Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides
Abstract
:1. Introduction
2. Atomic Ratio MI:Tl Approximately 1:3
K6Tl17
3. Atomic Ratio MI:Tl Approximately 1:2
3.1. Rb17Tl41 and K49Tl108
3.2. A15Tl27 (A = Rb, Cs)
4. Atomic Ratio MI:Tl Approximately 3:4
4.1. A8Tl11 (A = K, Rb, Cs)
4.2. Na4A6Tl13 (A = K, Rb, Cs) and Na3K8Tl13
5. Atomic Ratio MI:Tl Approximately 1:1
5.1. ATl (A = Li, Na, K, Cs)
5.2. Na9K16Tl25.25
5.3. Na2K21Tl19
6. Atomic Ratio MI:Tl Approximately 3:2
K10Tl7
7. Atomic Ratio MI:Tl Approximately 2:1
7.1. A2Tl (A = Li, Na)
7.2. Na23K9Tl15.3
8. Atomic Ratio MI:Tl > 2:1
9. Comparison of Binary and Ternary Compounds Including Sodium and Potassium
10. Conclusions
Funding
Conflicts of Interest
References
- Zintl, E.; Dullenkopf, W. Über den Gitterbau von NaTl und seine Beziehung zu den Strukturen des Typus des β-Messings. Z. Phys. Chem. 1932, B16, 195–205. [Google Scholar] [CrossRef]
- Hume-Rothery, W. Researches on the Nature, Properties, and Conditions of Formation of Intermetallic Compounds, with special Reference to certain compounds of Tin. J. Inst. Met. 1926, 35, 295–361. [Google Scholar]
- Westgren, A.; Phragmen, G. X-Ray Studies on Alloys. Trans. Farad. Soc. 1929, 25, 379–385. [Google Scholar] [CrossRef]
- Nesper, R. The Zintl-Klemm Concept—A Historical Survey. Z. Anorg. Allg. Chem. 2014, 640, 2639–2648. [Google Scholar] [CrossRef]
- Pöttgen, R.; Johrendt, D. Intermetallics, 2nd ed.; deGruyter: Berlin, Germany, 2019; pp. 117–122. [Google Scholar]
- Laves, F. Eduard Zintls Arbeiten über die Chemie und Struktur von Legierungen. Naturwissenschaften 1941, 29, 244–255. [Google Scholar] [CrossRef]
- Häussermann, U.; Amerioun, S.; Eriksson, L.; Lee, C.S.; Miller, G.J. The s-p bonded representatives of the prominent BaAl4 structure type: A case study on structural stability of polar intermetallic network structures. J. Am. Chem. Soc. 2002, 124, 4371–4383. [Google Scholar] [CrossRef] [Green Version]
- Zintl Phases—Principles and Recent Developments; Fässler, T.F. (Ed.) Springer: Berlin/Heidelberg, Germany, 2011; Volume 139. [Google Scholar]
- Chemistry, Structure and Bonding of Zintl Phases and Ions; Kauzlarich, S.M. (Ed.) VCH Publishers, Inc.: New York, NY, USA; Weinheim, Germany; Cambridge, UK, 1996. [Google Scholar]
- Kauzlarich, S.M. Special Issue: Advances in Zintl Phases. Materials 2019, 12, 2554. [Google Scholar] [CrossRef] [Green Version]
- Gärtner, S.; Korber, N. 1.09—Zintl Anions. In Comprehensive Inorganic Chemistry II, 2nd ed.; Reedijk, J., Poeppelmeier, K., Eds.; Elsevier: Amsterdam, The Netherlands, 2013; pp. 251–267. [Google Scholar]
