Fast Method for Testing the Photocatalytic Performance of Modified Gypsum
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Materials
3.2. Photocatalytic Activity Tests
3.2.1. Dye Decomposition
3.2.2. NOx Decomposition
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Zhang, C.; Jia, C.; Cao, Y.; Yao, Y.; Xie, S.; Zhang, S.; Lin, H. Water-assisted selective hydrodeoxygenation of phenol to benzene over the Ru composite catalyst in the biphasic process. Green Chem. 2019, 21, 1668–1679. [Google Scholar] [CrossRef]
- Didaskalou, C.; Kupai, J.; Cseri, L.; Barabas, J.; Vass, E.; Holtzl, T.; Szekely, G. Membrane-Grafted Asymmetric Organocatalyst for an Integrated Synthesis–Separation Platform. ACS Catal. 2018, 8, 7430–7438. [Google Scholar] [CrossRef]
- Wilson, A.N.; Dutta, A.; Black, B.A.; Mukarakate, C.; Magrini, K.; Schaidle, J.A.; Michener, W.E.; Becham, G.T.; Nimlos, M.R. Valorization of aqueous waste streams from thermochemical biorefineries. Green Chem. 2019, 21, 4217–4230. [Google Scholar] [CrossRef]
- Sun, C.; Zeng, J.; Lei, H.; Yang, W.; Zhang, Q. Direct Electrodeposition of Phosphorus-Doped Nickel Superstructures from Choline Chloride–Ethylene Glycol Deep Eutectic Solvent for Enhanced Hydrogen Evolution Catalysis. ACS Sustain. Chem. Eng. 2019, 7, 1529–1537. [Google Scholar] [CrossRef]
- Wang, M.; Li, X.; Zhang, T.; Deng, L.; Li, P.; Wang, X.; Hsiao, B.S. Eco-friendly poly(acrylic acid)-sodium alginate nanofibrous hydrogel: A multifunctional platform for superior removal of Cu(II) and sustainable catalytic applications A Physicochemical and engineering aspects. Colloid Surf. 2018, 558, 228–241. [Google Scholar] [CrossRef]
- DIN German Institute for Standardization. Fine Ceramics (Advanced Ceramics, Advanced Technical Ceramics)—Test Method for Air-Purification Performance of Semiconducting Photocatalytic Materials—Part 1: Removal of Nitric Oxide; Beuth Verlag GmbH: Berlin Germany, 2007. [Google Scholar]
- Italian Standards, Determination of The Degradation of Nitrogen Oxides in the Air by Inorganic Photocatalytic Materials: Continuous Flow Test Method 91.100.01. 2010. Available online: https://infostore.saiglobal.com/en-gb/Standards/UNI-11247-2007-677718/ (accessed on 18 April 2019).
- German Institute for Standardization. Photocatalytic Activity of Surfaces—Determination of the Photocatalytic Deposition Velocity of Nitrogen Monoxide at Photocatalytically Active Surfaces; Beuth Verlag GmbH: Berlin, Germany, 2016. [Google Scholar]
- DIN German Institute for Standardization. Photocatalysis—Continuous Flow Test Methods—Part 1: Determination of the Degradation of Nitric Oxide (NO) in the Air by Photocatalytic Materials; Beuth Verlag GmbH: Berlin, Germany, 2017. [Google Scholar]
- Amrhein, K.; Stephan, D. Principles and test methods for the determination of the activity of photocatalytic materials and their application to modified building materials. Photochem. Photobiol. Sci. 2011, 10, 338–342. [Google Scholar] [CrossRef] [PubMed]
- Da Silva, A.L.; Dondi, M.; Raimondo, M.; Hotza, D. Photocatalytic ceramic tiles: Challenges and technological solutions. J. Europ. Cer. Soc. 2018, 38, 1002–1017. [Google Scholar] [CrossRef]
- Binas, V.; Papadaki, D.; Maggos, T.; Katsanaki, A.; Kiriakidis, G. Study of innovative photocatalytic cement based coatings: The effect of supporting materials. Const. Build. Mater. 2018, 168, 923–930. [Google Scholar] [CrossRef]
