Direct Dehydrogenative Coupling of Alcohols with Hydrosilanes Promoted by Sodium tri(sec-butyl)borohydride
Abstract
:1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. General Remarks
3.2. Dehydrogenative Coupling of Alcohols with Silanes
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Conflicts of Interest
References
- Pouget, E.; Tonnar, J.; Lucas, P.; Lacroix-Desmazes, P.; Ganachaud, F.; Boutevin, B. Well-Architectured Poly(dimethylsiloxane)-Containing Copolymers Obtained by Radical Chemistry. Chem. Rev. 2010, 110, 1233–1277. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Fröba, M. Vitalising porous inorganic silica networks with organic functions—PMOs and related hybrid materials. Chem. Soc. Rev. 2011, 40, 608–620. [Google Scholar] [CrossRef] [PubMed]
- Hoffmann, F.; Cornelius, M.; Morell, J.; Fröba, M. Mesoporöse organisch-anorganische Hybridmaterialien auf Silicabasis. Angew. Chem. 2006, 118, 3290–3328. [Google Scholar] [CrossRef]
- Mizoshita, N.; Tani, T.; Inagaki, S. Syntheses, properties and applications of periodic mesoporous organosilicas prepared from bridged organosilane precursors. Chem. Soc. Rev. 2011, 40, 789–800. [Google Scholar] [CrossRef] [PubMed]
- Sano, K.; Kanematsu, H.; Tanaka, T. Overview of silane-based polymer coatings and their applications. In Industrial Applications for Intelligent Polymers and Coatings; Springer International Publishing: Cham, Switzerland, 2016; pp. 493–509. ISBN 9783319268934. [Google Scholar]
- Chang, C.W.; Lu, K.T. Organic–inorganic hybrid linseed oil-based urethane oil wood coatings. J. Appl. Polym. Sci. 2017, 134, 1–8. [Google Scholar] [CrossRef]
- Xie, Y.; Hill, C.A.S.; Xiao, Z.; Militz, H.; Mai, C. Silane coupling agents used for natural fiber/polymer composites: A review. Compos. Part A Appl. Sci. Manuf. 2010, 41, 806–819. [Google Scholar] [CrossRef]
- Dvornic, P.R.; Owen, M.J. Silicone Surface Science; Springer: Berlin, Germany, 2012. [Google Scholar]
- Nihei, T. Dental applications for silane coupling agents. J. Oral Sci. 2016, 58, 151–155. [Google Scholar] [CrossRef] [Green Version]
- Lalonde, M.; Chan, T.H. Use of Organosilicon Reagents as Protective Groups in Organic Synthesis. Synthesis (Stuttg) 1985, 1985, 817–845. [Google Scholar] [CrossRef]
- Rücker, C. The Triisopropylsilyl Group in Organic Chemistry: Just a Protective Group, or More? Chem. Rev. 1995, 95, 1009–1064. [Google Scholar] [CrossRef]
- Mekelburger, H.B.; Wilcox, C.S. 2.06 Formation of Enolates. In Comprehensive Organic Synthesis II; Elsevier: Amsterdam, The Netherlands, 2014; pp. 243–272. ISBN 9780080977430. [Google Scholar]
- Chaudhary, S.K.; Hernandez, O. 4-Dimethylaminopyridine: An efficient and selective catalyst for the silylation of alcohols. Tetrahedron Lett. 1979, 20, 99–102. [Google Scholar] [CrossRef]
