (NHC) precursors and their silver(I)NHC complexes: Synthesis, crystal structure and in vitro anticancer properties. J. Iran. Chem. Soc. 2018, 15, 131–139. [Google Scholar] [CrossRef]
- Öfele, K. 1,3-Dimethyl-4-imidazolinyliden-(2)-pentacarbonylchrom ein neuer übergangsmetall carben komplex. J. Organomet. Chem. 1968, 12, 42–43. [Google Scholar] [CrossRef]
- Wanzlick, H.W.; Schönherr, H.J. Direct synthesis of a mercury salt-carbene complex. Angew. Chem. 1968, 7, 141–142. [Google Scholar] [CrossRef]
- Gok, Y.; Aktaş, A.; Erdoğan, H.; Sarı, Y. New 4-vinylbenzyl-substituted bis(NHC)-Pd(II) complexes: Synthesis, characterization and the catalytic activity in the direct arylation reaction. Inorg. Chim. Acta 2018, 471, 735–740. [Google Scholar] [CrossRef]
- Erdogan, H.; Aktas, A.; Gok, Y.; Sarı, Y. N-Propylphthalimide-substituted bis-(NHC)PdX2 complexes: Synthesis, characterization and catalytic activity in direct arylation reactions. Transit. Met. Chem. 2018, 43, 31–37. [Google Scholar] [CrossRef]
- Aksu, K.; Ozgeriş, B.; Taslimi, P.; Naderi, A.; Gulcin, I.; Goksu, S. Antioxidant activity, acetylcholinesterase and carbonic anhydrase inhibitory properties of novel ureas derived from phenethylamines. Arch. Pharm. 2016, 349, 944–954. [Google Scholar] [CrossRef] [PubMed]
- Altay, A.; Tohma, H.; Durmaz, L.; Taslimi, P.; Korkmaz, M.; Gulcin, I.; Koksal, E. Preliminary phytochemical analysis and evaluation of in vitro antioxidant, antiproliferative, antidiabetic and anticholinergics effects of endemic Gypsophila taxa from Turkey. J. Food Biochem. 2019, 43, e12908. [Google Scholar] [CrossRef] [PubMed]
- Atmaca, U.; Yıldırım, A.; Taslimi, P.; Tuncel Çelik, S.; Gulcin, I.; Supuran, C.T.; Çelik, M. Intermolecular amination of allylic and benzylic alcohols leads to effective ınhibitions of acetylcholinesterase enzyme and carbonic anhydrase I and II isoenzymes. J. Biochem. Mol. Toxicol. 2018, 32, e22173. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, C.; Taslimi, P.; Gulcin, I.; Menzek, A. The first synthesis of 4-phenylbutenone derivative bromophenols including natural products and their inhibition profiles for carbonic anhydrase, acetylcholinesterase and butyrylcholinesterase enzymes. Bioorg Chem. 2017, 72, 359–366. [Google Scholar] [CrossRef] [PubMed]
- Bayrak, C.; Taslimi, P.; Kahraman, H.S.; Gulcin, I.; Menzek, A. The first synthesis, carbonic anhydrase inhibition and anticholinergic activities of some bromophenol derivatives with S including natural products. Bioorg. Chem. 2019, 85, 128–139. [Google Scholar] [CrossRef]
- Ozmen Ozgun, D.; Yamali, C.; Gul, H.I.; Taslimi, P.; Gulcin, I.; Yanik, T.; Supuran, C.T. Inhibitory effects of isatin Mannich bases on carbonic anhydrases, acetylcholinesterase and butyrylcholinesterase. J. Enzyme Inhib. Med. Chem. 2016, 31, 1498–1501. [Google Scholar] [CrossRef] [Green Version]
- Bicer, A.; Taslimi, P.; Yakalı, G.; Gulcin, I.; Gultekin, M.S.; Cin, G.T. Synthesis, characterization, crystal structure of novel bis-thiomethylcyclohexanone derivatives and their inhibitory properties against some metabolic enzymes. Bioorg. Chem. 2019, 82, 393–404. [Google Scholar] [CrossRef]