- Gärtner, S.; Korber, N. Polyanions of Group 14 and Group 15 Elements in Alkali and Alkaline Earth Metal Solid State Compounds and Solvate Structures. In Zintl Ions Principles and Recent Developments; Fässler, T.F., Ed.; Springer-Verlag: Berlin Heidelberg, Germany, 2011; Volume 140, pp. 25–56. [Google Scholar]
- Scharfe, S.; Kraus, F.; Stegmaier, S.; Schier, A.; Fässler, T.F. Zintl Ions, Cage Compounds, and Intermetalloid Clusters of Group 14 and Group 15 Elements. Angew. Chem. Int. Ed. 2011, 50, 3630–3670. [Google Scholar] [CrossRef]
- Eisenmann, B.; Cordier, G. Structural Patterns of Homo-and Heteronuclear Anions in Zintl Phases and Related Intermetallic Compounds and Concepts for Their Interpretation. In Chemistry, Structure and Bonding of Zintl Phases and Ions; Kauzlarich, S.M., Ed.; VCH Verlagsgesellschaft mbH: Weinheim, Germany, 1996; pp. 61–137. [Google Scholar]
- Schäfer, H.; Eisenmann, B.; Müller, W. Zintl Phases—Transitions between metallic and ionic bonding. Angew. Chem. Int. Ed. 1973, 12, 694–712. [Google Scholar] [CrossRef]
- Wang, F.; Wedig, U.; Prasad, D.; Jansen, M. Deciphering the Chemical Bonding in Anionic Thallium Clusters. J. Am. Chem. Soc. 2012, 134, 19884–19894. [Google Scholar] [CrossRef]
- Guloy, A.M. Polar Intermetallics and Zintl Phases along the Zintl Border. In Inorganic Cemistry in Focus III; Wiley-VCH Verlag GmbH & Co: Weinheim, Germany, 2006. [Google Scholar]
- Corbett, J.D. Polyanionic clusters and networks of the early p-element metals in the solid state: Beyond the Zintl boundary. Angew. Chem. Int. Ed. 2000, 39, 670–690. [Google Scholar] [CrossRef]
- Sangster, J. The Systems Li-Tl, Na-Tl and K-Tl. J. Phase Equilib. 2018, 39, 74–86. [Google Scholar] [CrossRef]
- Thümmel, R.; Klemm, W. Behavior of alkali metals to metals of group III-B. Z. Anorg. Allg. Chem. 1970, 376, 44–63. [Google Scholar] [CrossRef]
- Corbett, J.D. Exploratory Synthesis: The Fascinating and Diverse Chemistry of Polar Intermetallic Phases. Inorg. Chem. 2010, 49, 13–28. [Google Scholar] [CrossRef]
- Belin, C.; Tillard-Charbonnel, M. Aspects of anionic framework formation. Clustering of p-block elements. Coord. Chem. Rev. 1998, 178, 529–564. [Google Scholar] [CrossRef]
- Parthe, E. Valence Electron Rules for Compounds with Tetrahedral Structures and Anionic Tetrahedron Complexes. In Modern Perspectives in Inorganic Crystal Chemistry; Parthe, E., Ed.; Springer: Dordrecht, The Netherlands, 1992; Volume 382, pp. 177–201. [Google Scholar]
- Wang, F.; Miller, G.J. Revisiting the Zintl-Klemm Concept: Alkali Metal Trielides. Inorg. Chem. 2011, 50, 7625–7636. [Google Scholar] [CrossRef] [Green Version]
- Falk, M.; Röhr, C. Stacking polytypes of mixed alkali gallides/indides A1−2(Ga/In)3 (A = K, Rb, Cs): Synthesis, crystal chemistry and chemical bonding. Z. Kristallogr. 2019, 234, 623–646. [Google Scholar] [CrossRef]
