PbMoO4 Synthesis from Ancient Lead and Its Single Crystal Growth for Neutrinoless Double Beta Decay Search
Abstract
:1. Introduction
2. Materials and Methods
2.1. Powders Synthesis
2.2. Crystal Growth
2.3. Characterizations
3. Results
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Chesler, R.B.; Pinnow, D.A.; Benson, W.W. Suitability of PbMoO4 for Nd: YAIG Intracavity Acoustooptic Modulation. Appl. Opt. 1971, 10, 2562. [Google Scholar] [CrossRef] [PubMed]
- Damen, E.P.N.; Arts, A.F.M.; De Wijn, H.W. High-frequency monochromatic acoustic waves generated by laser-induced thermomodulation. Phys. Rev. Lett. 1995, 74, 4249–4252. [Google Scholar] [CrossRef] [PubMed]
- Hernández-Uresti, D.B.; Martínez-de la Cruz, A.; Torres-Martínez, L.M. Photocatalytic properties of PbMoO4 synthesized by co-precipitation method: Organic dyes degradation under UV irradiation. Res. Chem. Intermed. 2012, 38, 817–828. [Google Scholar] [CrossRef]
- Takano, S.; Esashi, S.; Mori, K.; Namikata, T. Growth of high-quality single crystals of lead molybdate. J. Cryst. Growth 1974, 24–25, 437–440. [Google Scholar] [CrossRef]
- Sabharwal, S.C.; Sangeeta; Desai, D.G. Investigations of single crystal growth of PbMoO4. Cryst. Growth Des. 2006, 6, 58–62. [Google Scholar] [CrossRef]
- Senguttuvan, N.; Moorthy Babu, S.; Dhanasekaran, R. Some aspects on the growth of lead molybdate single crystals and their characterization. Mater. Chem. Phys. 1997, 49, 120–123. [Google Scholar] [CrossRef]
- Shlegel, V.N.; Borovlev, Y.A.; Grigoriev, D.N.; Grigorieva, V.D.; Danevich, F.A.; Ivannikova, N.V.; Postupaeva, A.G.; Vasiliev, Y.V. Recent progress in oxide scintillation crystals development by low-thermal gradient Czochralski technique for particle physics experiments. J. Instrum. 2017, 12, C08011. [Google Scholar] [CrossRef]
- Chen, H.; Ge, C.; Li, R.; Wang, J. Bridgman growth of lead molybdate crystals. J. Mater. Sci. 2006, 41, 5383–5385. [Google Scholar] [CrossRef]
- Senguttuvan, N.; Moorthy Babu, S.; Subramanian, C. Synthesis, crystal growth and mechanical properties of lead molybdate. Mater. Sci. Eng. B 1997, 47, 269–273. [Google Scholar] [CrossRef]
- Lim, L.C.; Tan, L.K.; Zeng, H.C. Bubble formation in Czochralski-grown lead molybdate crystals. J. Cryst. Growth 1996, 167, 686–692. [Google Scholar] [CrossRef]
- Sangeeta; Desai, D.G.; Singh, A.K.; Tyagi, M.; Sabharwal, S.C. Non-stoichiometry-induced cracking in PbMoO4 crystals. J. Cryst. Growth 2006, 296, 81–85. [Google Scholar] [CrossRef]
- Zeng, H.C. Correlation of PbMoO4 crystal imperfections to Czochralski growth process. J. Cryst. Growth 1997, 171, 136–145. [Google Scholar] [CrossRef]
- Tyagi, M.; Singh, S.G.; Singh, A.K.; Gadkari, S.C. Understanding colorations in PbMoO4 crystals through stoichiometric variations and annealing studies. Phys. Status Solid Appl. Mater. Sci. 2010, 207, 1802–1806. [Google Scholar] [CrossRef]
- Bomio, M.R.D.; Cavalcante, L.S.; Almeida, M.A.P.; Tranquilin, R.L.; Batista, N.C.; Pizani, P.S.; Li, M.S.; Andres, J.; Longo, E. Structural refinement, growth mechanism, infrared/Raman spectroscopies and photoluminescence properties of PbMoO4 crystals. Polyhedron 2013, 50, 532–545. [Google Scholar] [CrossRef]
- Mikhailik, V.B.; Kraus, H. Performance of scintillation materials at cryogenic temperatures. Phys. Status Solid Basic Res. 2010, 247, 1583–1599. [Google Scholar] [CrossRef] [Green Version]