- Burmaoglu, S.; Yilmaz, A.O.; Taslimi, P.; Algul, O.; Kılıç, D.; Gulcin, I. Synthesis and biological evaluation of phloroglucinol derivatives possessing α-glycosidase, acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase inhibitory activity. Arch. Pharm. 2018, 351, e1700314. [Google Scholar] [CrossRef]
- Bursal, E.; Aras, A.; Kılıc, Ö.; Taslimi, P.; Gören, A.C.; Gulcin, I. Phytochemical content, antioxidant activity and enzyme inhibition effect of Salvia eriophora Boiss. & Kotschy against acetylcholinesterase, α-amylase, butyrylcholinesterase and α-glycosidase enzymes. J. Food Biochem. 2019, 43, e12776. [Google Scholar]
- Caglayan, C.; Demir, Y.; Kucukler, S.; Taslimi, P.; Kandemir, F.M.; Gulcin, I. The effects of hesperidin on sodium arsenite-induced different organ toxicity in rats on metabolic enzymes as antidiabetic and anticholinergics potentials: A biochemical approach. J. Food Biochem. 2019, 43, e12720. [Google Scholar] [CrossRef]
- Caglayan, C.; Taslimi, P.; Demir, Y.; Kucukler, S.; Kandemir, M.F.; Gulcin, I. The effects of zingerone against vancomycin-induced lung, liver, kidney and testis toxicity in rats: The behavior of some metabolic enzymes. J. Biochem. Mol. Toxicol. 2019, 33, e22381. [Google Scholar] [CrossRef]
- Aktas, A.; Taslimi, P.; Gok, Y.; Gulcin, I. Novel NHC precursors: Synthesis, characterization, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Arch. Pharm. 2017, 350, e1700045. [Google Scholar] [CrossRef] [PubMed]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Taslimi, P.; Gok, Y.; Karabıyık, H.; Gulcin, I. 2-Hydroxyethyl substituted NHC precursors: Synthesis, characterization, crystal structure and carbonic anhydrase, a-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. J. Mol. Struct. 2018, 1155, 797–806. [Google Scholar] [CrossRef]
- Türker, F.; Barut Celepci, D.; Aktas, A.; Taslimi, P.; Gok, Y.; Aygün, M.; Gulcin, I. Meta-cyanobenzyl substituted benzimidazolium salts: Synthesis, characterization, crystal structure and carbonic anhydrase, α-glycosidase, butyrylcholinesterase, and acetylcholinesterase inhibitory properties. Arch. Pharm. 2018, 351, 1800029. [Google Scholar]
- Behcet, A.; Caglılar, T.; Barut, C.D.; Aktas, A.; Taslimi, P.; Gok, Y.; Aygun, M.; Kaya, R.; Gulcin, I. Synthesis, characterization and crystal structure of 2-(4-hydroxyphenyl)ethyl and 2-(4-nitrophenyl)ethyl Substituted Benzimidazole Bromide Salts: Their inhibitory properties against carbonic anhydrase and acetylcholinesterase. J. Mol. Struct. 2018, 1170, 160–169. [Google Scholar] [CrossRef]
- Aktas, A.; Barut Celepci, D.; Kaya, R.; Taslimi, P.; Gok, Y.; Aygun, M.; Gulcin, I. Novel morpholine liganded Pd-based N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure, antidiabetic and anticholinergic properties. Polyhedron 2019, 159, 345–354. [Google Scholar] [CrossRef]
- Aktas, A.; Noma, S.A.A.; Barut Celepci, D.; Erdemir, F.; Gok, Y.; Ates, B. New 2-hydroxyethyl substituted n-heterocyclic carbene precursors: Synthesis, characterization, crystal structure and inhibitory properties against carbonic anhydrase and xanthine oxidase. J. Mol. Struct. 2019, 1184, 487–494. [Google Scholar] [CrossRef]
- Erdemir, F.; Barut Celepci, D.; Aktas, A.; Gok, Y.; Kaya, R.; Taslimi, P.; Demir, Y.; Gulcin, I. Novel 2-aminopyridine liganded Pd(II)N-heterocyclic carbene complexes: Synthesis, characterization, crystal structure and bioactivity properties. Bioorg. Chem. 2019, 91, 103134. [Google Scholar] [CrossRef]
