Chiral Photoresponsive Liquid Crystalline Materials Derived from Cyanoazobenzene Central Core: Effect of UV Light Illumination on Mesomorphic Behavior
Abstract
:1. Introduction
2. Materials and Methods
2.1. Design and Synthesis of the Materials
2.2. Synthesis and Characterization
- (S)-4-[(4-Cyanophenyl)diazenyl]phenyl 4-methylhexanoate (Ia)
- (S)-4-[(4-Cyanophenyl)diazenyl]phenyl-2-(hexyloxy)propanoate (Ib)
- (R)-4-[(4-Cyanophenyl)diazenyl]phenyl-2-[4-(octyloxy)phenoxy]propanoate (Ic)
- (S)-4-[(4-Cyanophenyl)diazenyl]phenyl 4-(4-methylhexanoyloxy)benzoate (IIa)
- (S)-4-[(4-Cyanophenyl)diazenyl]phenyl-4-{[2-(hexyloxy)propanoyl]oxy}benzoate (IIb)
2.3. Experimental on Mesomorphic Behavior and Photoresponse of the Target Materials
3. Results and Discussion
3.1. Mesomorphic Properties
3.2. Photoresponsiveness of the Materials
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Brown, G.H.; Shaw, W.G. The Mesomorphic State-Liquid Crystals. Chem. Rev. 1957, 57, 1049–1157. [Google Scholar] [CrossRef]
- Bisoyi, H.K.; Li, Q. Light-Driven Liquid Crystalline Materials: From Photo-Induced Phase Transitions and Property Modulations to Applications. Chem. Rev. 2016, 116, 15089–15166. [Google Scholar] [CrossRef] [PubMed]
- Kawata, S.; Kawata, Y. Three-Dimensional Optical Data Storage Using Photochromic Materials. Chem. Rev. 2000, 100, 1777–1788. [Google Scholar] [CrossRef] [PubMed]
- Asquini, R.; d’Alessandro, A. Tunable Photonic Devices Based on Liquid Crystals and Composites; SPIE: Bellingham, WA, USA, 2013; Volume 8828. [Google Scholar]
- Jing, H.; Xu, M.; Xiang, Y.; Wang, E.; Liu, D.; Poryvai, A.; Kohout, M.; Éber, N.; Buka, Á. Light Tunable Gratings Based on Flexoelectric Effect in Photoresponsive Bent-Core Nematics. Adv. Opt. Mater. 2019, 7, 1801790. [Google Scholar] [CrossRef]
- Petsch, S.; Rix, R.; Khatri, B.; Schuhladen, S.; Müller, P.; Zentel, R.; Zappe, H. Smart artificial muscle actuators: Liquid crystal elastomers with integrated temperature feedback. Sens. Actuators A Phys. 2015, 231, 44–51. [Google Scholar] [CrossRef]
- Zeng, H.; Wani, O.M.; Wasylczyk, P.; Kaczmarek, R.; Priimagi, A. Self-Regulating Iris Based on Light-Actuated Liquid Crystal Elastomer. Adv. Mater. 2017, 29, 1701814. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, A.; Mochalov, K.; Solovyeva, D.; Shibaev, V.; Cigl, M.; Hamplová, V.; Bubnov, A. Laser-induced formation of “craters” and “hills” in azobenzene-containing polymethacrylate films. Soft Matter 2020, 16, 5398–5405. [Google Scholar] [CrossRef] [PubMed]
- Bobrovsky, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Pociecha, D.; Bubnov, A. Azobenzene-containing LC polymethacrylates highly photosensitive in broad spectral range. J. Polym. Sci. Part A Polym. Chem. 2016, 54, 2962–2970. [Google Scholar] [CrossRef]
- Bubnov, A.; Iwan, A.; Cigl, M.; Boharewicz, B.; Tazbir, I.; Wójcik, K.; Sikora, A.; Hamplová, V. Photosensitive self-assembling materials as functional dopants for organic photovoltaic cells. RSC Adv. 2016, 6, 11577–11590. [Google Scholar] [CrossRef]
- Andrienko, D. Introduction to liquid crystals. J. Mol. Liq. 2018, 267, 520–541. [Google Scholar] [CrossRef]
- Gray, G.W.; Harrison, K.J.; Nash, J.A. New family of nematic liquid crystals for displays. Electron. Lett. 1973, 9, 130–131. [Google Scholar] [CrossRef]