- Babin, V.; Bohacek, P.; Bender, E.; Krasnikov, A.; Mihokova, E.; Nikl, M.; Senguttuvan, N.; Stolovits, A.; Usuki, Y.; Zazubovich, S. Decay kinetics of the green emission in tungstates and molybdates. Radiat. Meas. 2004, 38, 533–537. [Google Scholar] [CrossRef]
- Nagornaya, L.L.; Danevich, F.A.; Dubovik, A.M.; Grinyov, B.V.; Henry, S.; Kapustyanyk, V.; Kraus, H.; Poda, D.V.; Kudovbenko, V.M.; Mikhailik, V.B.; et al. Tungstate and molybdate scintillators to search for dark matter and double beta decay. IEEE Trans. Nucl. Sci. 2009, 56, 2513–2518. [Google Scholar] [CrossRef]
- Nagorny, S.; Pattavina, L.; Kosmyna, M.B.; Nazarenko, B.P.; Nisi, S.; Pagnanini, L.; Pirro, S.; Schaffner, K.; Shekhovtsov, A.N. archPbMoO4 scintillating bolometer as detector to searches for the neutrinoless double beta decay of 100Mo. J. Phys. Conf. Ser. 2017, 841, 012025. [Google Scholar] [CrossRef]
- Khan, A.; Daniel, D.J.; Kim, H.; Pandey, I.R.; Shlegel, V.; Lee, M.H.; Kim, Y. Luminescence and scintillation characterization of PbMoO4 crystal for neutrinoless double beta decay search. Radiat. Meas. 2019, 123, 34–38. [Google Scholar] [CrossRef]
- Danevich, F.A.; Grinyov, B.V.; Henry, S.; Kosmyna, M.B.; Kraus, H.; Krutyak, N.; Kudovbenko, V.M.; Mikhailik, V.B.; Nagornaya, L.L.; Nazarenko, B.P.; et al. Feasibility study of PbWO4 and PbMoO4 crystal scintillators for cryogenic rare events experiments. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2010, 622, 608–613. [Google Scholar] [CrossRef]
- Kim, G.B.; Choi, S.; Danevich, F.A.; Fleischmann, A.; Kang, C.S.; Kim, H.J.; Kim, S.R.; Kim, Y.D.; Kim, Y.H.; Kornoukhov, V.A.; et al. A CaMoO4 crystal low temperature detector for the AMoRE neutrinoless double beta decay search. Adv. High. Energy Phys. 2015, 2015, 1–15. [Google Scholar] [CrossRef]
- Jo, H.S.; Choi, S.; Danevich, F.A.; Fleischmann, A.; Jeon, J.A.; Kang, C.S.; Kang, W.G.; Kim, G.B.; Kim, H.J.; Kim, H.L.; et al. Status of the AMoRE Experiment Searching for Neutrinoless Double Beta Decay Using Low-Temperature Detectors. J. Low Temp. Phys. 2018, 1–8. [Google Scholar] [CrossRef]
- Armengaud, E.; Augier, C.; Barabash, A.S.; Bellini, F.; Benato, G.; Benoît, A.; Beretta, M.; Bergé, L.; Billard, J.; Borovlev, Y.A.; et al. The CUPID-Mo experiment for neutrinoless double-beta decay: Performance and prospects. Eur. Phys. J. C 2020, 80, 1–15. [Google Scholar] [CrossRef]
- Pandey, I.R.; Karki, S.; Kim, H.J.; Kim, Y.D.; Lee, M.H.; Ivannikova, N.V. Luminescence and Scintillation properties of novel disodium dimolybdate (Na2Mo2O7) single crystal. IEEE Trans. Nucl. Sci. 2018, 65, 2125–2131. [Google Scholar] [CrossRef]
- Spassky, D.A.; Nagirnyi, V.; Mikhailin, V.V.; Savon, A.E.; Belsky, A.N.; Laguta, V.V.; Buryi, M.; Galashov, E.N.; Shlegel, V.N.; Voronina, I.S.; et al. Trap centers in molybdates. Opt. Mater. 2013, 35, 2465–2472. [Google Scholar] [CrossRef]
- Spassky, D.A.; Kozlova, N.S.; Nagirnyi, V.; Savon, A.E.; Hizhnyi, Y.A.; Nedilko, S.G. Excitation energy transfer to luminescence centers in MIIMoO4 (MII = Ca, Sr, Zn, Pb) and Li2MoO4. J. Lumin. 2017, 186, 229–237. [Google Scholar] [CrossRef]
- Pattavina, L.; Beeman, J.W.; Clemenza, M.; Cremonesi, O.; Fiorini, E.; Pagnanini, L.; Pirro, S.; Rusconi, C.; Schäffner, K. Radiopurity of an archaeological Roman lead cryogenic detector. Eur. Phys. J. A 2019, 55, 127. [Google Scholar] [CrossRef] [Green Version]
