Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants
Abstract
1. Introduction
2. Properties of Bismuth Oxyhalide Compounds and Development of Their Use as Photocatalysts for Water Remediation
3. Characterization of BiOX Compounds Used for the Photocatalytic Degradation of Water-Borne Endocrine Disrupting Compounds
4. Investigation of BiOX-Based Catalysts for Degradation of Phenolic Compounds under Visible Light Conditions
5. Investigation of BiOCl Photocatalytic Degradation Mechanism via Identification of Intermediates by LC-MS/MS
6. Cu(II)-Doped BiOCl for Photocatalytic Degradation of Atrazine with Radical Scavenging
7. Summary and Conclusions
Funding
Conflicts of Interest
References
- Offermanns, S.; Rosenthal, W. Encyclopedic Reference of Molecular Pharmacology, 1st ed.; Springer Verlag: Berlin, Germany, 2004. [Google Scholar]
- Jones, O.A.; Lester, J.N.; Voulvoulis, N. Pharmaceuticals: A threat to drinking water? Trends Biotechnol. 2005, 23, 163–167. [Google Scholar] [CrossRef] [PubMed]
- Jux, U.; Baginski, R.M.; Arnold, H.-G.; Krönke, M.; Seng, P.N. Detection of pharmaceutical contaminations of river, pond, and tap water from Cologne (Germany) and surroundings. Int. J. Hyg. Environ. Heal. 2002, 205, 393–398. [Google Scholar] [CrossRef] [PubMed]
- Kümmerer, K. Drugs in the environment: Emission of drugs, diagnostic aids and disinfectants into wastewater by hospitals in relation to other sources—A review. Chemosphere 2001, 45, 957–969. [Google Scholar] [CrossRef]
- Jones, J.G. Pollution from Fish Farms. Water Environ. J. 1990, 4, 14–18. [Google Scholar] [CrossRef]
- Richardson, M.L.; Bowron, J.M. The fate of pharmaceutical chemicals in the aquatic environment. J. Pharma. Pharmacol. 1985, 37, 1–12. [Google Scholar] [CrossRef]
- Vione, D.; Maddigapu, P.R.; De Laurentiis, E.; Minella, M.; Pazzi, M.; Maurino, V.; Minero, C.; Kouras, S.; Richard, C. Modelling the photochemical fate of ibuprofen in surface waters. Water Res. 2011, 45, 6725–6736. [Google Scholar] [CrossRef] [PubMed]
- Krasner, S.W.; Weinberg, H.S.; Richardson, S.D.; Pastor, S.J.; Chinn, R.; Sclimenti, M.J.; Onstad, G.D.; Thruston, A.D. Occurrence of a new generation of disinfection byproducts. Environ. Sci. Technol. 2006, 40, 7175–7185. [Google Scholar] [CrossRef]
- Fujishima, A.; Honda, K.; Fujishima, A.; Honda, K. Electrochemical Photolysis of Water at a Semiconductor Electrode. Nature 1972, 238, 37. [Google Scholar] [CrossRef]
- Carey, J.H.; Lawrence, J.; Tosine, H.M. Photodechlorination of PCB’s in the Presence of Titanium Dioxide in Aqueous Suspensions. Bull. Environ. Contam. Toxicol. 1976, 16, 697–701. [Google Scholar] [CrossRef]
- Mitzi, D.B.; Feild, C.A.; Harrison, W.T.A.; Guloy, A.M. A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1994, 367, 532–538. [Google Scholar] [CrossRef]
- Ahern, J.C.; Fairchild, R.; Thomas, J.S.; Carr, J.; Patterson, H.H. Characterization of BiOX compounds as photocatalysts for the degradation of pharmaceuticals in water. Appl. Catal. B 2015, 179, 229–238. [Google Scholar] [CrossRef]
- Ali, I.; Kim, J. Chemosphere Visible-light-assisted photocatalytic activity of bismuth-TiO2 nanotube composites for chromium reduction and dye degradation. Chemosphere 2018, 207, 285–292. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.M.; Lu, N.; Chen, J.Y.; Yang, C.Y.; Yeh, Y.P.; Feng, T.Y.; Shih, Y.H.; Kokulnathan, T.; Chen, D. Enhanced photocatalytic degradation of atrazine by platinized titanium dioxide under 352 nm irradiation. Water Sci. Technol. 2017, 75, 1128–1137. [Google Scholar] [CrossRef] [PubMed]