- Meyer, C.; Falk, M.; Röhr, C. Triel-rich mixed potassium indides/gallides: Ternary variants of binary trielides and the new 3:11 compound K15Ga45(2)In10(2). Acta Crystallogr. 2015, 71, S485. [Google Scholar] [CrossRef]
- Flot, D.; Tillard-Charbonnel, M.; Belin, C. Crystal structure of sodium potassium thallide indide, Na6K26In42−x(InyTl38−y) (x = 1.08; y = 20.12). Z. Kristallogr. NCS 1998, 213, 225–226. [Google Scholar]
- Flot, D.; Tillard-Charbonnel, M.; Belin, C. Na12K18In53Tl7: A novel mixed In/Tl phase hierarchically related to the C15 Friauf-Laves structure type. Synthesis, crystal and electronic structure. New J. Chem. 1998, 22, 591–598. [Google Scholar] [CrossRef]
- Kaskel, S.; Klem, M.T.; Corbett, J.D. Polyatomic clusters of the triel elements. Palladium-centered clusters of thallium in A8Tl11Pd, A = Cs, Rb, K. Inorg. Chem. 2002, 41, 3457–3462. [Google Scholar] [CrossRef] [PubMed]
- Dong, Z.C.; Corbett, J.D. Na14K6Tl18M (M = Mg, Zn, Cd, Hg) and Na13.5Sm0.5K6Tl18Na: Novel octahedral and centered icosahedral cluster phases related to the Mg2Zn11-type structure. Angew. Chem. Int. Ed. 1996, 35, 1006–1009. [Google Scholar] [CrossRef]
- Saltykov, V.; Nuss, J.; Jansen, M. Cs10Tl6SiO4, Cs10Tl6GeO4, and Cs10Tl6SnO3—First Oxotetrelate Thallides, Double Salts Containing “Hypoelectronic” Tl66− Clusters. Z. Anorg. Allg. Chem. 2011, 637, 1163–1168. [Google Scholar] [CrossRef]
- Saltykov, V.; Nuss, J.; Wedig, U.; Jansen, M. Regular Tl66− Cluster in Cs4Tl2O Exhibiting Closed-Shell Configuration and Energetic Stabilization due to Relativistic Spin-Orbit Coupling. Z. Anorg. Allg. Chem. 2011, 637, 357–361. [Google Scholar] [CrossRef]
- Karpov, A.; Jansen, M. A10Tl6O2 (A = K, Rb) cluster compounds combining structural features of thallium cluster anions and of alkali metal sub-oxides. Chem. Commun. 2006, 1706–1708. [Google Scholar] [CrossRef]
- Kaskel, S.; Dong, Z.C.; Klem, M.T.; Corbett, J.D. Synthesis and structure of the metallic K6Tl17: A layered tetrahedral star structure related to that of Cr3Si. Inorg. Chem. 2003, 42, 1835–1841. [Google Scholar] [CrossRef]
- Dong, Z.C.; Corbett, J.D. A15Tl27 (A = Rb,Cs): A structural type containing both isolated clusters and condensed layers based on the Tl11 fragment. Syntheses, structure, properties, and band structure. Inorg. Chem. 1996, 35, 1444–1450. [Google Scholar] [CrossRef]
- Häussermann, U.; Svensson, C.; Lidin, S. Tetrahedral stars as flexible basis clusters in sp-bonded intermetallic frameworks and the compound BaLi7Al6 with the NaZn13 structure. J. Am. Chem. Soc. 1998, 120, 3867–3880. [Google Scholar] [CrossRef]
- Cordier, G.; Müller, V.; Fröhlich, R. Crystal structure of potasium thallide (49/108), K49Tl108. Z. Kristallogr. 1993, 203, 148–149. [Google Scholar]
