Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite
Abstract
:1. Introduction
2. Materials and Methods
2.1. The Description of Sample
2.2. X-ray Diffraction (XRD) and Energy Dispersive Spectrometer (EDS) Methods
2.3. The Thermal Decomposition Characteristics Analyzed by TG, DTG and DSC Methods
2.4. Kinetic Analysis
2.5. Stable Carbon Isotope Analysis
3. Results and Discussions
3.1. XRD and EDS Analysis
3.2. Thermal Analysis
3.3. Kinetic Analysis
3.4. Stable Carbon Isotope Analysis of Cemented and Clotted Parts in Thrombolite
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Guo, W.; Ma, H.; Li, F.; Jin, Z.D.; Li, J.; Ma, F.; Wang, C. Citrobacter sp. strain GW-M Mediates the Coexistence of Carbonate Minerals with Various Morphologies. Geomicrobiol. J. 2013, 30, 749–757. [Google Scholar] [CrossRef]
- Chen, J.; Kwun Chough, S.; Chun, S.S.; Han, Z. Limestone pseudoconglomerates in the Late Cambrian Gushan and Chaomidian Formations (Shandong Province, China): Soft-sediment deformation induced by storm-wave loading. Sedimentology 2008, 56, 1174–1195. [Google Scholar] [CrossRef]
- Yu, H.; Yuan, J.; Guo, W.; Cheng, J.; Hu, Q. A preliminary laboratory experiment on coalbed methane displacement with carbon dioxide injection. Int. J. Coal. Geol. 2008, 73, 156–166. [Google Scholar] [CrossRef]
- Chen, J.; Van Loon, A.J.; Han, Z.; Chough, S.K. Funnel-shaped, breccia-filled clastic dykes in the Late Cambrian Chaomidian Formation (Shandong Province, China). Sediment. Geol. 2009, 221, 1–6. [Google Scholar] [CrossRef]
- Jimoh, O.A.; Ariffin, K.S.; Bin Hussin, H.; Temitope, A.E. Synthesis of precipitated calcium carbonate: A review. Carbonates Evaporites 2018, 33, 331–346. [Google Scholar] [CrossRef]
- Van Loon, A.J.; Han, Z.; Han, Y. Origin of the vertically orientated clasts in brecciated shallow-marine limestones of the Chaomidian Formation (Furongian, Shandong Province, China). Sedimentology 2013, 60, 1059–1070. [Google Scholar] [CrossRef]
- Yang, R.; Fan, A.; Han, Z.; Chi, N.; Han, Y. Characteristics and genesis of microbial lumps in the Maozhuang Stage (Cambrian Series 2), Shandong Province, China. Sci. China Earth Sci. 2013, 56, 494–503. [Google Scholar] [CrossRef]
- Lee, J.H.; Chen, J.T.; Choh, S.J.; Lee, D.J.; Han, Z.Z.; Chough, S.K. Furongian (Late Cambrian) sponge–microbial maze-like reefs in the North China Platform. Palaios 2014, 29, 27–37. [Google Scholar] [CrossRef]
- Han, Z.; Zhang, X.; Chi, N.; Han, M.; Woo, J.; Lee, H.S.; Chen, J. Cambrian oncoids and other microbial-related grains on the North China Platform. Carbonates Evaporites 2015, 30, 373–386. [Google Scholar] [CrossRef]
- Epple, M. Buchbesprechung: Biomineralization Principles and Concepts in Bioinorganic Materials Chemistry. Von Stephen Mann. Angew. Chem. 2003, 115, 395. [Google Scholar] [CrossRef]