- Bal, S.; Aktas, A.; Kaya, R.; Gok, Y.; Karaman, M.; Taslimi, P.; Gulcin, I. Novel 2-methylimidazolium salts: Synthesis, characterization, molecular docking, and carbonic anhydrase and acetylcholinesterase inhibitory properties. Bioorg. Chem. 2020, 94, 103468. [Google Scholar] [CrossRef]
- Aktas, A.; Gok, Y. N-Propylphthalimide-substituted Silver(I) N-heterocyclic carbene complexes and Ruthenium(II) N-heterocyclic carbene complexes: Synthesis and transfer hydrogenation of ketones. Trans. Met. Chem. 2014, 39, 925–931. [Google Scholar] [CrossRef]
- Verpoorte, J.A.; Mehta, S.Ç.; Edsall, J.T. Esterase activities of human carbonic anhydrases B and C. J. Biol. Chem. 1967, 242, 4221–4229. [Google Scholar] [PubMed]
- Hisar, O.; Beydemir, Ş.; Gulcin, I.; Kufrevioglu, O.I.; Supuran, C.T. Effect of low molecular weight plasma inhibitors of rainbow trout (Oncorhyncytes mykiss) on human erythrocytes carbonic anhydrase-II isozyme activity in vitro and rat erythrocytes in vivo. J. Enzyme Inhib. Med. Chem. 2005, 20, 35–39. [Google Scholar] [CrossRef] [PubMed]
- Caglayan, C.; Taslimi, P.; Türk, C.; Kandemir, F.M.; Demir, Y.; Gulcin, I. Purification and characterization of the carbonic anhydrase enzyme from horse mackerel (Trachurus trachurus) muscle and the impact of some metal ions and pesticides on enzyme activity. Comp. Biochem. Physiol. 2019, 226, 108605. [Google Scholar] [CrossRef]
- Ozbey, F.; Taslimi, P.; Gulcin, I.; Maras, A.; Goksu, S.; Supuran, C.T. Synthesis, acetylcholinesterase, butyrilcholinesterase, carbonic anhydrase inhibitory and metal chelating properties of some novel diaryl ether. J. Enzyme Inhib. Med. Chem. 2016, 31, 79–85. [Google Scholar] [CrossRef] [Green Version]
- Oztaskın, N.; Taslimi, P.; Maras, A.; Goksu, S.; Gulcin, I. Novel antioxidant bromophenols with acetylcholinesterase, butyrylcholinesterase and carbonic anhydrase inhibitory actions. Bioorg. Chem. 2017, 74, 104–114. [Google Scholar]
- Ellman, G.L.; Courtney, K.D.; Andres, V.; Featherston, R.M. A new and rapid colorimetric determination of acetylcholinesterase activity. Biochem. Pharmacol. 1961, 7, 88–95. [Google Scholar] [CrossRef]
- Cetin, A.; Turkan, F.; Taslimi, P.; Gulcin, I. Synthesis and characterization of novel substituted thiophene derivatives and discovery of their carbonic anhydrase and acetylcholinesterase ınhibition effects. J. Biochem. Mol. Toxicol. 2019, 33, e22261. [Google Scholar] [CrossRef]
- Daryadel, S.; Atmaca, U.; Taslimi, P.; Gulcin, I.; Celik, M. Novel sulfamate derivatives of menthol: Synthesis, characterization, and cholinesterases and carbonic anhydrase enzymes inhibition properties. Arch. Pharm. 2018, 351, 1800209. [Google Scholar] [CrossRef]
- Tao, Y.; Zhang, Y.; Cheng, Y.; Wang, Y. Rapid screening and identification of α-glucosidase inhibitors from mulberry leaves using enzyme-immobilized magnetic beads coupled with HPLC/MS and NMR. Biomed. Chromatogr. 2013, 27, 148–155. [Google Scholar] [CrossRef]
- Demir, Y.; Durmaz, L.; Taslimi, P.; Gulcin, I. Anti-diabetic properties of dietary phenolic compounds: Inhibition effects on α-amylase, aldose reductase and α-glycosidase. Biotechnol. Appl. Biochem. 2019, 66, 781–786. [Google Scholar] [CrossRef] [PubMed]