- Cordier, G.; Müller, V. Preparation and crystal structure of K49Tl108. Z. Naturforsch. B 1993, 48, 1035–1040. [Google Scholar] [CrossRef]
- Müller, V. Darstellung und Kristallstrukturen von Alkalimetall- Erdmetall- und Alkalimetall-Zink-Verbindungen. Ph.D. Thesis, Technische Hochschule Darmstadt, Darmstadt, Germany, 1995. [Google Scholar]
- Bullett, D.W. Structure and bonding in crystalline boron and B12C3. J. Phys. C Solid State Phys. 1982, 15, 415–426. [Google Scholar] [CrossRef]
- Hughes, R.E.; Kennard, C.H.L.; Sullenger, D.B.; Weakliem, H.A.; Sands, D.E.; Hoard, J.L. The Structure of β-Rhombohedral Boron. J. Am. Chem. Soc. 1963, 85, 361–362. [Google Scholar] [CrossRef]
- Cordier, G.; Müller, V. Compounds at the Zintl Border—Preparation and Crystal Structure of Na17Ga29In12 and K17In41. Z. Naturforsch. B 1994, 49, 721–728. [Google Scholar] [CrossRef]
- Schaefer, M.C.; Bobev, S. Tin Clathrates with the Type II Structure. J. Am. Chem. Soc. 2013, 135, 1696–1699. [Google Scholar] [CrossRef]
- Karttunen, A.J.; Fässler, T.F. Structural Principles and Thermoelectric Properties of Polytypic Group 14 Clathrate-II Frameworks. ChemPhysChem 2013, 14, 1807–1817. [Google Scholar] [CrossRef]
- Carrillo-Cabrera, W.; Caroca-Canales, N.; Von Schnering, H.G. K21−δNa2+δIn39 (δ = 2.8)—A Cluster-replacement clathrate-II structure with an alkali-metal M136-network. Z. Anorg. Allg. Chem. 1994, 620, 247–257. [Google Scholar] [CrossRef]
- Blase, W.; Cordier, G.; Müller, V.; Häussermann, U.; Nesper, R.; Somer, M. Preparation and Crystal-Structures of Rb8In11, K8Tl11, And Rb8Tl11 Band-Structure Calculations On K8In11. Z. Naturforsch. B 1993, 48, 754–760. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.-C.; Corbett, J.D. A8Tl11 (A = K, Rb, or Cs) Phases with Hypoelectronic Tl117− Cluster Anions: Syntheses, Structure, Bonding and Properties. J. Cluster Sci. 1995, 6, 187–201. [Google Scholar] [CrossRef]
- Sevov, S.C.; Corbett, J.D. A Remarkable Hypoelectronic Indium Cluster in K8In11. Inorg. Chem. 1991, 30, 4875–4877. [Google Scholar] [CrossRef]
- Gärtner, S.; Tiefenthaler, S.; Korber, N.; Stempfhuber, S.; Hischa, B. Structural Chemistry of Halide including Thallides A8Tl11X1−n (A = K, Rb, Cs; X = Cl, Br; n = 0.1–0.9). Crystals 2018, 8, 319. [Google Scholar] [CrossRef]
- Dong, Z.C.; Corbett, J.D. Na2K21Tl19, a novel thallium compound containing isolated Tl57− and Tl99− groups—A new hypoelectronic cluster. J. Am. Chem. Soc. 1994, 116, 3429–3435. [Google Scholar] [CrossRef]
- Dong, Z.C.; Corbett, J.D. Unusual icosahedral cluster compounds—Open-shell Na4A6Tl13 (A = K, Rb, Cs) and the metallic Zintl phase Na3K8Tl13 (How does chemistry work in solids). J. Am. Chem. Soc. 1995, 117, 6447–6455. [Google Scholar] [CrossRef]
