Modeling and Order Reduction for the Thermodynamics of a Diesel Oxidation Catalyst with Hydrocarbon Dosing
Abstract
:1. Introduction
2. Thermodynamics of the DOC Using an HC Doser
2.1. Problem Description and Primary Model
- (1)
- The model is a one-dimensional model, which is uniform in the radial direction;
- (2)
- The species, such as NOx, HC, and CO, in the original exhaust are eliminated, because the order of the magnitude is less than the effect of the dosing species;
- (3)
- The heat conduct term is eliminated, because Pe > 50, according to the investigation of Lepreux [22];
- (4)
- The endothermic effect of the droplet evaporation is eliminated in the gaseous energy balance, because the order of magnitude is less than the exothermic effect of the catalytic reaction.
2.2. Order Reduction of Energy Balance
2.3. Relationship between the Φ and Dosing Rate of Diesel Fuel
3. Experimental Section
4. Identification Process and Results
4.1. Identification Process
4.2. Identification Results
4.2.1. Identification in Axial Positions
4.2.2. Identification with Different Dosing Rates
4.2.3. Identification under Different Steady Conditions
5. Conclusions
- (1)
- The experimental data have a high precision in fitting with the second-order characteristics.
- (2)
- When the axial location is given, constant dosing under steady conditions can reduce the thermodynamics of the DOC to a second-order transfer function, with constant parameters, both in the theoretical derivation and in the experimental result.
- (3)
- In the axial direction, parameter K is higher in the rear and outlet regions than in the front region of the DOC. Tw also has the same performance as K. However, ζ has less regularity in axial distribution.
- (4)
- With a differing dosing rate, the regularity of K, Tw, and ζ is not obvious.
- (5)
- Under different steady conditions, higher-speed and higher-load conditions induce a lower K and lower Tw. A lower speed and higher load induce a lower ζ.
- (6)
- The range of Tw is from 6–32, and the range of ζ is from 0.75–1.5 when the engine conditions range from 1200 r/min 50% torque to 2800 r/min 100% torque.
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Zheng, G.; Kotrba, A.; Golin, M.; Gardner, T.; Wang, A. Overview of Large Diesel Engine Aftertreatment System Development. In SAE Technical Paper 2012-01-1960, Proceedings of the Commercial Vehicle Engineering Congress SAE, Chicago, IL, USA, 2–3 October 2012; SAE International: Chicago, IL, USA, 2012. [Google Scholar]
- Park, D.S.; Kim, J.U.; Kim, E.S. A burner-type trap for particulate matter from a diesel engine. Combust. Flame 1998, 114, 585–590. [Google Scholar] [CrossRef]
- Hasan, M.; Venkata, R.L.; Johnson, J.H.; Bagley, S.T. An Experimental and Modeling Study of a Diesel Oxidation Catalyst and a Catalyzed Diesel Particulate Filter using a 1-D 2-Layer Model. In SAE Technical Paper 2006-01-0466, Proceedings of the SAE 2006 World Congress & Exhibition, Detroit, MI, USA, April 9 2006; SAE International: Detroit, MI, USA, 2006. [Google Scholar]