- Kim, S.; Chang, H. 1,1,3,3-Tetramethylguanidine: An Effective catalyst for the t-butyldimethylsilylation of alcohols. Synth. Commun. 1984, 14, 899–904. [Google Scholar] [CrossRef]
- Mukherjee, D.; Thompson, R.R.; Ellern, A.; Sadow, A.D. Coordinatively Saturated Tris(oxazolinyl)borato Zinc Hydride-Catalyzed Cross Dehydrocoupling of Silanes and Alcohols. ACS Catal. 2011, 1, 698–702. [Google Scholar] [CrossRef] [Green Version]
- Ventura-Espinosa, D.; Sabater, S.; Carretero-Cerdán, A.; Baya, M.; Mata, J.A. High Production of Hydrogen on Demand from Silanes Catalyzed by Iridium Complexes as a Versatile Hydrogen Storage System. ACS Catal. 2018, 8, 2558–2566. [Google Scholar] [CrossRef]
- Vijjamarri, S.; Chidara, V.K.; Rousova, J.; Du, G. Dehydrogenative coupling of alcohols and carboxylic acids with hydrosilanes catalyzed by a salen–Mn(v) complex. Catal. Sci. Technol. 2016, 6, 3886–3892. [Google Scholar] [CrossRef]
- Gregg, B.T.; Cutler, A.R. Mn(CO)5C(O)-p-C6H5CH3-catalyzed hydrosilane SiH/SiD exchange: Evidence from a kinetics study implicating coordinatively unsaturated manganese silyl intermediates. Organometallics 1993, 12, 2006–2009. [Google Scholar] [CrossRef]
- Cardoso, J.M.S.; Lopes, R.; Royo, B. Dehydrogenative silylation of alcohols catalysed by half-sandwich iron N-heterocyclic carbene complexes. J. Organomet. Chem. 2015, 775, 173–177. [Google Scholar] [CrossRef]
- Corbin, R.A.; Ison, E.A.; Abu-Omar, M.M. Catalysis by cationic oxorhenium(v): Hydrolysis and alcoholysis of organic silanes. Dalton Trans. 2009, 2850. [Google Scholar] [CrossRef]
- Chung, M.-K.; Ferguson, G.; Robertson, V.; Schlaf, M. Nature of the active silane alcoholysis catalyst in the Ru w Cl x (CO) y (PMe 3) z (w, x, y, z = 1 or 2) system; Ru 2 (µ-Cl) 2 Cl 2 (CO) 4 (PMe 3) 2 as a new catalyst for silane alcoholysis in a polar solvent. Can. J. Chem. 2001, 79, 949–957. [Google Scholar] [CrossRef]
- Maifeld, S.V.; Miller, R.L.; Lee, D. Activation of silanes by Grubbs carbene complex Cl2(PCy3)2Ru CHPh: Dehydrogenative condensation of alcohols and hydrosilylation of carbonyls. Tetrahedron Lett. 2002, 43, 6363–6366. [Google Scholar] [CrossRef]
- Garcés, K.; Fernández-Alvarez, F.J.; Polo, V.; Lalrempuia, R.; Pérez-Torrente, J.J.; Oro, L.A. Iridium-Catalyzed Hydrogen Production from Hydrosilanes and Water. ChemCatChem 2014, 6, 1691–1697. [Google Scholar] [CrossRef] [Green Version]
- Field, L.D.; Messerle, B.A.; Rehr, M.; Soler, L.P.; Hambley, T.W. Cationic Iridium(I) Complexes as Catalysts for the Alcoholysis of Silanes. Organometallics 2003, 22, 2387–2395. [Google Scholar] [CrossRef]
- Barber, D.E.; Lu, Z.; Richardson, T.; Crabtree, R.H. Silane alcoholysis by a nickel(II) complex in a N, O, S ligand environment. Inorg. Chem. 1992, 31, 4709–4711. [Google Scholar] [CrossRef]