- Tiefenthaler, S.M.; Schlosser, M.; Pielnhofer, F.; Shenderovich, I.G.; Pfitzner, A.; Gärtner, S. Investigations on Tetragonally Distorted Sodium Thallide NaTl-tI8. Z. Anorg. Allg. Chem. 2020, 646, 82–87. [Google Scholar] [CrossRef] [Green Version]
- Tiefenthaler, S.; Korber, N.; Gärtner, S. Synthesis of the Tetragonal Phase of Zintl’s NaTl and Its Structure Determination from Powder Diffraction Data. Materials 2019, 12, 1356. [Google Scholar] [CrossRef] [Green Version]
- Vollmar, E.; Ehrenberg, H.; Baehtz, C.; Knapp, M.; Pauly, H. Temperature-induced phase transitions of the Zintl phase NaTl: The role of sodium deficiency. Hasylab Annu. Rep. 2005, 533–534. [Google Scholar]
- Schneider, J. Cation Short Range Order in non-stoichiometric NaTl. Mat. Science Forum 1988, 27–28, 63–68. [Google Scholar] [CrossRef]
- Baden, W.; Schmidt, P.C.; Weiss, A. The intermetallic system LiCd1−xTlx X-ray investigations and measurements of the Knight shift of 205Tl and 113Cd. Phys. State Sol. A 1979, 51, 183–190. [Google Scholar] [CrossRef]
- Dong, Z.C.; Corbett, J.D. Synthesis, structure, and bonding of the novel cluster compound KTl with isolated Tl66− ions. J. Am. Chem. Soc. 1993, 115, 11299–11303. [Google Scholar] [CrossRef]
- Dong, Z.C.; Corbett, J.D. CsTl: A new example of tetragonally compressed Tl66− octahedra. Electronic effects and packing requirements in the diverse structures of ATl (A = Li, Na, K, Cs). Inorg. Chem. 1996, 35, 2301–2306. [Google Scholar] [CrossRef]
- King, R.B.; Silaghi-Dumitrescu, I. The role of “external” lone pairs in the chemical bonding of bare post-transition element clusters: The Wade-Mingos rules versus the jellium model. Dalton Trans. 2008, 44, 6083–6088. [Google Scholar] [CrossRef]
- Wade, K. Structural and Bonding Patterns in Cluster Chemistry. Adv. Inorg. Radiochem. 1976, 18, 1–66. [Google Scholar]
- Nadler, M.R.; Kempfer, C.P. Crystallographic Data Lithium. Anal. Chem. 1959, 31, 2109. [Google Scholar] [CrossRef]
- Evers, J.; Oehlinger, G. After more than 60 years, a new NaTl type Zintl phase: KTl at high pressure. Inorg. Chem. 2000, 39, 628–629. [Google Scholar] [CrossRef]
- Li, B.; Corbett, J.D. Na9K16Tl~25: A new phase containing naked icosahedral cluster fragments Tl99−. J. Clust. Sci. 2008, 19, 331–340. [Google Scholar] [CrossRef]
- Kaskel, S.; Corbett, J.D. Synthesis and structure of K10Tl7: The first binary trielide containing naked pentagonal bipyramidal Tl7 clusters. Inorg. Chem. 2000, 39, 778–782. [Google Scholar] [CrossRef]
- Stöhr, J.; Müller, W.; Schäfer, H. Structural Principles of Lithium Group III Compounds. Acta Crystallogr. A 1981, 37, C185. [Google Scholar] [CrossRef] [Green Version]
- Hansen, D.A.; Smith, J.F. Structure and Bonding Model For Na2Tl. Acta Cryst. 1967, 22, 836–845. [Google Scholar] [CrossRef]