- Cao, J.; Xu, B.; Luo, B.; Lin, H.; Chen, S. Preparation, characterization and visible-light photocatalytic activity of AgI/AgCl/TiO2. Appl. Surf. Sci. 2011, 257, 7083–7089. [Google Scholar] [CrossRef]
- Bannister, F.A. The crystal structure of the bismuth oxyhalides. J. Miner. Soc. 1935, 24, 49–58. [Google Scholar] [CrossRef]
- Huang, W.L.; Zhu, Q. Electronic structures of relaxed BiOX (X=F, Cl, Br, I) photocatalysts. Comp. Mater. Sci. 2008, 43, 1101–1108. [Google Scholar] [CrossRef]
- Zhang, K.; Liu, C.; Huang, F.; Zheng, C.; Wang, W. Study of the electronic structure and photocatalytic activity of the BiOCl photocatalyst. Appl. Catal. B 2006, 68, 125–129. [Google Scholar] [CrossRef]
- Zhang, L.; Wang, W.; Sun, S.; Jiang, D.; Gao, E. Selective transport of electron and hole among {0 0 1} and {1 1 0} facets of BiOCl for pure water splitting. Appl. Catal. B 2015, 162, 470–474. [Google Scholar] [CrossRef]
- Ye, L.; Zan, L.; Tian, L.; Peng, T.; Zhang, J. The {001} facets-dependent high photoactivity of BiOCl nanosheets. Chem. Commun. 2011, 47, 6951. [Google Scholar] [CrossRef]
- Wu, D.; Ye, L.; Yip, H.Y.; Wong, P.K. Organic-free synthesis of {001} facet dominated BiOBr nanosheets for selective photoreduction of CO 2 to CO. Catal. Sci. Technol. 2017, 7, 265–271. [Google Scholar] [CrossRef]
- Peng, Y.; Wang, D.; Zhou, H.-Y.; Xu, A.-W. Controlled synthesis of thin BiOCl nanosheets with exposed {001} facets and enhanced photocatalytic activities. CrystEngComm 2015, 17, 3845–3851. [Google Scholar] [CrossRef]
- Wang, D.-H.; Gao, G.-Q.; Zhang, Y.-W.; Zhou, L.-S.; Xu, A.-W.; Chen, W. Nanosheet-constructed porous BiOCl with dominant {001} facets for superior photosensitized degradation. Nanoscale 2012, 4, 7780. [Google Scholar] [CrossRef] [PubMed]
- Duan, F.; Wang, X.; Tan, T.; Chen, M. Highly exposed surface area of {001} facets dominated BiOBr nanosheets with enhanced visible light photocatalytic activity. Phys. Chem. Chem. Phys. 2016, 18, 6113–6121. [Google Scholar] [CrossRef] [PubMed]
- Haider, Z.; Zheng, J.Y.; Kang, Y.S. Surfactant free fabrication and improved charge carrier separation induced enhanced photocatalytic activity of {001} facet exposed unique octagonal BiOCl nanosheets. Phys. Chem. Chem. Phys. 2016, 18, 19595–19604. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Xu, S.; Wang, S.; Zhang, Y.; Li, G. Citric acid modulated electrochemical synthesis and photocatalytic behavior of BiOCl nanoplates with exposed {001} facets. Dalt. Trans. 2014, 43, 479–485. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Zhang, L. Oxygen vacancy induced selective silver deposition on the {001} facets of BiOCl single-crystalline nanosheets for enhanced Cr(VI) and sodium pentachlorophenate removal under visible light. Nanoscale 2014, 6, 7805–7810. [Google Scholar] [CrossRef] [PubMed]
- Kong, T.; Wei, X.; Zhu, G.; Huang, Y. First-principles studies on facet-dependent photocatalytic properties of BiOI {001} surface. J. Mater. Sci. 2017, 52, 5686–5695. [Google Scholar] [CrossRef]
- Li, H.; Shi, J.; Zhao, K.; Zhang, L. Sustainable molecular oxygen activation with oxygen vacancies on the {001} facets of BiOCl nanosheets under solar light. Nanoscale 2014, 6, 14168–14173. [Google Scholar] [CrossRef] [PubMed]
- Xiong, X.; Ding, L.; Wang, Q.; Li, Y.; Jiang, Q.; Hu, J. Synthesis and photocatalytic activity of BiOBr nanosheets with tunable exposed (0 1 0) facets. Appl. Catal. B 2016, 188, 283–291. [Google Scholar] [CrossRef]
