Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments
Abstract
:1. Introduction
2. Results and Discussion
2.1. Impact of Reagent Dose on DEHP Degradation
2.2. Impact of pH on DEHP Degradation
2.3. Impact of Initial DEHP Content and the Presence of Other Impurities on DEHP Degradation
2.4. Impact of the Process on the Leaching of Selected Metals and Plant Nutrients
3. Materials and Methods
3.1. Reagents
3.2. Experimental Procedures
3.3. Analytical Methods of DEHP Determination
4. Conclusions
- The modified Fenton process described here requires the selection of optimal reagent doses if high-efficiency di(2-ethylhexyl) phthalate removal is to be achieved, as excesses of either iron ions or hydrogen peroxide can result in a hydroxyl scavenging capable of inhibiting the process;
- The process removing di(2-ethylhexyl) phthalate is dependent on reaction-mixture pH, with physico-chemical properties of the analyzed bottom-sediment matrix determining the effectiveness of removal at a given environmental reaction;
- The process of DEHP removal is hindered by the presence of other hard-to-degrade impurities competing for access to highly reactive hydroxyl radicals, given their presence in amounts comparable with those of the analyzed substance;
- A chelating agent present in a properly-selected dose allows for the removal of DEHP in circumstances of non-modified pH, at a level of efficiency similar to that otherwise only obtainable under acidified conditions;
- The use of the modified Fenton process results in the leaching of both plant nutrients and metals from bottom sediments, probably on account of the reduced pH;
- As the modified Fenton reaction process failed to achieve sufficiently effective removal of DEHP from bottom sediments even under the most favorable conditions noted, prior desorption of bottom-sediment contaminants has to be advocated, along with further research to look for other solutions that include combined processes.
Author Contributions
Funding
Conflicts of Interest
References
- Kudlek, E.; Dudziak, M. Degradation pathways of pentachlorophenol and benzo(a)pyrene during heterogeneous photocatalysis. Water Sci. Technol. 2018, 77, 2407–2414. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Kida, M.; Ziembowicz, S.; Koszelnik, P. Study on the suitability of using low-frequency ultrasonic field for removing di(2-ethylhexyl) phthalate from bottom sediments. Sep. Purif. Technol. 2020, 233, 116010. [Google Scholar] [CrossRef]
- Pochwat, K.; Kida, M.; Ziembowicz, S.; Koszelnik, P. Odours in Sewerage—A Description of Emissions and of Technical Abatement Measures. Environments 2019, 6, 89. [Google Scholar] [CrossRef]
- Kozak, J.; Włodarczyk-Makuła, M. Comparison of the PAHs degradation effectiveness using CaO2 or H2O2 under the photo-Fenton reaction. Desalin. Water Treat. 2018, 134, 57–64. [Google Scholar] [CrossRef]
- Pochwat, K.; Iličić, K. A simplified dimensioning method for high-efficiency retention tanks. In Proceedings of the E3S Web of Conferences; EDP Sciences: Les Ulis, France, 2018; Volume 45, p. 65. [Google Scholar]
- Gajewska, M.; Kopeć, Ł.; Obarska-Pempkowiak, H. Operation of small wastewater treatment facilities in a scattered settlement. Rocz. Ochr. Srod. 2011, 13, 207–225. [Google Scholar]
- Barbusiński, K. Intensyfikacja Procesu Oczyszczania Ścieków i Stabilizacji Osadów Nadmiernych z Wykorzystaniem Odczynnika Fentona; Zeszyty Naukowe: Inżynieria Środowiska/Politechnika Śląska; Wydawnictwo Politechniki Śląskiej: Gliwice, Polska, 2004; p. 50. [Google Scholar]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. The use of alternative catalysts in processes of the chemical degradation of di-n-butyl phthalate in aqueous solutions. Chemosphere 2019, 237, 124450. [Google Scholar] [CrossRef] [PubMed]
- Zolfaghari, M.; Drogui, P.; Seyhi, B.; Brar, S.K.; Buelna, G.; Dubé, R. Occurrence, fate and effects of Di (2-ethylhexyl) phthalate in wastewater treatment plants: A review. Environ. Pollut. 2014, 194, 281–293. [Google Scholar] [CrossRef]
- Czarny, K.; Szczukocki, D.; Krawczyk, B.; Zieliński, M.; Miękoś, E.; Gadzała-Kopciuch, R. The impact of estrogens on aquatic organisms and methods for their determination. Crit. Rev. Environ. Sci. Technol. 2017, 47, 909–963. [Google Scholar] [CrossRef]
- Chiou, C.S.; Chen, Y.H.; Chang, C.T.; Chang, C.Y.; Shie, J.L.; Li, Y.S. Photochemical mineralization of di-n-butyl phthalate with H2O2/Fe3+. J. Hazard. Mater. 2006, 135, 344–349. [Google Scholar] [CrossRef]