- Lorenz, C.; Gärtner, S.; Korber, N. Ammoniates of Zintl Phases: Similarities and Differences of Binary Phases A4E4 and Their Corresponding Solvates. Crystals 2018, 8, 276. [Google Scholar] [CrossRef] [Green Version]
- Dong, Z.C.; Corbett, J.D. Na23K9Tl15.3: An unusual Zintl compound containing apparent Tl57−, Tl48−, Tl37−, and Tl5− anions. Inorg. Chem. 1996, 35, 3107–3112. [Google Scholar] [CrossRef]
- Nesper, R.; Wengert, S. Sr12Mg17.8Li2.2Si20, the first Zintl-phase with a Si3 chain. Chem. Mon. 1999, 130, 197–202. [Google Scholar]
- Bell, T.; Smetana, V.; Mudring, A.-V.; Meyer, G.H. Binary Intermetallics in the 70 atom % R Region of Two R-Pd Systems (R = Tb and Er): Hidden, Obscured, or Nonexistent? Inorg. Chem. 2020, 59, 10802–10812. [Google Scholar] [CrossRef]
- Ovchinnikov, A.; Smetana, V.; Mudring, A.-V. Metallic alloys at the edge of complexity: Structural aspects, chemical bonding and physical properties. J. Phys. Condens. Matter 2020, 243002. [Google Scholar] [CrossRef]
- Stöhr, J.; Schäfer, H. Die Kristallstrukturen von Li3In2, Li5Tl2 und Li3Tl. Z. Naturforsch. B 1979, 34, 653–656. [Google Scholar] [CrossRef] [Green Version]
- Samson, S.; Hansen, D.A. Complex cubic A6B compounds 1. Crystal structure of Na6Tl. Acta Crystallogr. B 1972, 28, 930–935. [Google Scholar] [CrossRef]
- Shevchenko, V.Y.; Blatov, V.A.; Ilyushin, G.D. Modeling Self-Organization Processes in Crystal Forming Systems. Symmetry and Topology Codes of Cluster Self-Assembly of Crystal Structure of Na44Tl7 (Na6Tl). Glass Phys. Chem. 2017, 43, 521–529. [Google Scholar] [CrossRef]
Symmetry Inequivalent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of K Neighbors (Distances Below) |
---|---|---|---|
K1 | 8l | 10 (<4.0 Å) | 4 (<4.6 Å) |
K2 | 8l | 9 (<4.3 Å) | 6 (<4.7 Å) |
K3 | 8l | 14 (<4.3 Å) | 3 (<4.4 Å) |
K4 | 16m | 11 (<4.8 Å) | 5 (<4.7 Å) |
K5 | 8g | 11 (<4.8 Å) | 4 (<4.3 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of K Neighbors (Distances Below) |
---|---|---|---|
K1 | 12k | 10 (<4.2 Å) | 4 (<4.3 Å) |
K2 | 12j | 12 (<4.4 Å) | 4 (<4.3 Å) |
K3 | 6g | 10 (<4.4 Å) | 4 (<4.3 Å) +1 (<4.7 Å) |
K4 | 8i | 12 (<4.2 Å) | 4 (<4.0 Å) |
K5 | 8i | 12 (<4.0 Å) | 4 (<4.0 Å) |
K6 | 3c | 14 (<4.4 Å) | 4 (<4.3 Å) +2 (<4.7 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Rb Neighbors (Distances Below) |
---|---|---|---|
Rb1 | 96g | 12 (<4.2 Å) | 4 (<4.3 Å) |
Rb2 | 32e | 12 (<4.0 Å) | 4 (<4.3 Å) |
Rb3 | 8a | 12 (<4.0 Å) | 4 (<4.3 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Rb Neighbors (Distances Below) |
---|---|---|---|
Rb1 | 6i | 5 (<4.0 Å) +3 (<4.4 Å) | 3 (<4.4 Å) +2 (<4.6 Å) |
Rb2 | 2c | 9 (<4.4 Å) | 6 (<4.6 Å) |
Rb3 | 6i | 9 (<4.0 Å) | 4 (<4.4) +1 (<4.9 Å) |
Rb4 | 1b | 12 (<4.4 Å) | 6 (<4.4 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Rb Neighbors (Distances Below) |