- Booth, C.J.; Gray, G.W.; Toyne, K.J.; Hardy, J. The Synthesis and Transition Temperatures of Novel Low Molar Mass Cholesteric Materials Derived from (R—(4-Hydroxyphenoxy)propanoic Acid. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1992, 210, 31–57. [Google Scholar] [CrossRef]
- Balachandran, R.; Panov, V.P.; Panarin, Y.P.; Vij, J.K.; Tamba, M.G.; Mehl, G.H.; Song, J.K. Flexoelectric behavior of bimesogenic liquid crystals in the nematic phase–Observation of a new self-assembly pattern at the twist-bend nematic and the nematic interface. J. Mater. Chem. C 2014, 2, 8179–8184. [Google Scholar] [CrossRef]
- Mandle, R.J.; Davis, E.J.; Archbold, C.T.; Cowling, S.J.; Goodby, J.W. Microscopy studies of the nematic NTB phase of 1,11-di-(1″-cyanobiphenyl-4-yl) undecane. J. Mater. Chem. C 2014, 2, 556–566. [Google Scholar] [CrossRef]
- Ahmed, Z.; Welch, C.; Mehl, G.H. The design and investigation of the self-assembly of dimers with two nematic phases. RSC Adv. 2015, 5, 93513–93521. [Google Scholar] [CrossRef] [Green Version]
- Gorecka, E.; Vaupotič, N.; Zep, A.; Pociecha, D.; Yoshioka, J.; Yamamoto, J.; Takezoe, H. A Twist-Bend Nematic (NTB) Phase of Chiral Materials. Angew. Chem. Int. Ed. 2015, 54, 10155–10159. [Google Scholar] [CrossRef]
- Bruce, D.W.; Donnio, B.; Maggs, A.A.; Marsden, J.R. Melt syntheses of some [PtCl2L2] complexes. Inorg. Chim. Acta 1991, 188, 41–43. [Google Scholar] [CrossRef]
- Shabatina, T.I.; Vlasov, A.V.; Vovk, E.V.; Stufkens, D.J.; Sergeev, G.B. Spectroscopic study of low temperature interactions in Sm-mesogenic cyanophenyl co-condensates. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 2000, 56, 2539–2543. [Google Scholar] [CrossRef]
- Demortière, A.; Buathong, S.; Pichon, B.P.; Panissod, P.; Guillon, D.; Bégin-Colin, S.; Donnio, B. Nematic-like Organization of Magnetic Mesogen-Hybridized Nanoparticles. Small 2010, 6, 1341–1346. [Google Scholar] [CrossRef]
- Qi, H.; Kinkead, B.; Marx, V.M.; Zhang, H.R.; Hegmann, T. Miscibility and Alignment Effects of Mixed Monolayer Cyanobiphenyl Liquid-Crystal-Capped Gold Nanoparticles in Nematic Cyanobiphenyl Liquid Crystal Hosts. ChemPhysChem 2009, 10, 1211–1218. [Google Scholar] [CrossRef]
- Constant, J.; Raynese, E.P. Flow Aligned Viscosities of Cyanobiphenyls. Mol. Cryst. Liq. Cryst. 1980, 62, 115–123. [Google Scholar] [CrossRef]
- Das, M.K.; Paul, S.; Paul, R. X-ray Diffraction Studies on Solid and Mesomorphic Phases of Four Members of Alkoxy-Cyanobiphenyls. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect A Mol. Cryst. Liq. Cryst. 1995, 264, 89–98. [Google Scholar] [CrossRef]
- Gray, G.W.; Kelly, S.M. Mesomorphic Transition Temperatures and Viscosities for Some Cyano-biphenyls and p-terphenyls with Branched Terminal Alkyl Groups. Mol. Cryst. Liq. Cryst. 1984, 104, 335–345. [Google Scholar] [CrossRef]
- Gray, G.W.; McDonnell, D.G. Synthesis and Liquid Crystal Properties of Chiral Alkyl-Cyano-Biphenyls (and -p-Terphenyls) and of Some Related Chiral Compounds Derived from Biphenyl. Mol. Cryst. Liq. Cryst. 1976, 37, 189–211. [Google Scholar] [CrossRef]