- Huang, J.; Huang, H.; Liu, L.; Jiang, H. Revisit the effect of manganese oxidation state on activity in low-temperature NO-SCR. Mol. Catal. 2018, 446, 49–57. [Google Scholar] [CrossRef]
- Cozzolini, A.; Mulone, V.; Abeyratne, P.; Littera, D.; Gautam, M. Advanced Modeling of Diesel Particulate Filters to Predict Soot Accumulation and Pressure Drop. In SAE Technical Paper 2011-24-0187, Proceedings of the 10th International Conference on Engines & Vehicles, Naples, Italy, 11–15 September 2011; SAE International: Morgantown, WA, USA, 2011. [Google Scholar]
- Kim, Y.W.; Van Nieuwstadt, M.; Stewart, G.; Pekar, J. Model Predictive Control of DOC Temperature during DPF Regeneration. In SAE Technical Paper 2014-01-1165, Proceedings of the SAE 2014 World Congress & Exhibition, Detroit, MI, United States, 8–10 April 2014; SAE International: Detroit, MI, USA, 2014. [Google Scholar]
- Hein, E.; Kotrba, A.; Inclan, T.; Bright, A. Secondary Fuel Injection Characterization of a Diesel Vaporizer for Active DPF Regeneration. SAE Int. J. Engines 2014, 7, 1228–1234. [Google Scholar] [CrossRef]
- Harned, J.L. Analytical Evaluation of a Catalytic Converter System. In SAE Technical Paper 720520, 1972, Proceedings fo the National Automobile Engineering Meeting, Detroit, MI, USA, 1 February, 1972; SAE International: Detroit, MI, USA, 1972. [Google Scholar]
- Kuo, J.; Morgan, C.; Lassen, H. Mathematical Modeling of CO and HC Catalytic Converter Systems. In SAE Technical Paper 710289, Proceedings of the 1971 Automotive Engineering Congress and Exposition, Detroit, MI, United States, 1 February, 1971; SAE International: Detroit, MI, USA, 1971. [Google Scholar]
- Vardi, J.; Biller, W.F. Thermal behavior of exhaust gas catalytic convertor. Ind. Eng. Chem. Process Des. Dev. 1968, 7, 83–90. [Google Scholar] [CrossRef]
- Oh, S.H.; Cavendish, J.C. Transients of monolithic catalytic converters. Response to step changes in feedstream temperature as related to controlling automobile emissions. Ind. Eng. Chem. Prod. Res. Dev. 1982, 21, 29–37. [Google Scholar] [CrossRef]
- Groppi, G.; Belloli, A.; Tronconi, E.; Forzatti, P. A comparison of lumped and distributed models of monolith catalytic combustors. Chem. Eng. Sci. 1995, 50, 2705–2715. [Google Scholar] [CrossRef]
- Voltz, S.E.; Morgan, C.R.; Liederman, D.; Jacob, S.M. Kinetic study of carbon monoxide and propylene oxidation on platinum catalysts. Ind. Eng. Chem. Prod. Res. Dev. 1973, 12, 294–301. [Google Scholar] [CrossRef]
- Kryl, D.; Kočí, P.; Kubíček, M.; Marek, M.; Maunula, T.; Härkönen, M. Catalytic converters for automobile diesel engines with adsorption of hydrocarbons on zeolites. Ind. Eng. Chem. Res. 2005, 44, 9524–9534. [Google Scholar] [CrossRef]
- Sampara, C.S.; Bissett, E.J.; Chmielewski, M.; Assanis, D. Global kinetics for platinum diesel oxidation catalysts. Ind. Eng. Chem. Res. 2007, 46, 7993–8003. [Google Scholar] [CrossRef]
- Sampara, C.S.; Bissett, E.J.; Chmielewski, M. Global kinetics for a commercial diesel oxidation catalyst with two exhaust hydrocarbons. Ind. Eng. Chem. Res. 2008, 47, 311–322. [Google Scholar] [CrossRef]