---|---|---|---|
Rb1 | 36f | 7 (<4.3 Å) | 5 (<4.6 Å) |
Rb2 | 12c | 9 (<4.3 Å) | 6 (<4.6 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of K Neighbors (Distances Below) | Number of Na Neighbors (Distances Below) |
---|---|---|---|---|
K1 | 6f | 8 (<3.6 Å) | 5 (<4.0 Å) | 4 (<4.0 Å) |
Na1 | 8i | 6 (<3.2 Å) | 6 (<4.2 Å) | - |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of K Neighbors (Distances Below) | Number of Na Neighbors (Distances Below) |
---|---|---|---|---|
K1 | 6c | 6 (<3.9 Å) | 3 (<4.1 Å) +3 (<4.8 Å) | 3 (<4.1 Å) |
K2 | 18h | 7 (<3.9 Å) | 2 (<4.1 Å) +5 (<4.8 Å) | 2 (<4.1 Å) |
Na1 | 9d | 6 (<3.9 Å) | 6 (<4.1 Å) | - |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Li Neighbors (Distances Below) |
---|---|---|---|
Li1 | 1a | 8 (<3 Å) | 6 (<3.5 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Na Neighbors (Distances Below) |
---|---|---|---|
Na1 | 8a (Fd−3m) 4a (I41/acd) | 4 (<3.3 Å) +6 (<3.8 Å) | 4 (<3.3 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of K Neighbors (Distances Below) |
---|---|---|---|
K1 | 8e | 4 (<3.8 Å) +2 (<4.7 Å) | 6 (<4.3 Å) +4 (<4.8 Å) |
K2 | 8d | 6 (<4 Å) +2 (<5.0 Å) | 4 (<4.2 Å) +4 (<4.8 Å) |
K3 | 8f | 7 (<4.1 Å) | 6 (<4.4 Å) +2 (<4.7 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Tl Neighbors (Distances Below) | Number of Cs neighbors (Distances Below) |
---|---|---|---|
Cs1 | 16e | 4 (<4.3 Å) +2 (<4.7 Å) | 2 (<4.4 Å) +6 (<5.2 Å) |
Cs2 | 16e | 6 (<4.3 Å) | 2 (<4.2 Å) +6 (<5 Å) |
Cs3 | 16f | 5 (<4 Å) +2 (<4.7 Å) | 5 (<4.4 Å) +2 (<5.2 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Na Neighbors (Distances Below) | Number of K Neighbors (Distances Below) | Number of Tl Neighbors (Distances Below) |
---|---|---|---|---|
Na1 | 12i | - | 5 (<4.2 Å) | 7 (<3.5 Å) |
Na2 | 6g | - | 6 (<4.2 Å) | 6 (<3.5 Å) |
K1 | 2d | - | 3 (<4 Å) +6 (<4.5 Å) | 6 (<3.8 Å) |
K2 | 6h | 4 (<4.1 Å) | 6 (<4.3 Å) | 6 (<4.3 Å) |
K3 | 6h | 4 (<4.3 Å) | 5 (<4.3 Å) | 8 (<4.2 Å) |
K4 | 12i | 2 (<3.8 Å) | 7 (<4.5 Å) | 5 (<3.8 Å) |
K5 | 6h | 4 (<4.2 Å) | 2 (<4.3 Å) | 10 (<4.2 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Na Neighbors (Distances Below) | Number of K Neighbors (Distances Below) | Number of Tl Neighbors (Distances Below) |
---|---|---|---|---|
K1 | 8g | - | 6 (<4.4 Å) | 7 (<4 Å) |
K2 | 8f | - | 8 (<4.5 Å) +2 (<5 Å) | 4 (<4 Å) |
K3 | 16h | - | 6 (<4.5 Å) +2 (<5 Å) | 6 (<4 Å) |
K4 | 16h | 1 (<3.8 Å) | 5 (<4.3 Å) +3 (<5.1 Å) | 6 (<4.1 Å) |
K5 | 16h | 1 (<3.6 Å) | 5 (<4.5 Å) +2 (<5 Å) | 6 (<4 Å) |
K6 | 8f | 1 (<3.9 Å) | 5 (<4.2 Å) +4 (<5.1 Å) | 5 (<4 Å) |
K7 | 8f | - | 7 <4.4 Å) +2 (<5 Å) | 3 (<4.1 Å) +3 (<4.5 Å) |
K8 | 8f | 1 (<4.8 Å) | 5 <4.2 Å) +3 (<5 Å) | 3 (<4 Å) +2 (<4.5 Å) |