- Ohshita, J.; Taketsugu, R.; Nakahara, Y.; Kunai, A. Convenient synthesis of alkoxyhalosilanes from hydrosilanes. J. Organomet. Chem. 2004, 689, 3258–3264. [Google Scholar] [CrossRef]
- Ito, H.; Watanabe, A.; Sawamura, M. Versatile dehydrogenative alcohol silylation catalyzed by Cu(I)-phosphine complex. Org. Lett. 2005, 7, 1869–1871. [Google Scholar] [CrossRef] [PubMed]
- Rendler, S.; Auer, G.; Oestreich, M. Kinetic Resolution of Chiral Secondary Alcohols by Dehydrogenative Coupling with Recyclable Silicon-Stereogenic Silanes. Angew. Chem. Int. Ed. 2005, 44, 7620–7624. [Google Scholar] [CrossRef] [PubMed]
- Caseri, W.; Pregosin, P.S. Hydrosilylation chemistry and catalysis with cis-PtCl2(PhCH:CH2)2. Organometallics 1988, 7, 1373–1380. [Google Scholar] [CrossRef]
- Ito, H.; Takagi, K.; Miyahara, T.; Sawamura, M. Gold(I)−Phosphine Catalyst for the Highly Chemoselective Dehydrogenative Silylation of Alcohols. Org. Lett. 2005, 7, 3001–3004. [Google Scholar] [CrossRef]
- Weickgenannt, A.; Oestreich, M. Potassium tert -Butoxide-Catalyzed Dehydrogenative Si–O Coupling: Reactivity Pattern and Mechanism of an Underappreciated Alcohol Protection. Chem. Asian J. 2009, 4, 406–410. [Google Scholar] [CrossRef]
- Harinath, A.; Bhattacharjee, J.; Anga, S.; Panda, T.K. Dehydrogenative Coupling of Hydrosilanes and Alcohols by Alkali Metal Catalysts for Facile Synthesis of Silyl Ethers. Aust. J. Chem. 2017, 70, 724. [Google Scholar] [CrossRef]
- Gao, D.; Cui, C. N-Heterocyclic Carbene Organocatalysts for Dehydrogenative Coupling of Silanes and Hydroxyl Compounds. Chem. Eur. J. 2013, 19, 11143–11147. [Google Scholar] [CrossRef]
- Blackwell, J.M.; Foster, K.L.; Beck, V.H.; Piers, W.E. B(C 6 F 5) 3-Catalyzed Silation of Alcohols: A Mild, General Method for Synthesis of Silyl Ethers. J. Org. Chem. 1999, 64, 4887–4892. [Google Scholar] [CrossRef] [PubMed]
- Toutov, A.A.; Betz, K.N.; Haibach, M.C.; Romine, A.M.; Grubbs, R.H. Sodium Hydroxide Catalyzed Dehydrocoupling of Alcohols with Hydrosilanes. Org. Lett. 2016, 18, 5776–5779. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Han, W.-S.; Kim, T.-J.; Kim, S.-K.; Kim, Y.; Kim, Y.; Nam, S.-W.; Kang, S.O. Silane-based hydrogen storage materials for fuel cell application: Hydrogen release via methanolysis and regeneration by hydride reduction from organosilanes. Int. J. Hydrogen Energy 2011, 36, 12305–12312. [Google Scholar] [CrossRef]
- Zaranek, M.; Witomska, S.; Patroniak, V.; Pawluć, P. Unexpected catalytic activity of simple triethylborohydrides in the hydrosilylation of alkenes. Chem. Commun. 2017, 53, 5404–5407. [Google Scholar] [CrossRef] [PubMed]
- Skrodzki, M.; Witomska, S.; Pawluć, P. Sodium triethylborohydride as a catalyst for the dehydrogenative silylation of terminal alkynes with hydrosilanes. Dalton Trans. 2018, 47, 5948–5951. [Google Scholar] [CrossRef] [PubMed]