- Depcik, C.; Assanis, D. One-dimensional automotive catalyst modeling. Prog. Engery Combust. Sci. 2005, 31, 308–369. [Google Scholar] [CrossRef]
- Hazlett, M.J.; Moses-Debusk, M.; Parks, I.I.; Allard, L.F.; Epling, W.S. Kinetic and mechanistic study of bimetallic Pt-Pd/Al 2 O 3 catalysts for CO and C 3 H 6 oxidation. Appl. Catal. B Environ. 2017, 202, 404–417. [Google Scholar] [CrossRef]
- Olsson, L.; Andersson, B. Kinetic modelling in automotive catalysis. Top. Catal. 2004, 28, 89–98. [Google Scholar] [CrossRef]
- Oluku, I.; Khan, F.; Idem, R.; Ibrahim, H. Mechanistic kinetics and reactor modelling of hydrogen production from the partial oxidation of diesel over a quartenary metal oxide catalyst. Mol. Catal. 2018, 451, 255–265. [Google Scholar] [CrossRef]
- Peng, P.Y.; Harold, M.P.; Luss, D. Sustained concentration and temperature oscillations in a diesel oxidation catalyst. Chem. Eng. J. 2018, 336, 531–543. [Google Scholar] [CrossRef]
- Lepreux, O.; Creff, Y.; Petit, N. Model-based temperature control of a diesel oxidation catalyst. J. Process Control 2012, 22, 41–50. [Google Scholar] [CrossRef]
- Bencherif, K.; Benaicha, F.; Sadaï, S.; Sorine, M. Diesel Particulate Filter Thermal Management Using Model-Based Design. In SAE Technical Paper 2009-01-1082, Proceedings of the SAE World Congress & Exhibition, Detroit, MI, United States, 20–23 April, 2009; SAE International: Detroit, MI, USA, 2009. [Google Scholar]
- Chen, P.; Wang, J. Control-oriented model for integrated diesel engine and aftertreatment systems thermal management. Control Eng. Pract. 2014, 22, 81–93. [Google Scholar] [CrossRef]
- Donkers, M.C.F.; Van Schijndel, J.; Heemels, W.P.M.H.; Willems, F.P.T. Optimal control for integrated emission management in diesel engines. Control Eng. Pract. 2017, 61, 206–216. [Google Scholar] [CrossRef]
- Ning, J.; Yan, F. Composite Control of DOC-out Temperature for DPF regeneration. IFAC PapersOnLine 2016, 49, 20–27. [Google Scholar] [CrossRef]
Frequency | Pulse Width (μs) | Dosing Rate (g/s) |
---|---|---|
40 Hz | 1000 | 0.15 |
1500 | 0.24 | |
2000 | 0.32 | |
100 Hz | 1000 | 0.39 |
2000 | 0.85 | |
3000 | 1.13 |
Version | JAC2.7 |
Type | Straight 4-cylinder |
Displacement | 2.7 L |
Bore × Stroke | 93.5 × 100 mm |
Maximum Power | 110 kW |
No. | Condition | mexh (kg/h) | Texh (°C) | Co2 (%) |
---|---|---|---|---|
1 | 1200 r/min 50%torque | 132.5 | 341 | 9.2 |
2 | 1200 r/min 75% torque | 145 | 436 | 5.7 |
3 | 1200 r/min 100% torque | 161 | 515 | 3 |
4 | 1600 r/min 25% torque | 165 | 257 | 12.3 |
5 | 1600 r/min 50% torque | 199 | 384 | 8.5 |
6 | 1600 r/min 75% torque | 232.7 | 464 | 6.1 |
7 | 1600 r/min 100% torque | 269.1 | 497 | 4.4 |
8 | 2000 r/min 25% torque | 226.7 | 287 | 12.2 |
9 | 2000 r/min 50% torque | 299.8 | 358 | 9.9 |
10 | 2000 r/min 75% torque | 336.3 | 411 | 8.2 |
11 | 2000 r/min 100% torque | 393.8 | 492 | 6.2 |
12 | 2400 r/min 25% torque | 327.3 | 281 | 12.8 |
13 | 2400 r/min 50% torque | 427.2 | 335 | 10.9 |
14 | 2400 r/min 75% torque | 495 | 405 | 8.9 |