Na1 | 8f | - | 5 (<3.9 Å) +1 (<4.8 Å) | 5 (<3.3 Å) +2 (<4.1 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of K Neighbors (Distances Below) | Number of Tl Neighbors (Distances Below) |
---|---|---|---|
K1 | 4e | 8 (<4.7 Å) +2 (<5.5 Å) | 4 (<3.9 Å) |
K2 | 4e | 8 (<4.7 Å) +1 (<5.5 Å) | 5 (<4.0 Å) |
K3 | 4e | 9 (<4.7 Å) | 6 (<4.0 Å) |
K4 | 4e | 9 (<4.7 Å) +1 (<5.5 Å) | 4 (<4.0 Å) |
K5 | 4e | 8 (<4.7 Å) +3 (<5.5 Å) | 3 (<4.0 Å) |
K6 | 4e | 8 (<4.7 Å) +1 (<5.5 Å) | 5 (<4.0 Å) |
K7 | 4e | 8 (<4.5 Å) +2 (<5.5 Å) | 4 (<4.0 Å) |
K8 | 4e | 8 (<4.7 Å) +3 (<5.5 Å) | 3 (<4.0 Å) |
K9 | 4e | 7 (<4.7 Å) +3 (<5.5 Å) | 3 (<4.0 Å) +1 (<4.5 Å) |
K10 | 4e | 7 (<4.7 Å) +2 (<5.5 Å) | 4 (<4.0 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Na Neighbors (Distances Below) | Number of Tl Neighbors (Distances Below) |
---|---|---|---|
Na1 | 4a | 6 (<3.7 Å) +2 (<4.1 Å) | 4 (<3.5 Å) |
Na2 | 4b | 6 (<3.7 Å) | 6 (<3.7 Å) |
Na3 | 8c | 7 (<3.7 Å) 9 (<4.2 Å) | 5 (<3.8 Å) |
Na4 | 8c | 7 (<3.7 Å) +1 (<4.2 Å) | 4 (<3.3 Å) |
Na5 | 8c | 6 (<3.8 Å) +2 (<4.2 Å) | 3 (<3.5 Å) +1 (<4.2 Å) |
Symmetry Independent Alkali Metal | Wyckoff Letter | Number of Na Neighbors (Distances Below) | Number of K Neighbors (Distances Below) | Number of Tl Neighbors (Distances Below) |
---|---|---|---|---|
K1 | 12k | 8 (<4.1 Å) | 4 (<4.5 Å) | 4 (<4.1 Å) |
K2 | 6h | 10 (<4.2 Å) | 2 (<4.2 Å) | 5 (<4.1 Å) |
Na1 | 6g | 4 (<3.6 Å) | 4 (<4.1 Å) | 4 (<3.5 Å) |
Na2 | 12k | 6 (<4 Å) | 3 (<4.2 Å) | 4 (<3.5 Å) |
Na3 | 12k | 4 (<3.6 Å) | 4 (<4.1 Å) | 4 (<3.3 Å) |
Na4 | 4f | 6 (<4.0 Å) | 3 (<4.0 Å) | 4 (<3.5 Å) |
Na5 | 12k | 5 (<3.9 Å) | 3 (<4.2 Å) | 5 (<3.6 Å) |
Compound | Na–Tl | K–Tl | Na–Na | K–K | Na–K |
---|---|---|---|---|---|
K6Tl17 | - | <4.8 Å | - | <4.7 Å | - |
K49Tl108 | - | <4.4 Å | - | <4.7 Å | - |
KTl | - | <5 Å | - | <4.8 Å | - |
K10Tl7 | - | <4.5 Å | - | <5.5 Å | - |
NaTl | <3.8 Å | - | <3.3 Å | - | - |
Na2Tl | <4.2 Å | - | <4.2 Å | - | - |
Na4K6Tl13 | <3.2 Å | <3.6 Å | - | <4 Å | <4.2 Å |
Na3K8Tl13 | <3.9 Å | <3.9 Å | - | <4.8 Å | <4.1 Å |
Na9K16Tl25.25 | <3.5 Å | <4.3 Å | - | <4.5 Å | <4.3 Å |
Na2K21Tl19 | <4.1 Å | <4.5 Å | - | <5 Å | - |
Na23K9Tl15.3 | <3.6 Å | <4.1 Å | <4 Å | <4.5 Å | <4.1 Å |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gärtner, S. Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides. Crystals 2020, 10, 1013. https://doi.org/10.3390/cryst10111013
Gärtner S. Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides. Crystals. 2020; 10(11):1013. https://doi.org/10.3390/cryst10111013
Chicago/Turabian StyleGärtner, Stefanie. 2020. "Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides" Crystals 10, no. 11: 1013. https://doi.org/10.3390/cryst10111013
APA StyleGärtner, S. (2020). Spotlight on Alkali Metals: The Structural Chemistry of Alkali Metal Thallides. Crystals, 10(11), 1013. https://doi.org/10.3390/cryst10111013