Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate
Abstract
:1. Introduction
2. Results and Discussions
2.1. Effect of Soaking in H3PO4
2.2. X-ray Diffraction (XRD) Analysis
2.3. Fourier Transform Infrared (FT-IR) Analysis
2.4. Temperature Programmed Desorption–Ammonia (TPD-NH3) Analysis
2.5. Thermo-Gravimetric Analysis (TGA)
2.6. BET Surface Area Analysis
2.7. Field Emission Scanning Electron Microscopy Analysis
2.8. PFAD Esterification at Optimized Condition
2.9. PWB-H2SO4 Reusability
3. Materials and Methods
3.1. Materials
3.2. Preliminary Analysis of Palm Waste Biomass (PWB)
3.3. Experimental Design
3.4. Preparation of PWB Catalysts and Experimental Methodology
3.4.1. Effect of Soaking
3.4.2. Sulphonation Methods
Sulphonation by Concentrated H2SO4
Sulphonation by Concentrated (NH4)2SO4
Sulphonation by Concentrated ClSO3H
3.5. Catalysts Characterization
3.6. Esterification of PFAD
3.7. FAME Analysis and FFA Determination
3.8. CHNS Analysis
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Onoji, S.E.; Iyuke, S.E.; Igbafe, A.I.; Nkazi, D.B. Rubber seed oil: A potential renewable source of biodiesel for sustainable development in sub-Saharan Africa. Energy Conver. Manag. 2016, 110, 125–134. [Google Scholar] [CrossRef]
- Roschat, W.; Kacha, M.; Yoosuk, B.; Sudyoadsuk, T.; Promarak, V. Biodiesel production based on heterogeneous process catalyzed by solid waste coral fragment. Fuel 2012, 98, 194–202. [Google Scholar] [CrossRef]
- Chen, S.Y.; Lao-Ubol, S.; Mochizuki, T.; Abe, Y.; Toba, M.; Yoshimura, Y. Transformation of non-edible vegetable oils into biodiesel fuels catalyzed by unconventional sulfonic acid-functionalized SBA-15. Appl. Catal. A Gen. 2014, 485, 28–39. [Google Scholar] [CrossRef]
- Lee, S.L.; Wong, Y.C.; Tan, Y.P.; Yew, S.Y. Transesterification of palm oil to biodiesel by using waste obtuse horn shell-derived CaO catalyst. Energy Conver. Manag. 2015, 93, 282–288. [Google Scholar] [CrossRef]
- Huang, R.; Cheng, J.; Qiu, Y.; Li, T.; Zhou, J.; Cen, K. Using renewable ethanol and isopropanol for lipid transesterification in wet microalgae cells to produce biodiesel with low crystallization temperature. Energy Conver. Manag. 2015, 105, 791–797. [Google Scholar] [CrossRef]
- Rashid, U.; Anwar, F.; Moser, B.R.; Ashraf, S. Production of sunflower oil methyl esters by optimized alkali-catalyzed methanolysis. Biomass Bioenergy 2008, 32, 1202–1205. [Google Scholar] [CrossRef]
- Santana, G.C.S.; Martins, P.F.; Da Silva, N.D.L.; Batistella, C.B.; Maciel Filho, R.; Maciel, M.W. Simulation and cost estimate for biodiesel production using castor oil. Chem. Eng. Res. Des. 2010, 88, 626–632. [Google Scholar] [CrossRef]
- Yang, R.; Su, M.; Zhang, J.; Jin, F.; Zha, C.; Li, M.; Hao, X. Biodiesel production from rubber seed oil using poly (sodium acrylate) supporting NaOH as a water-resistant catalyst. Bioresource Technol. 2011, 102, 2665–2671. [Google Scholar] [CrossRef]
- Gürü, M.; Artukoğlu, B.D.; Keskin, A.; Koca, A. Biodiesel production from waste animal fat and improvement of its characteristics by synthesized nickel and magnesium additive. Energy Conver. Manag. 2009, 50, 498–502. [Google Scholar] [CrossRef]
- Teo, S.H.; Rashid, U.; Taufiq-Yap, Y.H. Biodiesel production from crude Jatropha curcas oil using calcium based mixed oxide catalysts. Fuel 2014, 136, 244–252. [Google Scholar] [CrossRef]
- Ma, G.; Dai, L.; Liu, D.; Du, W. A robust two-step process for the efficient conversion of acidic soybean oil for biodiesel production. Catalysts 2018, 8, 527. [Google Scholar] [CrossRef]
- Cho, H.J.; Kim, J.K.; Cho, H.J.; Yeo, Y.K. Techno-economic study of a biodiesel production from palm fatty acid distillate. Ind. Eng. Chem. Res. 2012, 2, 462–468. [Google Scholar] [CrossRef]
- Index Mundi. Malaysia palm oil production by Year. 2017. Available online: https://www.indexmundi.com/agriculture/?country=my&commodity=palm-oil&graph=production (accessed on 27 December 2018).