- Danevich, F.A.; Kim, S.K.; Kim, H.J.; Kim, Y.D.; Kobychev, V.V.; Kostezh, A.B.; Kropivyansky, B.N.; Laubenstein, M.; Mokina, V.M.; Nagorny, S.S.; et al. Ancient Greek lead findings in Ukraine. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 2009, 603, 328–332. [Google Scholar] [CrossRef]
- Karki, S.; Aryal, A.; Gileva, O.; Kim, H.J.; Kim, Y.; Lee, D.Y.; Park, H.K.; Shin, K. Reduction of radioactive elements in molybdenum trioxide powder by sublimation method and its technical performance. J. Instrum. 2019, 14, T11002. [Google Scholar] [CrossRef]
- Lutterotti, L.; Matthies, S.; Wenk, H.R.; Schultz, A.S.; Richardson, J.W. Combined texture and structure analysis of deformed limestone from time-of-flight neutron diffraction spectra. J. Appl. Phys. 1997, 81, 594–600. [Google Scholar] [CrossRef]
- Brun, R.; Rademakers, F. ROOT—An object oriented data analysis framework. Nucl. Instrum. Methods Phys. Res. Sect. A Accel. Spectrom. Detect. Assoc. Equip. 1997, 389, 81–86. [Google Scholar] [CrossRef]
- Sahu, N.; Panigrahi, S. Mathematical aspects of Rietveld refinement and crystal structure studies on PbTiO3 ceramics. Bull. Mater. Sci. 2011, 34, 1495–1500. [Google Scholar] [CrossRef]
- Groenink, J.A.; Blasse, G. Some new observations on the luminescence of PbMoO4 and PbWO4. J. Solid State Chem. 1980, 32, 9–20. [Google Scholar] [CrossRef]
- Kajitani, T.; Itoh, M. Time-resolved composite nature of the self-trapped exciton luminescence in PbMoO4. Phys. Status Solid Curr. Top. Solid State Phys. 2011, 8, 108–111. [Google Scholar] [CrossRef]
- Mihokova, E.; Nikl, M.; Bohacek, P.; Babin, V.; Krasnikov, A.; Stolovich, A.; Zazubovich, S.; Vedda, A.; Martini, M.; Grabowski, T. Decay kinetics of the green emission in PbWO4:Mo. J. Lumin. 2003, 102, 618–622. [Google Scholar] [CrossRef]
- Buryi, M.; Laguta, V.; Fasoli, M.; Moretti, F.; Jurek, K.; Trubitsyn, M.; Volnianskii, M.; Nagorny, S.; Shlegel, V.; Vedda, A.; et al. Charge trapping processes and energy transfer studied in lead molybdate by EPR and TSL. J. Lumin. 2019, 205, 457–466. [Google Scholar] [CrossRef]
- Buryi, M.; Laguta, V.; Fasoli, M.; Moretti, F.; Trubitsyn, M.; Volnianskii, M.; Vedda, A.; Nikl, M. Electron self-trapped at molybdenum complex in lead molybdate: An EPR and TSL comparative study. J. Lumin. 2017, 192, 767–774. [Google Scholar] [CrossRef]
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khan, A.; Aryal, P.; Kim, H.; Lee, M.H.; Kim, Y. PbMoO4 Synthesis from Ancient Lead and Its Single Crystal Growth for Neutrinoless Double Beta Decay Search. Crystals 2020, 10, 150. https://doi.org/10.3390/cryst10030150
Khan A, Aryal P, Kim H, Lee MH, Kim Y. PbMoO4 Synthesis from Ancient Lead and Its Single Crystal Growth for Neutrinoless Double Beta Decay Search. Crystals. 2020; 10(3):150. https://doi.org/10.3390/cryst10030150
Chicago/Turabian StyleKhan, Arshad, Pabitra Aryal, Hongjoo Kim, Moo Hyun Lee, and Yeongduk Kim. 2020. "PbMoO4 Synthesis from Ancient Lead and Its Single Crystal Growth for Neutrinoless Double Beta Decay Search" Crystals 10, no. 3: 150. https://doi.org/10.3390/cryst10030150
APA StyleKhan, A., Aryal, P., Kim, H., Lee, M. H., & Kim, Y. (2020). PbMoO4 Synthesis from Ancient Lead and Its Single Crystal Growth for Neutrinoless Double Beta Decay Search. Crystals, 10(3), 150. https://doi.org/10.3390/cryst10030150