Next Article in Journal
Organocatalysis and Beyond: Activating Reactions with Two Catalytic Species
Previous Article in Journal
In Situ EPR Characterization of a Cobalt Oxide Water Oxidation Catalyst at Neutral pH
Previous Article in Special Issue
Performance Analysis of Biocathode in Bioelectrochemical CO2 Reduction
Open AccessArticle

Ti3+ Defective SnS2/TiO2 Heterojunction Photocatalyst for Visible-Light Driven Reduction of CO2 to CO with High Selectivity

1
Key Laboratory for Green Chemical Technology of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2
Department of Chemistry and Biochemistry, Southern Illinois University, Carbondale, IL 62901, USA
*
Author to whom correspondence should be addressed.
Catalysts 2019, 9(11), 927; https://doi.org/10.3390/catal9110927
Received: 13 October 2019 / Revised: 26 October 2019 / Accepted: 4 November 2019 / Published: 6 November 2019
In recent years, defective TiO2-based composite nanomaterials have received much attention in the field of photocatalysis. In this work, TiB2 was used as a precursor to successfully prepare Ti3+ defective TiO2 (TiO2-B) with a truncated bipyramidal structure by a one-step method. Then, the SnS2 nanosheets were assembled onto the as-prepared TiO2-B through simple hydrothermal reaction. TiO2-B exhibits strong visible light absorption properties, but the recombination rate of the photo-generated electron-hole pair was high and does not exhibit ideal photocatalytic performance. Upon introducing SnS2, the heterojunction catalyst SnS2-Ti3+ defective TiO2 (SnS2/TiO2-B) not only possesses the strong light absorption from UV to visible light region, the lowest photo-generated charge recombination rate but also achieves a more negative conduction band potential than the reduction potential of CO2 to CO, and thereby, exhibits the significantly enhanced selectivity and yield of CO in photocatalytic CO2 reduction. Notably, SnS2/TiO2-B produces CO at a rate of 58 µmol·h−1·g−1 with CO selectivity of 96.3% under visible light irradiation, which is 2 and 19 times greater than those of alone TiO2-B and SnS2, respectively. Finally, a plausible photocatalytic mechanism on SnS2/TiO2-B was proposed that the electron transfer between TiO2 and SnS2 follows the Z-scheme mode. Our results present an effective way to gain highly efficient TiO2 based photocatalysts for CO2 reduction by combining different modification methods of TiO2 and make full use of the synergistic effects. View Full-Text
Keywords: photocatalytic CO2 reduction; TiO2 nanoplates; SnS2 nanosheets; Ti3+ defective TiO2 photocatalytic CO2 reduction; TiO2 nanoplates; SnS2 nanosheets; Ti3+ defective TiO2
Show Figures

Graphical abstract

MDPI and ACS Style

Han, A.; Li, M.; Zhang, S.; Zhu, X.; Han, J.; Ge, Q.; Wang, H. Ti3+ Defective SnS2/TiO2 Heterojunction Photocatalyst for Visible-Light Driven Reduction of CO2 to CO with High Selectivity. Catalysts 2019, 9, 927.

Show more citation formats Show less citations formats
Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Article Access Map by Country/Region

1
Back to TopTop