- Fu, G.; Valiyaveettil, S.; Wopenka, B.; Morse, D. CaCO3 Biomineralization: Acidic 8-kDa Proteins Isolated from Aragonitic Abalone Shell Nacre Can Specifically Modify Calcite Crystal Morphology. Biomacromolecules 2005, 6, 1289–1298. [Google Scholar] [CrossRef]
- Holcomb, M.; Cohen, A.; Gabitov, R.; Hutter, J. Compositional and morphological features of aragonite precipitated experimentally from seawater and biogenically by corals. Geochim. Cosmochim. Acta 2009, 73, 4166–4179. [Google Scholar] [CrossRef]
- Han, Z.; Li, D.; Zhao, H.; Yan, H.; Li, P. Precipitation of carbonate minerals induced by the Halophilic Chromohalobacter Israelensis under high salt concentrations: Implications for natural environments. Minerals 2017, 7, 95. [Google Scholar] [CrossRef]
- Qiu, X.; Yao, Y.; Wang, H.; Shen, A.; Zhang, J. Halophilic Archaea Mediate the Formation of Proto-Dolomite in Solutions With Various Sulfate Concentrations and Salinities. Front. Microbiol. 2019, 10, 480. [Google Scholar] [CrossRef]
- Lian, B.; Hu, Q.; Chen, J.; Ji, J.; Teng, H.H. Carbonate biomineralization induced by soil bacterium Bacillus megaterium. Geochim. Cosmochim. Acta 2006, 70, 5522–5535. [Google Scholar] [CrossRef]
- Wang, T.; Antonietti, M.; Colfen, H. Calcite mesocrystals: “morphing” crystals by a polyelectrolyte. Chemistry (Weinh. Bergstr. Ger.) 2006, 12, 5722–5730. [Google Scholar] [CrossRef]
- Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Fan, A.; Han, Z.; Van Loon, A.J. A Marine or Continental Nature of the Deltas in the Early Cretaceous Lingshandao Formation-Evidences from Trace Elements. Acta Geol. Sin. (Engl. Ed.) 2017, 91, 367–368. [Google Scholar] [CrossRef]
- Chen, J.; Chough, S.K.; Lee, J.H.; Han, Z. Sequence-stratigraphic comparison of the upper Cambrian Series 3 to Furongian succession between the Shandong region, China and the Taebaek area, Korea: High variability of bounding surfaces in an epeiric platform. Geosci. J. 2012, 16, 357–379. [Google Scholar] [CrossRef]
- Han, Z.; Meng, R.; Yan, H.; Zhao, H.; Han, M.; Zhao, Y.; Sun, B.; Sun, Y.; Wang, J.; Zhuang, D.; et al. Calcium carbonate precipitation by Synechocystis sp. PCC6803 at different Mg/Ca molar ratios under the laboratory condition. Carbonates Evaporites 2017, 32, 561–575. [Google Scholar] [CrossRef]
- Han, Z.; Zhuang, D.; Yan, H.; Zhao, H.; Sun, B.; Li, D.; Sun, Y.; Hu, W.; Xuan, Q.; Chen, J.; et al. Thermogravimetric and kinetic analysis of thermal decomposition characteristics of microbial calcites induced by cyanobacteria Synechocystis sp. PCC6803. J. Therm. Anal. Calorim. 2017, 127, 1371–1379. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, H.; Dong, S.; Zhang, Y.; Sun, B.; Zhang, C.; Ai, Y.; Chen, B.; Liu, Q.; Sui, T.; et al. Thermogravimetry study of the pyrolytic characteristics and kinetics of macro-algae Macrocystis pyrifera residue. J. Therm. Anal. Calorim. 2013, 111, 1685–1690. [Google Scholar] [CrossRef]