- Dunmur, D.A.; Tomes, A.E. Molecular Properties of Pentyl-Cyano Mesogens Having Different Core Structures. Mol. Cryst. Liq. Cryst. 1983, 97, 241–253. [Google Scholar] [CrossRef]
- Eidenschink, R.; Erdmann, D.; Krause, J.; Pohl, L. Substituted Phenylcyclohexanes—A New Class of Liquid-Crystalline Compounds. Angew. Chem. Int. Ed. Engl. 1977, 16, 100. [Google Scholar] [CrossRef]
- Grachev, V.T.; Zaitsev, B.E.; Itskovich, E.M.; Pavluchenko, A.I.; Smirnova, N.I.; Titov, V.V.; Dyumaev, K.M. Spectroscopic and Quantum-Chemical Study of Structure of Liquid Crystalline Cyanobiphenyls and Arylcyanopyridines. Mol. Cryst. Liq. Cryst. 1981, 65, 133–144. [Google Scholar] [CrossRef]
- Brettle, R.; Dunmur, D.A.; Marson, C.M.; Milagros, P.; Kazuhisa, T. New Liquid Crystalline Compounds Based on Thiophene. Chem. Lett. 1992, 21, 613–616. [Google Scholar] [CrossRef]
- Cigl, M.; Bubnov, A.; Kašpar, M.; Hampl, F.; Hamplová, V.; Pacherová, O.; Svoboda, J. Photosensitive chiral self-assembling materials: Significant effects of small lateral substituents. J. Mater. Chem. C 2016, 4, 5326–5333. [Google Scholar] [CrossRef]
- Fearon, J.E.; Gray, G.W.; Ifill, A.D.; Toyne, K.J. The Effect of Lateral Fluorosubstitution on the Liquid Crystalline Properties of some 4-n-Alkyl-, 4-n-Alkoxy- and Related 4-Substituted-4′-cyanobiphenyls. Mol. Cryst. Liq. Cryst. 1985, 124, 89–103. [Google Scholar] [CrossRef]
- Herman, J.; Harmata, P.; Strzeżysz, O.; Czerwiński, M.; Urban, S.; Kula, P. Synthesis and properties of chosen 4-butyl-phenyltolane derivatives–On the influence of core substitution on birefringence, mesomorphic and dielectric properties. J. Mol. Liq. 2018, 267, 511–519. [Google Scholar] [CrossRef]
- Pal, S.K.; Acevedo-Vélez, C.; Hunter, J.T.; Abbott, N.L. Effects of Divalent Ligand Interactions on Surface-Induced Ordering of Liquid Crystals. Chem. Mater. 2010, 22, 5474–5482. [Google Scholar] [CrossRef]
- Węgłowska, D.; Czerwiński, M.; Kula, P.; Mrukiewicz, M.; Mazur, R.; Herman, J. Fast-response halogenated 4-alkyl-4″-cyano-p-terphenyls as dual frequency addressing nematics. Fluid Phase Equilib. 2020, 522, 112770. [Google Scholar] [CrossRef]
- Cox, R.J.; Clecak, N.J. The Preparation of 4-Cyano-4′-Alkyltolans: A New Series of Liquid Crystals. Mol. Cryst. Liq. Cryst. 1976, 37, 241–248. [Google Scholar] [CrossRef]
- Cox, R.J.; Clecak, N.J. The Preparationof 4-Alkyl-4′-Cyanostilbenes: A New Series of Liquid Crystal Compounds. Mol. Cryst. Liq. Cryst. 1976, 37, 263–267. [Google Scholar] [CrossRef]
- Cross, G.J.; Seed, A.J.; Toyne, K.J.; Goodby, J.W.; Hird, M.; Carmen Artal, M. Synthesis, transition temperatures, and optical properties of compounds with simple phenyl units linked by double bond, triple bond, ester or propiolate linkages. J. Mater. Chem. 2000, 10, 1555–1563. [Google Scholar] [CrossRef]
- Gray, G.W.; Mosley, A. Mesomorphic Transition Temperatures for the Homologous Series of 4-n-Alkyl-4′-Cyanotolanes and Other Related Compounds. Mol. Cryst. Liq. Cryst. 1976, 37, 213–231. [Google Scholar] [CrossRef]
- Karamysheva, L.A.; Kovshev, E.I.; Barnik, M.I. Mesomorphism and Dielectric Properties of Phenyl 4 -Alkylbiphenyl-4′ -Carboxylates and Phenyl 4 (4-Alkylphenyl) cyclohexanecarboxylates. Mol. Cryst. Liq. Cryst. 1976, 37, 29–34. [Google Scholar] [CrossRef]