- Itoh, M.; Inoue, K.; Ishikawa, J.I.; Iwata, K. Disproportionation reactions of organohydrosilanes in the presence of base catalysts. J. Organomet. Chem. 2001, 629, 1–6. [Google Scholar] [CrossRef]
- Kim, B.; Woo, H.-G. Dehydrocoupling, Redistributive Coupling, and Addition of Main Group 4 Hydrides. In Advances in Organometallic Chemistry; Academic Press: Cambridge, MA, USA, 2004; Volume 52, ISBN 9780120311521. [Google Scholar]
- Howie, C.R.; Lee, J.K.; Schowen, R.L. Catalysis in organosilicon chemistry. IV. Proton inventory of the transition state for hydride expulsion from silicon. J. Am. Chem. Soc. 1973, 95, 5286–5288. [Google Scholar] [CrossRef]
| ||||
---|---|---|---|---|
Entry | [MHBR3] | Solvent, c of 2 | T [°C] | Conv. of 2 2 |
1 | NaHBEt3 | Neat | RT | 17 |
2 | LiHBEt3 | Neat | RT | 26 |
3 | KHBEt3 | Neat | RT | 31 |
4 | Neat | 40 | 66 | |
5 | NaHB(s-Bu)3 | Neat | RT | 57 |
6 | Neat | 40 | 100 | |
7 | THF, 1M | RT | 11 | |
8 | Toluene, 1M | RT | 55 | |
9 | Neat | RT | 693 | |
10 | Neat | 40 | 1004 |
# | Silane | Alcohol | Product | t/h 2 | Isol. Yield |
---|---|---|---|---|---|
1 | Me2PhSiH | Benzyl alcohol | | 1 h | 98% |
2 | Ethanol | | 3 min | 93% | |
3 | Methanol | | 10 min | 86% | |
4 | 2-Allyloxyethanol | | 48 h | 86% | |
5 3 | 4-Bromobenzyl alcohol | | 24 h | 46% | |
6 3 | 4-Methylbenzyl alcohol | | 6 h | 94% | |
7 3 | 4-Fluorobenzyl alcohol | | 6 h | 86% | |
8 3 | 1-Cyclopropylethanol | | 4 h | 98% | |
9 3 | 3-Butyn-1-ol | | 24 h | 99% | |
10 4,5 | Ph2SiH2 | Ethanol | | 3 min | 93% |
11 4,6 | Benzyl alcohol | | 24 h | 97% | |
12 4,6 | Hexan-1-ol | | 24 h | 99% | |
13 4 | Cyclohexanol | | 1 h | 88% | |
14 | MePh2SiH | Ethanol | | 48 h | 96% |
15 | Benzyl alcohol | | 48 h | 93% | |
16 | 2-Allyloxyethanol | | 48 h | 98% | |
17 4 | PhSiH3 | Cyclohexanol | | 1 h | 89% |
18 4 | 2-Allyloxyethanol | | 1 h | 99% | |
19 3 | i-Pr3SiH | Methanol | | 72 h, 67% conv. | - |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Skrodzki, M.; Zaranek, M.; Witomska, S.; Pawluc, P. Direct Dehydrogenative Coupling of Alcohols with Hydrosilanes Promoted by Sodium tri(sec-butyl)borohydride. Catalysts 2018, 8, 618. https://doi.org/10.3390/catal8120618
Skrodzki M, Zaranek M, Witomska S, Pawluc P. Direct Dehydrogenative Coupling of Alcohols with Hydrosilanes Promoted by Sodium tri(sec-butyl)borohydride. Catalysts. 2018; 8(12):618. https://doi.org/10.3390/catal8120618
Chicago/Turabian StyleSkrodzki, Maciej, Maciej Zaranek, Samanta Witomska, and Piotr Pawluc. 2018. "Direct Dehydrogenative Coupling of Alcohols with Hydrosilanes Promoted by Sodium tri(sec-butyl)borohydride" Catalysts 8, no. 12: 618. https://doi.org/10.3390/catal8120618
APA StyleSkrodzki, M., Zaranek, M., Witomska, S., & Pawluc, P. (2018). Direct Dehydrogenative Coupling of Alcohols with Hydrosilanes Promoted by Sodium tri(sec-butyl)borohydride. Catalysts, 8(12), 618. https://doi.org/10.3390/catal8120618