- Zhao, H.; Yan, H.; Zhang, C.; Sun, B.; Zhang, Y.; Dong, S.; Xue, Y.; Qin, S. Thermogravimetry study of pyrolytic characteristics and kinetics of the giant wetland plant Phragmites australis. J. Therm. Anal. Calorim. 2012, 110, 611–617. [Google Scholar] [CrossRef] [Green Version]
- Zhuang, D.; Yan, H.; Tucker, M.E.; Zhao, H.; Han, Z.; Zhao, Y.; Sun, B.; Li, D.; Pan, J.; Zhao, Y.; et al. Calcite precipitation induced by Bacillus cereus MRR2 cultured at different Ca2+ concentrations: Further insights into biotic and abiotic calcite. Chem. Geol. 2018, 500, 64–87. [Google Scholar] [CrossRef]
- González-Gómez, W.S.; Quintana, P.; May-Pat, A.; Avilés, F.; May-Crespo, J.; Alvarado-Gil, J.J. Thermal effects on the physical properties of limestones from the Yucatan Peninsula. Int. J. Rock. Mech. Min. 2015, 75, 182–189. [Google Scholar] [CrossRef]
- Hartshorn, S.A.; Sharp, J.H.; Swamy, R.N. The thaumasite form of sulfate attack in Portland-limestone cement mortars stored in magnesium sulfate solution. Cement Concrete. Comp. 2002, 24, 351–359. [Google Scholar] [CrossRef]
- Alvarez-Puebla, R.A.; Aroca, R.F. Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering. Anal. Chem. 2009, 81, 2280–2285. [Google Scholar] [CrossRef]
- Han, Y.; Sun, B.; Yan, H.; Tucker, M.E.; Zhao, Y.; Zhou, J.; Zhao, Y.; Zhao, H. Biomineralization of Carbonate Minerals Induced by The Moderate Halophile Staphylococcus Warneri YXY2. Crystals 2020, 10, 58. [Google Scholar] [CrossRef] [Green Version]
- Gómez, M.; Bratos Perez, M.A.; Martin-Gil, F.J.; Díez, A.; Rodríguez, J.; Rodríguez, P.; Domingo, A.; Torres, A. Identification of species of Brucella using Fourier Transform Infrared Spectroscopy. J. Microbiol. Meth. 2003, 55, 121–131. [Google Scholar] [CrossRef]
- Park, T.Y.; June Moon, S.; Han, Z.; Choi, D. Ontogeny of the Middle Cambrian Trilobite Shantungia spinifera Walcott, 1905 from North China and Its Taxonomic Significance. J. Paleontol. 2008, 82, 851–855. [Google Scholar] [CrossRef]
Sample | Conversion Rate/α | Integral Form G(α) | R |
---|---|---|---|
Cemented part | 0.3–0.5 | 0.96 | |
0.6–0.8 | 0.98 | ||
Clotted part | 0.3–0.5 | 0.99 | |
0.6–0.8 | 0.95 |
Conversion Rate/α | FWO | KAS | Popescu | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R | E | lnA | R | E | lnA | Conversion Rate/α | R | E | lnA | |
0.1 | 0.92 | 252.3 | 30.2 | 0.96 | 229.6 | 16.9 | 0.1–0.2 | 0.94 | 242.7 | 23.4 |
0.2 | 0.93 | 242.1 | 34.4 | 0.98 | 236.9 | 23.4 | 0.2–0.3 | 0.97 | 237.1 | 21.5 |
0.3 | 0.98 | 238.9 | 35.7 | 0.99 | 252.9 | 19.6 | 0.3–0.4 | 0.99 | 252.3 | 25.9 |
0.4 | 0.97 | 243.6 | 39.2 | 0.96 | 236.2 | 20.3 | 0.4–0.5 | 0.92 | 260.5 | 22.5 |