- Kuvshinov, G.V.; Potemkina, O.V.; Kuvshinova, S.A.; Koifman, O.I. Rod-Like Msogens with Three Aromatic Rings and Chiral Terminal Substituent. Liq. Cryst. Appl. 2017, 17, 43–55. [Google Scholar] [CrossRef] [Green Version]
- Socha, J.; Bekárek, V.; Schreiber, J.; Večeřa, M. Reactivity of organic azo-compounds. XII. Correlation of chemical shift of hydroxyl group in NMR spectra of aromatic hydroxyazo compounds with substituent constants. Collect. Czechoslov. Chem. Commun. 1970, 35, 3551–3556. [Google Scholar] [CrossRef]
- Kenyon, J.; Symons, M.C.R. The oxidation of carboxylic acids containing a tertiary carbon atom. Part II. J. Chem. Soc. 1953, 3580–3583. [Google Scholar] [CrossRef]
- Loseva, M.; Chernova, N.; Vorflusev, V.; Beresnev, L.; Hiller, R.; Haase, W. Synthesis and Physical Properties of Novel Terphenyl Type Ferroelectric Liquid Crystals. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1995, 260, 261–267. [Google Scholar] [CrossRef]
- Bajzíková, K.; Kohout, M.; Tarábek, J.; Svoboda, J.; Novotná, V.; Vejpravová, J.; Pociecha, D.; Gorecka, E. All-organic liquid crystalline radicals with a spin unit in the outer position of a bent-core system. J. Mater. Chem. C 2016, 4, 11540–11547. [Google Scholar] [CrossRef]
- Kobayashi, S.; Ishibashi, S. Ferroelectric Liquid Crystals with Chiral Groups on Each Side of the Core. Mol. Cryst. Liq. Cryst. Sci. Technol. Sect. A Mol. Cryst. Liq. Cryst. 1992, 220, 1–17. [Google Scholar] [CrossRef]
- Poryvai, A.; Vojtylová-Jurkovičová, T.; Šmahel, M.; Kolderová, N.; Tomášková, P.; Sýkora, D.; Kohout, M. Determination of Optical Purity of Lactic Acid-Based Chiral Liquid Crystals and Corresponding Building Blocks by Chiral High-Performance Liquid Chromatography and Supercritical Fluid Chromatography. Molecules 2019, 24, 1099. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kohout, M.; Bubnov, A.; Šturala, J.; Novotná, V.; Svoboda, J. Effect of alkyl chain length in the terminal ester group on mesomorphic properties of new chiral lactic acid derivatives. Liq. Cryst. 2016, 43, 1472–1485. [Google Scholar] [CrossRef]
- Poryvai, A.; Bubnov, A.; Pociecha, D.; Svoboda, J.; Kohout, M. The effect of the length of terminal n-alkyl carboxylate chain on self-assembling and photosensitive properties of chiral lactic acid derivatives. J. Mol. Liq. 2019, 275, 829–838. [Google Scholar] [CrossRef]
- Kreger, K.; Wolfer, P.; Audorff, H.; Kador, L.; Stingelin-Stutzmann, N.; Smith, P.; Schmidt, H.-W. Stable Holographic Gratings with Small-Molecular Trisazobenzene Derivatives. J. Am. Chem. Soc. 2010, 132, 509–516. [Google Scholar] [CrossRef]
- Delden, R.A.V.; Mecca, T.; Rosini, C.; Feringa, B.L. A Chiroptical Molecular Switch with Distinct Chiral and Photochromic Entities and Its Application in Optical Switching of a Cholesteric Liquid Crystal. Chem. Eur. J. 2004, 10, 61–70. [Google Scholar] [CrossRef] [Green Version]
- Druon, C.; Wacrenier, J.M. A Study of 4 Nonanoate, 4′ Cyanobiphenyl Using Dielectric Relaxation Method. Mol. Cryst. Liq. Cryst. 1982, 88, 99–108. [Google Scholar] [CrossRef]
- Pieraccini, S.; Gottarelli, G.; Labruto, R.; Masiero, S.; Pandoli, O.; Spada, G.P. The Control of the Cholesteric Pitch by Some Azo Photochemical Chiral Switches. Chem. Eur. J. 2004, 10, 5632–5639. [Google Scholar] [CrossRef] [PubMed]