- Peng, F.; Ni, Y.; Zhou, Q.; Kou, J.; Lu, C.; Xu, Z. New g-C3N4 based photocatalytic cement with enhanced visible-light photocatalytic activity by constructing muscovite sheet/SnO2 structures. Const. Build. Mater. 2018, 179, 315–325. [Google Scholar] [CrossRef]
- Wang, D.; Hou, P.; Zhang, L.; Xie, N.; Yang, P.; Cheng, X. Photocatalytic activities and chemically-bonded mechanism of SiO2@TiO2 nanocomposites coated cement-based materials. Mater. Res. Bull. 2018, 102, 262–268. [Google Scholar] [CrossRef]
- Luévano-Hipólito, E.; Torres-Martínez, L.M.; Cantú-Castro, L.V.F. Self-cleaning coatings based on fly ash and bismuth-photocatalysts: Bi2O3, Bi2O2CO3, BiOI, BiVO4, BiPO4. Constr. Build. Mater. 2019, 220, 206–213. [Google Scholar] [CrossRef]
- Krutsko, E.N.; Musskaya, O.N.; Kulak, A.I.; Krut’ko, V.K. Photocatalytc Activation of Gypsum Cements. Russ. J. Appl. Chem. 2017, 90, 51–57. [Google Scholar] [CrossRef]
- Janus, M.; Bubacz, K.; Zatorska, J.; Kusiak-Nejman, E.; Czyżewski, A.; Morawski, A.W. NOx photocatalytic degradation on gypsum plates modified by TiO2-N,C photocatalysts. Pol. J. Chem. Technol. 2015, 17, 8–12. [Google Scholar] [CrossRef]
- Janus, M.; Zatorska, J.; Zając, K.; Kusiak-Nejman, E.; Czyżewski, A.; Morawski, A.W. The mechanical and photocatalytic properties of modified gypsum materials. Mater. Sci. Eng. B 2018, 236–237, 1–9. [Google Scholar] [CrossRef]
- Zając, K.; Janus, M.; Morawski, A.W. Improved Self-Cleaning Properties of Photocatalytic Gypsum Plaster Enrich with Glass Fiber. Materials 2019, 12, 357. [Google Scholar] [CrossRef] [PubMed]
- Rauf, M.A.; Meetani, M.A.; Hisaindee, S. An overview on the photocatalytic degradation of azo dyes in the presence of TiO2 doped with selective transition metals. Desalination 2011, 276, 13–27. [Google Scholar] [CrossRef]
- Zając, K.; Janus, M.; Kuźmiński, K.; Morawski, A.W. Preparation of gypsum building materials with photocatalytic properties. A strong emphasis on waste gypsum from flue gas desulfurization. Przemysł Chemiczny 2016, 95, 2222–2226. [Google Scholar]
- Ehm, C.; Stephan, D. Site resolved optical detection of photocatalysis on building materials. J. Photochem. Photobiol. A 2018, 366, 97–102. [Google Scholar] [CrossRef]
Time [s] | Gypsum | Gypsum + 1%TiO2/N | Gypsum + 3%TiO2/N | Gypsum + 5%TiO2/N |
---|---|---|---|---|
0 | ||||
12 | ||||
24 | ||||
36 | ||||
48 | ||||
60 | ||||
72 | ||||
84 | ||||
96 | ||||
108 | ||||
120 | ||||
132 |
Numbers of Layers | Discoloration Time (s) |
---|---|
1 | 30 |
2 | 69 |
3 | 93 |
4 | 102 |
5 | 120 |
6 | 135 |
7 | 139 |
8 | 174 |
Cycle Number | Discoloration Time (s) |
---|---|
1 | 87 |
2 | 96 |
3 | 111 |
4 | 126 |
5 | 144 |
Phase Participation (%) | Crystal Size of Anatase (nm) | SBET (m2 g−1) | EG (eV) | Izoelectric Point pHpzc | ||
---|---|---|---|---|---|---|
Anatase | Rutile | Amorphous | ||||
31.9 | 3.0 | 65.1 | 10.8 | 235 | 3.2 | 5.83 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Janus, M.; Zając, K.; Ehm, C.; Stephan, D. Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts 2019, 9, 693. https://doi.org/10.3390/catal9080693
Janus M, Zając K, Ehm C, Stephan D. Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts. 2019; 9(8):693. https://doi.org/10.3390/catal9080693
Chicago/Turabian StyleJanus, Magdalena, Kamila Zając, Clemens Ehm, and Dietmar Stephan. 2019. "Fast Method for Testing the Photocatalytic Performance of Modified Gypsum" Catalysts 9, no. 8: 693. https://doi.org/10.3390/catal9080693
APA StyleJanus, M., Zając, K., Ehm, C., & Stephan, D. (2019). Fast Method for Testing the Photocatalytic Performance of Modified Gypsum. Catalysts, 9(8), 693. https://doi.org/10.3390/catal9080693