- Wang, F.; Xia, X.; Sha, Y. Distribution of phthalic acid esters in Wuhan section of the Yangtze River, China. J. Hazard. Mater. 2008, 154, 317–324. [Google Scholar] [CrossRef]
- Jorfi, S.; Rezaee, A.; Moheb–ali, G.A.; alah Jaafarzadeh, N. Pyrene removal from contaminated soils by modified Fenton oxidation using iron nano particles. J. Environ. Health Sci. Eng. 2013, 11, 17. [Google Scholar] [CrossRef] [PubMed]
- Ledakowicz, S.; Olejnik, D.; Perkowski, J.; Żegota, H. The use of in-depth oxidation processes to break down the non-ionic Triton X-114 surfactant. Przem. Chem. 2001, 80, 453–459. [Google Scholar]
- Goi, A.; Viisimaa, M. Integration of ozonation and sonication with hydrogen peroxide and persulfate oxidation for polychlorinated biphenyls-contaminated soil treatment. J. Environ. Chem. Eng. 2015, 3, 2839–2847. [Google Scholar] [CrossRef]
- Zhang, J.; Li, J.; Thring, R.; Liu, L. Application of ultrasound and Fenton’s reaction process for the treatment of oily sludge. Proced. Environ. Sci. 2013, 18, 686–693. [Google Scholar] [CrossRef]
- Yim, B.; Yoo, Y.; Maeda, Y. Sonolysis of alkylphenols in aqueous solution with Fe (II) and Fe (III). Chemosphere 2003, 50, 1015–1023. [Google Scholar] [CrossRef]
- Ziembowicz, S.; Kida, M.; Koszelnik, P. The impact of selected parameters on the formation of hydrogen peroxide by sonochemical process. Sep. Purif. Technol. 2018, 204, 149–153. [Google Scholar] [CrossRef]
- Bokare, A.D.; Choi, W. Review of iron-free Fenton-like systems for activating H2O2 in advanced oxidation processes. J. Hazard. Mater. 2014, 275, 121–135. [Google Scholar] [CrossRef]
- Zhao, M.; Cheng, M.; Zeng, G.; Zhang, C. Degradation of di(2-ethylhexyl) phthalate in sediment by a surfactant-enhanced Fenton-like process. Chemosphere 2018, 198, 327–333. [Google Scholar] [CrossRef]
- Gan, S.; Ng, H.K. Modified Fenton oxidation of polycyclic aromatic hydrocarbon (PAH)-contaminated soils and the potential of bioremediation as post–treatment. Sci. Total Environ. 2012, 419, 240–249. [Google Scholar]
- Pardo, F.; Rosas, J.M.; Santos, A.; Romero, A. Remediation of a biodiesel blend-contaminated soil by using a modified Fenton process. Environ. Sci. Pollut. Res. 2014, 21, 12198–12207. [Google Scholar] [CrossRef]
- Qin, Y.; Song, F.; Ai, Z.; Zhang, P.; Zhang, L. Protocatechuic acid promoted alachlor degradation in Fe (III)/H2O2 Fenton system. Environ. Sci. Technol. 2015, 49, 7948–7956. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.; Liang, H.; Gao, D.W. Occurrence and risk assessment of phthalate esters (PAEs) in agricultural soils of the Sanjiang Plain, Northeast China. Environ. Sci. Pollut. Res. 2017, 24, 19723–19732. [Google Scholar] [CrossRef] [PubMed]
- Cheng, M.; Zeng, G.; Huang, D.; Lai, C.; Xu, P.; Zhang, C.; Liu, Y.; Wan, J.; Gong, X.; Zhu, Y. Degradation of atrazine by a novel Fenton-like process and assessment the influence on the treated soil. J. Hazard. Mater. 2016, 312, 184–191. [Google Scholar] [CrossRef] [PubMed]
- Flotron, V.; Delteil, C.; Padellec, Y.; Camel, V. Removal of sorbed polycyclic aromatic hydrocarbons from soil, sludge and sediment samples using the Fenton’s reagent process. Chemosphere 2005, 59, 1427–1437. [Google Scholar] [CrossRef] [PubMed]
- Yap, C.L.; Gan, S.; Ng, H.K. Fenton based remediation of polycyclic aromatic hydrocarbons-contaminated soils. Chemosphere 2011, 83, 1414–1430. [Google Scholar] [CrossRef]
- Bogacki, J.; Naumczyk, J. Ex-situ physicochemical methods for the treatment of heavy metal bottom sediments. Gaz Woda i Technika Sanitarna 2009, 11, 3–42. [Google Scholar]
Element | Ni | Pb | Cu | Zn | Al | Ca | Mg | K |
---|---|---|---|---|---|---|---|---|
Leaching after process [mg/g d.w.] | 0.031 | 0.004 | 0.005 | 0.014 | 0.594 | 0.080 | 0.015 | 2.105 |
Blank samples [mg/g d.w.] | 0.0001 | 0.002 | 0 | 0.0004 | 0.002 | 0.068 | 0.010 | 1.754 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kida, M.; Ziembowicz, S.; Koszelnik, P. Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments. Catalysts 2019, 9, 932. https://doi.org/10.3390/catal9110932
Kida M, Ziembowicz S, Koszelnik P. Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments. Catalysts. 2019; 9(11):932. https://doi.org/10.3390/catal9110932
Chicago/Turabian StyleKida, Małgorzata, Sabina Ziembowicz, and Piotr Koszelnik. 2019. "Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments" Catalysts 9, no. 11: 932. https://doi.org/10.3390/catal9110932
APA StyleKida, M., Ziembowicz, S., & Koszelnik, P. (2019). Impact of a Modified Fenton Process on the Degradation of a Component Leached from Microplastics in Bottom Sediments. Catalysts, 9(11), 932. https://doi.org/10.3390/catal9110932