- Demir, Y.; Taslimi, P.; Ozaslan, M.S.; Oztaskin, N.; Cetinkaya, Y.; Gulcin, I.; Beydemir, Ş.; Goksu, S. Antidiabetic potential: In vitro inhibition effects of bromophenol and diarylmethanones derivatives on metabolic enzymes. Arch. Pharm. 2018, 351, 1800263. [Google Scholar] [CrossRef] [PubMed]
- Rigaku Corporation. CrysAlis(Pro) Software System; Version 1.171.38.43; Rigaku Corporation: Oxford, UK, 2015. [Google Scholar]
- Clark, R.C.; Reid, J.S. The analytical calculation of absorption in multifaceted crystals. Acta Crystallogr. A Found. Crystallog. 1995, A51, 887–897. [Google Scholar] [CrossRef]
- Dolomanov, O.V.; Bourhis, L.J.; Gildea, R.J.; Howard, J.A.K.; Puschmann, H. OLEX2: A complete structure solution, refinement and analysis program. J. Appl. Cryst. 2009, 42, 339–341. [Google Scholar] [CrossRef]
- Sheldrick, G.M. SHELXT-integrated space-group and crystal-structure determination. Acta Crystallogr. A Found. Crystallogr. 2015, A71, 3–8. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Sheldrick, G.M. Crystal structure refinement with SHELXL. Acta Crystallogr. C Struct. Chem. 2015, C71, 3–8. [Google Scholar] [CrossRef] [PubMed]
- Aktas, A.; Barut Celepci, D.; Gok, Y. Novel 2-hydroxyethyl substituted N-coordinate-Pd(II)(NHC) and bis(NHC)Pd(II) complexes: Synthesis, characterization and the catalytic activity in the direct arylation reaction. J. Chem. Sci. 2019, 131, 78. [Google Scholar] [CrossRef] [Green Version]
- Aktas, A. A new palladium complex containing mixture of carbene and phosphine ligands: Synthesis, crystal structures, spectral FTIR, NMR and UV-Vis researched. Chin. J. Struct. Chem. 2019, 38, 1664–1672. [Google Scholar]
- Ahmad, S.; Georgieva, I.; Hanif, M.; Monim-ul-Mehboob, M.; Munir, S.; Sohail, A.; Isab, A.A. Periodic DFT modeling and vibrational analysis of silver(I) cyanide complexes of thioureas. J. Mol. Model. 2019, 25, 90. [Google Scholar]
- Kılıc, A.; Tas, E.; Gumgum, B.; Yılmaz, I. Synthesis, Spectroscopic and electrochemical investigations of two vic-dioximes and their mononuclear Ni(II), Cu(II) and Co(II) metal complexes containing morpholine group. Chin. J. Chem. 2006, 24, 1599–16004. [Google Scholar]
- Sacconi, L.; Ciampolini, M.; Maffio, F.; Cavasino, F.P. Studies in coordination chemistry. IX.1 investigation of the stereochemistry of some complex compounds of cobalt(II) with N-substituted salicylaldimines. J. Am. Chem. Soc. 1962, 84, 3245–3248. [Google Scholar] [CrossRef]
- Aktas, A.; Barut Celepci, D.; Gök, Y. Synthesis, crystal structures, spectral FT-IR, NMR and UV-Vis investigations and Hirshfeld surface analysis of two new 2-hydroxyethyl substituted N-heterocyclic carbene (NHC) precursors. J. Chin. Chem. Soc. 2019, 66, 1389–1396. [Google Scholar] [CrossRef]
- Hirtenlehner, C.; Krims, C.; Hölbling, J.; List, M.; Zabel, M.; Fleck, M.; Berger, R.J.F.; Schoefbergera, W.; Monkowius, U. Syntheses, crystal structures, reactivity, and photochemistry of gold(III) bromides bearing N-heterocyclic carbenes. Dalton Trans. 2011, 40, 9899–9910. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Saif, M.J.; Flowe, K.R. A general method for the preparation of N-heterocyclic carbene–Silver(I) complexes in water. Trans. Met. Chem. 2013, 38, 113–118. [Google Scholar] [CrossRef]