15 | 2400 r/min 100% torque | 523.9 | 478 | 6.8 |
16 | 2800 r/min 25% torque | 444.7 | 271 | 13.2 |
17 | 2800 r/min 50% torque | 518.6 | 348 | 11 |
18 | 2800 r/min 75% torque | 576.3 | 425 | 9.1 |
19 | 2800 r/min 100% torque | 598 | 523 | 6.5 |
Dosing Parameter | Linear Parameters | Accuracy (%) |
---|---|---|
40 Hz, 1000 μs | K = 58.54; Tw = 13.42; ζ = 0.9212 | 97.41 |
40 Hz, 1500 μs | K = 68.53; Tw = 13.13; ζ = 0.9493 | 94.72 |
40 Hz, 2000 μs | K = 125.67; Tw = 14.93; ζ = 0.8809 | 95.53 |
100 Hz, 1000 μs | K = 144.28; Tw = 14.74; ζ = 0.9015 | 97.34 |
100 Hz, 2000 μs | K = 334.50; Tw = 23.16; ζ = 0.8077 | 73.00 |
100 Hz, 3000 μs | K = 438.56; Tw = 14.54; ζ = 1.31 | 82.73 |
Dosing | Linear Parameters | Accuracy (%) |
---|---|---|
100 Hz, 2000 μs | K = 334.50; Tw = 10.807; ζ = 1.0683 | 96.07 |
100 Hz, 3000 μs | K = 438.56; Tw = 12.878; ζ = 0.9591 | 96.47 |
No. | Condition | K | Tw | ζ | Accuracy (%) |
---|---|---|---|---|---|
1 | 1200 r/min 50% torque | 379.32 | 28.867 | 1.1952 | 98.44 |
2 | 1200 r/min 75% torque | 286.58 | 30.8918 | 0.81644 | 98.66 |
3 | 1200 r/min 100% torque | 183.54 | 26.702 | 0.80075 | 97.34 |
4 | 1600 r/min 25% torque | 323.76 | 27.459 | 1.3876 | 95.91 |
5 | 1600 r/min 50% torque | 207.65 | 21.928 | 0.78888 | 97.99 |
6 | 1600 r/min 75% torque | 173.29 | 19.371 | 0.75932 | 97.79 |
7 | 1600 r/min 100% torque | 135.89 | 14.733 | 0.80225 | 98.08 |
8 | 2000 r/min 25% torque | 223.77 | 11.768 | 1.4849 | 95.81 |
9 | 2000 r/min 50% torque | 153.29 | 15.385 | 0.9425 | 98.51 |
10 | 2000 r/min 75% torque | 104.51 | 10.94 | 0.98807 | 97.95 |
11 | 2000 r/min 100% torque | 96.469 | 10.716 | 0.91635 | 98.42 |
12 | 2400 r/min 25% torque | 109.23 | 7.9163 | 1.297 | 97.07 |
13 | 2400 r/min 50% torque | 153.13 | 15.3991 | 0.93943 | 98.44 |
14 | 2400 r/min 75% torque | 123.05 | 8.8944 | 1.1042 | 96.41 |
15 | 2400 r/min 100% torque | 104.54 | 7.4941 | 1.1668 | 94.62 |
16 | 2800 r/min 25% torque | 88.796 | 8.6342 | 1.0966 | 98.05 |
17 | 2800 r/min 50% torque | 78.485 | 6.7982 | 1.2331 | 96.06 |
18 | 2800 r/min 75% torque | 65.119 | 6.2419 | 1.2832 | 97.08 |
19 | 2800 r/min 100% torque | 81.376 | 7.1596 | 0.99281 | 97.64 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, F.; Zhang, B.; Yao, D.; Yang, Y. Modeling and Order Reduction for the Thermodynamics of a Diesel Oxidation Catalyst with Hydrocarbon Dosing. Catalysts 2019, 9, 369. https://doi.org/10.3390/catal9040369
Wu F, Zhang B, Yao D, Yang Y. Modeling and Order Reduction for the Thermodynamics of a Diesel Oxidation Catalyst with Hydrocarbon Dosing. Catalysts. 2019; 9(4):369. https://doi.org/10.3390/catal9040369
Chicago/Turabian StyleWu, Feng, Benxi Zhang, Dongwei Yao, and Yanxiang Yang. 2019. "Modeling and Order Reduction for the Thermodynamics of a Diesel Oxidation Catalyst with Hydrocarbon Dosing" Catalysts 9, no. 4: 369. https://doi.org/10.3390/catal9040369
APA StyleWu, F., Zhang, B., Yao, D., & Yang, Y. (2019). Modeling and Order Reduction for the Thermodynamics of a Diesel Oxidation Catalyst with Hydrocarbon Dosing. Catalysts, 9(4), 369. https://doi.org/10.3390/catal9040369