- Tubino, M.; Junior, J.G.R.; Bauerfeldt, G.F. Biodiesel synthesis: A study of the triglyceride methanolysis reaction with alkaline catalysts. Catal. Commun. 2016, 75, 6–12. [Google Scholar] [CrossRef]
- Akinfalabi, S.I.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Synthesis of biodiesel from palm fatty acid distillate using sulfonated palm seed cake catalyst. Renew. Energy 2017, 111, 611–619. [Google Scholar] [CrossRef]
- Chin, L.H.; Abdullah, A.Z.; Hameed, B.H. Sugar cane bagasse as solid catalyst for synthesis of methyl esters from palm fatty acid distillate. Chem. Eng. J. 2012, 183, 104–107. [Google Scholar] [CrossRef]
- Dehkhoda, A.M.; West, A.H.; Ellis, N. Biochar based solid acid catalyst for biodiesel production. Appl. Catal. A Gen. 2010, 382, 197–204. [Google Scholar] [CrossRef]
- Li, M.; Zheng, Y.; Chen, Y.; Zhu, X. Biodiesel production from waste cooking oil using a heterogeneous catalyst from pyrolyzed rice husk. Bioresource Technol. 2014, 154, 345–348. [Google Scholar] [CrossRef]
- Sani, Y.M.; Raji-Yahya, A.O.; Alaba, P.A.; Aziz, A.R.A.; Daud, W.M.A.W. Palm frond and spikelet as environmentally benign alternative solid acid catalysts for biodiesel production. BioResources 2015, 10, 3393–3408. [Google Scholar] [CrossRef]
- Soltani, S.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Biodiesel production in the presence of sulfonated mesoporous ZnAl2O4 catalyst via esterification of palm fatty acid distillate (PFAD). Fuel 2016, 178, 253–262. [Google Scholar] [CrossRef]
- Cimino, S.; Lisi, L.; De Rossi, S.; Faticanti, M.; Porta, P. Methane combustion and CO oxidation on LaAl 1-x MnxO3 perovskite-type oxide solid solutions. Appl. Catal. B Environ. 2003, 43, 397–406. [Google Scholar] [CrossRef]
- Olutoye, M.A.; Wong, C.P.; Chin, L.H.; Hameed, B.H. Synthesis of FAME from the methanolysis of palm fatty acid distillate using highly active solid oxide acid catalyst. Fuel Proc. Technol. 2014, 124, 54–60. [Google Scholar] [CrossRef]
- Yang, J.C.; Jablonsky, M.J.; Mays, J.W. NMR and FT-IR studies of sulfonated styrene-based homopolymers and copolymers. Polymer 2002, 43, 5125–5132. [Google Scholar] [CrossRef]
- Farooq, M.; Ramli, A.; Subbarao, D. Biodiesel production from waste cooking oil using bifunctional heterogeneous solid catalysts. J. Clean. Prod. 2013, 59, 131–140. [Google Scholar] [CrossRef]
- Alhassan, F.H.; Yunus, R.; Rashid, U.; Sirat, K.; Islam, A.; Lee, H.V.; Taufiq-Yap, Y.H. Production of biodiesel from mixed waste vegetable oils using ferric hydrogen sulphate as an effective reusable heterogeneous solid acid catalyst. App. Catal. A Gen. 2013, 456, 182–187. [Google Scholar] [CrossRef]
- Thommes, M. Physical adsorption characterization of nanoporous materials. Chem. Ing. Tech. 2010, 82, 1059–1073. [Google Scholar] [CrossRef]
- Xie, Z.; Liu, Z.; Wang, Y.; Yang, Q.; Xu, L.; Ding, W. An overview of recent development in composite catalysts from porous materials for various reactions and processes. Int. J. Mol. Sci. 2010, 11, 2152–2187. [Google Scholar] [CrossRef] [PubMed]
- Kansedo, J.; Lee, K.T. Process optimization and kinetic study for biodiesel production from non-edible sea mango (Cerbera odollam) oil using response surface methodology. Chem. Eng. J. 2013, 214, 157–164. [Google Scholar] [CrossRef]
- Chen, H.; Peng, B.; Wang, D.; Wang, J. Biodiesel production by the transesterification of cottonseed oil by solid acid catalysts. Front. Chem. Eng. China 2007, 1, 11–15. [Google Scholar] [CrossRef]
- Di Serio, M.; Cozzolino, M.; Tesser, R.; Patrono, P.; Pinzari, F.; Bonelli, B.; Santacesaria, E. Vanadyl phosphate catalysts in biodiesel production. Appl. Catal. A Gen. 2007, 320, 1–7. [Google Scholar] [CrossRef]