- Balaydin, H.T.; Gulcin, I.; Menzek, A.; Goksu, S.; Sahin, E. Synthesis and antioxidant properties of diphenylmethane derivative bromophenols including a natural product. J. Enzyme Inhib. Med. Chem. 2010, 25, 685–695. [Google Scholar] [CrossRef] [Green Version]
- Nar, M.; Cetinkaya, Y.; Gulcin, I.; Menzek, A. (3,4-Dihydroxyphenyl)(2,3,4-trihydroxyphenyl)methanone and its derivatives as carbonic anhydrase isoenzymes inhibitors. J. Enzyme Inhib. Med. Chem. 2013, 28, 402–406. [Google Scholar] [CrossRef]
- Ekiz, M.; Tutar, A.; Okten, S.; Butun, B.; Kocyigit, U.M.; Taslimi, P.; Topcu, G. Synthesis, characterization and SAR of arylated indenoquinolinebased cholinesterase and carbonic anhydrase inhibitors. Arch. Pharm. 2018, 351, 1800167. [Google Scholar] [CrossRef]
- Garibov, E.; Taslimi, P.; Sujayev, A.; Bingol, Z.; Cetinkaya, S.; Gulcin, I.; Beydemir, S.; Farzaliyev, V.; Alwasel, S.H.; Supuran, C.T. Synthesis of 4,5-disubstituted-2-thioxo-1,2,3,4-tetrahydropyrimidines and investigation of their acetylcholinesterase, butyrylcholinesterase, carbonic anhydrase I/II inhibitory and antioxidant activities. J. Enzyme Inhib. Med. Chem. 2016, 31, 1–9. [Google Scholar] [CrossRef] [Green Version]
- Gocer, H.; Topal, F.; Topal, M.; Kucuk, M.; Teke, D.; Gulcin, I.; Alwasel, S.H.; Supuran, C.T. Acetylcholinesterase and carbonic anhydrase isoenzymes I and II inhibition profiles of taxifolin. J. Enzyme Inhib. Med. Chem. 2016, 31, 441–447. [Google Scholar] [CrossRef]
- Genc Bilgicli, H.; Kestane, A.; Taslimi, P.; Karabay, O.; Bytyqi-Damoni, A.; Zengin, M.; Gulcin, I. Novel eugenol bearing oxypropanolamines: Synthesis, characterization, antibacterial, antidiabetic, and anticholinergic potentials. Bioorg. Chem. 2019, 88, 102931. [Google Scholar] [CrossRef]
- Cetin Cakmak, K.; Gulcin, I. Anticholinergic and antioxidant activities of usnic acid-An activity-structure insight. Toxicol. Rep. 2019, 6, 1273–1280. [Google Scholar] [CrossRef] [PubMed]
- Polat Kose, L.; Gulcin, I.; Goren, A.C.; Namiesnik, J.; Martinez-Ayala, A.L.; Gorinstein, S. LC-MS/MS analysis, antioxidant and anticholinergic properties of galanga (Alpinia officinarum Hance) rhizomes. Ind. Crops Prod. 2015, 74, 712–721. [Google Scholar] [CrossRef]
- Gulcin, I.; Tel, A.Z.; Goren, A.C.; Taslimi, P.; Alwasel, S. Sage (Salvia pilifera): Determination its polyphenol contents, anticholinergic, antidiabetic and antioxidant activities. J. Food Meas. Charact. 2019, 13, 2062–2074. [Google Scholar] [CrossRef]
- Gulcin, I.; Taslimi, P.; Aygün, A.; Sadeghian, N.; Bastem, E.; Kufrevioglu, O.I.; Turkan, F.; Şen, F. Antidiabetic and antiparasitic potentials: Inhibition effects of some natural antioxidant compounds on α-glycosidase, α-amylase and human glutathione S-transferase enzymes. Int. J. Biol. Macromol. 2018, 119, 741–746. [Google Scholar] [CrossRef]
- Bytyqi-Damoni, A.; Kestane, A.; Taslimi, P.; Tüzün, B.; Zengin, M.; Genç Bilgicli, H.; Gulcin, I. Novel carvacrol based new oxypropanolamine derivatives: Design, synthesis, characterization, biological evaluation, and molecular docking studies. J. Mol. Struct. 2020, 1202, 127297. [Google Scholar] [CrossRef]