0.5 | 0.98 | 252.9 | 32.8 | 0.98 | 228.5 | 19.8 | 0.5–0.6 | 0.91 | 233.1 | 21.9 |
0.6 | 0.99 | 245.5 | 34.6 | 0.93 | 231.1 | 20.7 | 0.6–0.7 | 0.93 | 252.9 | 22.4 |
0.7 | 0.93 | 257.2 | 38.2 | 0.99 | 254.6 | 23.6 | 0.7–0.8 | 0.94 | 228.5 | 25.6 |
0.8 | 0.91 | 228.6 | 36.2 | 0.91 | 242.3 | 27.5 | 0.8–0.9 | 0.98 | 237.4 | 20.7 |
0.9 | 0.94 | 232.6 | 37.2 | 0.93 | 234.9 | 19.5 | ||||
Average | 243.7 ± 8.9 | 238.5 ± 9.1 | 243.1 ± 10.3 | |||||||
Average | 241.7 ± 2.3 |
Conversion Rate/α | FWO | KAS | Popescu | |||||||
---|---|---|---|---|---|---|---|---|---|---|
R | E | lnA | R | E | lnA | Conversion Rate/α | R | E | lnA | |
0.1 | 0.97 | 343.3 | 31.1 | 0.93 | 334.6 | 17.9 | 0.1–0.2 | 0.93 | 341.4 | 22.5 |
0.2 | 0.99 | 356.1 | 37.4 | 0.91 | 354.9 | 21.4 | 0.2–0.3 | 0.92 | 365.2 | 28.3 |
0.3 | 0.92 | 342.9 | 32.7 | 0.92 | 323.3 | 18.6 | 0.3–0.4 | 0.90 | 352.6 | 20.7 |
0.4 | 0.95 | 367.6 | 30.2 | 0.94 | 356.5 | 23.3 | 0.4–0.5 | 0.95 | 357.2 | 26.2 |
0.5 | 0.92 | 342.8 | 29.8 | 0.97 | 321.5 | 28.8 | 0.5–0.6 | 0.99 | 325.5 | 21.8 |
0.6 | 0.98 | 341.2 | 32.6 | 0.92 | 342.1 | 22.7 | 0.6–0.7 | 0.94 | 364.7 | 26.7 |
0.7 | 0.91 | 324.5 | 29.2 | 0.98 | 362.6 | 27.6 | 0.7–0.8 | 0.97 | 335.2 | 22.2 |
0.8 | 0.92 | 320.2 | 33.2 | 0.99 | 351.3 | 21.5 | 0.8–0.9 | 0.92 | 360.6 | 26.5 |
0.9 | 0.93 | 342.3 | 38.2 | 0.92 | 324.9 | 29.5 | ||||
Average | 342.3 ± 13.5 | 341.3 ± 14.9 | 350.3 ± 13.7 | |||||||
Average | 344.6 ± 4.1 |
Location | Sample | Sample Number | Cemented Parts δ13C PDB (‰) | Clotted Parts δ13C PDB (‰) |
---|---|---|---|---|
Zhangxia Formation | Thrombolite | ZX-20 | −1.21 | −0.3 |
ZX-19 | −0.89 | −0.2 | ||
ZX-18 | −0.16 | 0.06 | ||
ZX-17 | −0.06 | 0.02 | ||
ZX-16 | −0.3 | 0.05 | ||
ZX-15 | −0.08 | 0.2 | ||
ZX-14 | −0.02 | −0.01 | ||
ZX-13 | −0.24 | −0.15 | ||
ZX-12 | −0.09 | −0.2 | ||
ZX-11 | −0.16 | −0.1 | ||
ZX-10 | 0.5 | 0.01 | ||
ZX-9 | −0.24 | 0.56 | ||
ZX-8 | −0.42 | 0.84 | ||
ZX-7 | −0.47 | 1.32 | ||
ZX-6 | 0.28 | 1.12 | ||
ZX-5 | 0.87 | 1.05 | ||
ZX-4 | 1.25 | 1.8 | ||
ZX-3 | 0.89 | 1.52 | ||
ZX-2 | 1.48 | 1.74 | ||
ZX-1 | 1.35 | 1.89 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhuang, D.; Guo, Y.; Chen, S. Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite. Crystals 2020, 10, 1017. https://doi.org/10.3390/cryst10111017
Zhuang D, Guo Y, Chen S. Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite. Crystals. 2020; 10(11):1017. https://doi.org/10.3390/cryst10111017
Chicago/Turabian StyleZhuang, Dingxiang, Yan Guo, and Song Chen. 2020. "Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite" Crystals 10, no. 11: 1017. https://doi.org/10.3390/cryst10111017
APA StyleZhuang, D., Guo, Y., & Chen, S. (2020). Comparative Study on Thermodynamic and Geochemical Characteristics between Cemented and Clotted Parts of Thrombolite. Crystals, 10(11), 1017. https://doi.org/10.3390/cryst10111017