- Du, C.Y.; Zhao, T.S.; Liang, Z.X. Sulphonation of carbon-nanotube supported platinum catalysts for polymer electrolyte fuel cells. J. Power Sources 2008, 176, 9–15. [Google Scholar] [CrossRef]
- Peng, F.; Zhang, L.; Wang, H.; Lv, P.; Yu, H. Sulfonated carbon nanotubes as a strong protonic acid catalyst. Carbon 2005, 43, 2405–2408. [Google Scholar] [CrossRef]
- Upare, P.P.; Yoon, J.W.; Kim, M.Y.; Kang, H.Y.; Hwang, D.W.; Hwang, Y.K.; Kung, H.H.; Chang, J.S. Chemical conversion of biomass-derived hexose sugars to levulinic acid over sulfonic acid-functionalized graphene oxide catalysts. Green Chem. 2013, 15, 2935–2943. [Google Scholar] [CrossRef]
- Shuit, S.H.; Lee, K.T.; Kamaruddin, A.H.; Yusup, S. Reactive extraction and in situ esterification of Jatropha curcas L. seeds for the production of biodiesel. Fuel 2010, 89, 527–530. [Google Scholar] [CrossRef]
Sample | a SBET (m2 g−1) | a Vp (cm3 gm−1) | a Dp (nm) | b NH3 Acid Density (mmol g−1) | c FFA Conversion (%) | c Fame Yield (%) | d Leached Sulfur (%) |
---|---|---|---|---|---|---|---|
PWB | 155.21 | 0.12 | 2 | 0.01 | 33.3 | 29.8 | - |
PWB-soaked | 201.38 | 0.54 | 3.21 | 6.41 | 54.8 | 51.3 | - |
PWB-(NH4)2SO4 | 270.32 | 0.65 | 4.62 | 8.87 | 90.1 | 88.6 | - |
PWB-ClSO3H | 332.87 | 1.61 | 5.11 | 9.63 | 91.5 | 89.1 | - |
PWB-H2SO4 | 372.01 | 0.73 | 6.25 | 11.35 | 97.4 | 95.2 | 1.81 |
Sample | C | O | S | |||
---|---|---|---|---|---|---|
a Weight (g) | b Atomicity | a Weight (g) | b Atomicity | a Weight (g) | b Atomicity | |
PWB | 61.02 | 66.04 | 39.32 | 33.91 | - | - |
PWB-(NH4)2SO4 | 60.43 | 70.11 | 17.32 | 11.21 | 3.03 | 1.35 |
PWB-ClSO3H | 76.19 | 81.74 | 18.57 | 15.46 | 2.81 | 0.67 |
PWB-H2SO4 | 77.36 | 86.45 | 29.65 | 35.22 | 3.16 | 1.31 |
Synthesized Catalyst | Reaction Time (h) | Reaction Temperature (°C) | Catalyst Loading (wt%) | MeOH:PFAD Molar Ratio | FAME Yield (%) |
---|---|---|---|---|---|
PWB-H2SO4 | 2 | 60 | 2.5 | 9:1 | 96.1 |
ZrFeTiO [22] | 5 | 170 | 3 | 3:1 | 96.5 |
MoeMn/g-Al2O3-15 [24] | 4 | 100 | - | 27:1 | 91.4 |
Fe(HSO4)3 [25] | 4 | 205 | 1 | 15:1 | 94.5 |
SO42-/ZrO2 [28] | 3.0 | 150 | 8.0 | 12:1 | 97.5 |
SO42-/ZrO2 [29] | 8.0 | 230 | 2.0 | 12:1 | >90 |
VOP [30] | 1.0 | 150 | 6.5 | 27:1 | 80 |
Fe-Zn-1 [7] | 3.0 | 170 | 8.0 | 15:1 | 98 |
15 WZ-75 [8] | 3.0 | 200 | 5.0 | 20:1 | 97 |
SO42-/SnO2 [9] | 3.0 | 200 | 4.2 | 6:1 | 81 |
WZ [10] | 4.0 | 250 | 6.7 | 40:1 | >90 |
Parameter (%, w/w) | Palm Waste Biomass (PWB) |
---|---|
Cellulose | 58.42 |
Hemicellulose | 21.03 |
Lignin | 15.32 |
Ash | 4.18 |
Moisture content | 5.71 |
Elemental analysis, dry basis, (% w/w) | |
Elements (%) | |
C | 59.65 |
H | 4.28 |
N | 1.01 |
O | 34.19 |
S | 0.43 |
P | 0.13 |
Functional groups (cm −1) via FTIR | |
Hydroxyl (–OH) | 3493 |
Carbonyl (-C=O) | 1499 |
Phenolic (-OH) | 2960 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Akinfalabi, S.-I.; Rashid, U.; Yunus, R.; Taufiq-Yap, Y.H. Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate. Catalysts 2019, 9, 184. https://doi.org/10.3390/catal9020184
Akinfalabi S-I, Rashid U, Yunus R, Taufiq-Yap YH. Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate. Catalysts. 2019; 9(2):184. https://doi.org/10.3390/catal9020184
Chicago/Turabian StyleAkinfalabi, Shehu-Ibrahim, Umer Rashid, Robiah Yunus, and Yun Hin Taufiq-Yap. 2019. "Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate" Catalysts 9, no. 2: 184. https://doi.org/10.3390/catal9020184
APA StyleAkinfalabi, S.-I., Rashid, U., Yunus, R., & Taufiq-Yap, Y. H. (2019). Appraisal of Sulphonation Processes to Synthesize Palm Waste Biochar Catalysts for the Esterification of Palm Fatty Acid Distillate. Catalysts, 9(2), 184. https://doi.org/10.3390/catal9020184