- Biçer, A.; Kaya, R.; Yakali, G.; Gultekin, M.S.; Turgut Cin, G.; Gulcin, I. Synthesis of novel β-amino carbonyl derivatives and their inhibition effects on some metabolic enzymes. J. Mol. Struct. 2020, 1204, 127453. [Google Scholar]
- Eruygur, N.; Atas, M.; Tekin, M.; Taslimi, P.; Kocyigit, U.M.; Gulcin, I. In vitro antioxidant, antimicrobial, anticholinesterase and antidiabetic activities of Turkish endemic Achillea cucullata (Asteraceae) from ethanol extract. S. Afr. J. Bot. 2019, 120, 141–145. [Google Scholar] [CrossRef]
- Oztaskin, N.; Kaya, R.; Maras, A.; Sahin, E.; Gulcin, I.; Goksu, S. Synthesis and characterization of novel bromophenols: Determination of their anticholinergic, antidiabetic and antioxidant activities. Bioorg. Chem. 2019, 87, 91–102. [Google Scholar] [CrossRef]
Crystal Data | Experimental Details |
---|---|
Empirical Formula | C44H56Ag3Br3N8O4 |
Formula Weight | 1324.30 |
Temperature (K) | 293(2) |
Crystal System, space group | Monoclinic, P21/n |
a, b, c (Å) | 10.7530(6), 13.2516(10), 17.8818(11) |
α, β, γ (⁰) | 90, 106.473(6), 90 |
V (Å3) | 2443.5(3) |
Z | 2 |
Density (calculated) (g/cm3) | 1.800 |
Absorption coefficient (µ, mm−1) | 3.692 |
F(000) | 1308 |
Crystal size (mm3) | 0.386 × 0.342 × 0.178 |
Radiation | MoKα (λ = 0.71073) |
2θ range for data collection (°) | 6.002 to 51.358 |
Index ranges | −6 ≤ h ≤ 13, −16 ≤ k ≤ 7, −21 ≤ l ≤ 21 |
Reflections collected | 8043 |
Independent reflections | 4589 [Rint = 0.027, Rsigma = 0.055] |
Restraints/Parameters | 8/269 |
Goodness-of-fit on F2 | 1.034 |
Final R indices [I ≥ 2σ (I)] | R1 = 0.074, wR2 = 0.208 |
R indices | R1 = 0.113, wR2 = 0.237 |
Compounds | IC50 (µM) | Ki (µM) | |||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
hCA I | r2 | hCA II | r2 | AChE | r2 | BChE | r2 | α-Gly | r2 | hCA I | hCA II | AChE | BChE | α-Gly | |
Complex 1 | 0.93 | 0.9786 | 1.26 | 0.9435 | 36.41 | 0.9745 | 50.25 | 0.9790 | 8.11 | 0.9252 | 1.14 ± 0.26 | 1.88 ± 0.20 | 25.32 ± 3.76 | 41.31 ± 7.42 | 10.75 ± 2.47 |
AZA * | 54.88 | 0.9880 | 48.22 | 0.9878 | - | - | - | - | - | - | 50.17 ± 4.17 | 42.15 ± 8.11 | - | - | - |
Tacrine ** | - | - | - | - | 76.2 | 0.9874 | 96.4 | 0.9424 | - | - | - | - | 47.18 ± 8.37 | 69.08 ± 13.40 | - |
Acarbose *** | - | - | - | - | - | - | - | - | 22.80 | - | - | - | - | - | 12.60 ± 0.7 |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aktas, A.; Barut Celepci, D.; Gok, Y.; Taslimi, P.; Akincioglu, H.; Gulcin, İ. A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. Crystals 2020, 10, 171. https://doi.org/10.3390/cryst10030171
Aktas A, Barut Celepci D, Gok Y, Taslimi P, Akincioglu H, Gulcin İ. A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. Crystals. 2020; 10(3):171. https://doi.org/10.3390/cryst10030171
Chicago/Turabian StyleAktas, Aydin, Duygu Barut Celepci, Yetkin Gok, Parham Taslimi, Hulya Akincioglu, and İlhami Gulcin. 2020. "A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties" Crystals 10, no. 3: 171. https://doi.org/10.3390/cryst10030171
APA StyleAktas, A., Barut Celepci, D., Gok, Y., Taslimi, P., Akincioglu, H., & Gulcin, İ. (2020). A Novel Ag-N-Heterocyclic Carbene Complex Bearing the Hydroxyethyl Ligand: Synthesis, Characterization, Crystal and Spectral Structures and Bioactivity Properties. Crystals, 10(3), 171. https://doi.org/10.3390/cryst10030171