- Pieraccini, S.; Masiero, S.; Spada, G.P.; Gottarelli, G. A new axially-chiral photochemical switch. Chem. Commun. 2003, 598–599. [Google Scholar] [CrossRef] [PubMed]
- Xu, W.-C.; Sun, S.; Wu, S. Photoinduced Reversible Solid-to-Liquid Transitions for Photoswitchable Materials. Angew Chem. Int. Ed. 2019, 58, 9712–9740. [Google Scholar] [CrossRef] [PubMed]
- Sobolewska, A.; Bartkiewicz, S.; Mysliwiec, J.; Singer, K.D. Holographic memory devices based on a single-component phototropic liquid crystal. J. Mater. Chem. C 2014, 2, 1409–1412. [Google Scholar] [CrossRef]
- Bobrovsky, A.; Svyakhovskiy, S.; Bogdanov, A.; Shibaev, V.; Cigl, M.; Hamplová, V.; Bubnov, A. Photocontrollable Photonic Crystals Based on Porous Silicon Filled with Photochromic Liquid Crystalline Mixture. Adv. Opt. Mater. 2020, 8, 2001267. [Google Scholar] [CrossRef]
Material | m.p. | Cr | Tcr | M3 | Ttr | M2 | Ttr | M1 | Ttr | Iso |
---|---|---|---|---|---|---|---|---|---|---|
Ia | 92.6 | • | 73.6 | − | − | − | • | |||
Ib | 49.7 | • | −5.9 | − | − | − | • | |||
Ic | 88.5 | • | 49.0 | − | − | − | • | |||
IIa | 81.4 | • | 46.4 | SmA* | 99.7 | TGBA* | 118.1 | N* | 259.5 | • |
IIb | 81.3 | • | 55.7 | − | SmA* | 159.4 | N* | 175.5 | • |
Material | Tcr | M3 | Ttr | M2 | Ttr | M1 | Ttr | Iso | Ref. |
---|---|---|---|---|---|---|---|---|---|
Non-chiral OCB materials | |||||||||
6-OCB | 57.0 | − | − | N | 75.7 | • | [21,22,49] | ||
12-OCB | 56.5 | − | SmA | − | 90.0 | • | |||
8-COOCB | 42.5 | − | SmA | 63.0 | N | 76.0 | • | ||
Chiral CB and OCB materials | |||||||||
C2H5CH(CH3)C2H4-CB | − | SmA | −19 | N * | −8 | • | [13,24,25] | ||
C2H5CH(CH3)C2H4-OCB | − | − | N * | 21.5 | • | ||||
H17C8OPhO-CH(CH3)CO-OCB | − | − | N * | −40 | • | ||||
Two-cores CAB and OCAB materials | |||||||||
7-CAB | 76 | − | − | N | 80.0 | • | [50] | ||
7-OCAB | 91.0 | − | − | N | 110.0 | • | [50] | ||
Three-cores OCAB materials | |||||||||
9-OC6H4-CO-OCAB | 94.0 | RN | 116.0 | SmA | 212.4 | N | 242.9 | • | [51] |
6-OC6H4-CO-OCAB | 107.5 | − | SmA | 124.0 | N | 276 | • | [51] | |
5*-OC6H4-CO-OCAB | 58.9 | − | − | N * | 200.1 | • | [40] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Poryvai, A.; Bubnov, A.; Kohout, M. Chiral Photoresponsive Liquid Crystalline Materials Derived from Cyanoazobenzene Central Core: Effect of UV Light Illumination on Mesomorphic Behavior. Crystals 2020, 10, 1161. https://doi.org/10.3390/cryst10121161
Poryvai A, Bubnov A, Kohout M. Chiral Photoresponsive Liquid Crystalline Materials Derived from Cyanoazobenzene Central Core: Effect of UV Light Illumination on Mesomorphic Behavior. Crystals. 2020; 10(12):1161. https://doi.org/10.3390/cryst10121161
Chicago/Turabian StylePoryvai, Anna, Alexej Bubnov, and Michal Kohout. 2020. "Chiral Photoresponsive Liquid Crystalline Materials Derived from Cyanoazobenzene Central Core: Effect of UV Light Illumination on Mesomorphic Behavior" Crystals 10, no. 12: 1161. https://doi.org/10.3390/cryst10121161
APA StylePoryvai, A., Bubnov, A., & Kohout, M. (2020). Chiral Photoresponsive Liquid Crystalline Materials Derived from Cyanoazobenzene Central Core: Effect of UV Light Illumination on Mesomorphic Behavior. Crystals, 10(12), 1161. https://doi.org/10.3390/cryst10121161