- Song, G.; Wu, X.; Xin, F.; Yin, X. ZnFe2O4deposited on BiOCl with exposed (001) and (010) facets for photocatalytic reduction of CO2 in cyclohexanol. Front. Chem. Sci. Eng. 2017, 11, 197–204. [Google Scholar] [CrossRef]
- Tan, C.; Zhu, G.; Hojamberdiev, M.; Okada, K.; Liang, J.; Luo, X.; Liu, P.; Liu, Y. Co3O4 nanoparticles-loaded BiOCl nanoplates with the dominant {001} facets: Efficient photodegradation of organic dyes under visible light. Appl. Catal. B 2014, 152–153, 425–436. [Google Scholar] [CrossRef]
- Ye, L.; Chen, J.; Tian, L.; Liu, J.; Peng, T.; Deng, K.; Zan, L. BiOI thin film via chemical vapor transport: Photocatalytic activity, durability, selectivity and mechanism. Appl. Catal. B 2013, 130–131, 1–7. [Google Scholar] [CrossRef]
- Wu, Y.; Yuan, B.; Li, M.; Zhang, W.H.; Liu, Y.; Li, C. Well-defined BiOCl colloidal ultrathin nanosheets: Synthesis, characterization, and application in photocatalytic aerobic oxidation of secondary amines. Chem. Sci. 2015, 6, 1873–1878. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Zhang, L.; Li, Y.; Yu, Y. Synthesis and internal electric field dependent photoreactivity of Bi3O4Cl single-crystalline nanosheets with high {001} facet exposure percentages. Nanoscale 2014, 6, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xia, J.; Ge, Y.; Xu, L.; Xu, H.; He, M.; Zhang, Q.; Li, H. Reactable ionic liquid-assisted rapid synthesis of BiOI hollow microspheres at room temperature with enhanced photocatalytic activity. J. Mater. Chem. A 2014, 2, 15864–15874. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Zhang, Q. Advanced visible light photocatalytic properties of BiOCl micro/nanospheres synthesized via reactable ionic liquids. J. Phys. Chem. Solids 2013, 74, 298–304. [Google Scholar] [CrossRef]
- Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Zhang, Q. Enhanced photocatalytic activity of bismuth oxyiodine (BiOI) porous microspheres synthesized via reactable ionic liquid-assisted solvothermal method. Colloids Surf. A Physicochem. Eng. Asp. 2011, 387, 23–28. [Google Scholar] [CrossRef]
- Xia, J.; Yin, S.; Li, H.; Xu, H.; Xu, L.; Xu, Y. Improved visible light photocatalytic activity of sphere-like BiOBr hollow and porous structures synthesized via a reactable ionic liquid. Dalt. Trans. 2011, 40, 5249–5258. [Google Scholar] [CrossRef]
- Xia, J.; Yin, S.; Li, H.; Xu, H.; Yan, Y.; Zhang, Q. Self-assembly and enhanced photocatalytic properties of BiOI hollow microspheres via a reactable ionic liquid. Langmuir 2011, 27, 1200–1206. [Google Scholar] [CrossRef]
- Xiong, J.; Jiao, Z.; Lu, G.; Ren, W.; Ye, J.; Bi, Y. Facile and rapid oxidation fabrication of BiOCl hierarchical nanostructures with enhanced photocatalytic properties. Chem. Eur. J. 2013, 19, 9472–9475. [Google Scholar] [CrossRef]
- Zhang, X.; Ai, Z.; Jia, F.; Zhang, L. Generalized One-Pot Synthesis, Characterization, and Photocatalytic Activity of Hierarchical BiOX (X) Cl, Br, I) Nanoplate Microspheres. J. Phys. Chem. C 2008, 112, 747–753. [Google Scholar] [CrossRef]
- Kang, S.; Pawar, R.C.; Lee, C.S. Decoration of Au nanoparticles onto BiOCl sheets for enhanced photocatalytic performance under visible irradiation for the degradation of RhB dye. J. Exp. Nanosci. 2016, 11, 853–871. [Google Scholar] [CrossRef]
- Xu, L.; He, F.; Wang, C.; Gai, S.; Gulzar, A.; Yang, D.; Zhong, C.; Yang, P. Lanthanide-doped bismuth oxobromide nanosheets for self-activated photodynamic therapy. J. Mater. Chem. B 2017, 5, 7939–7948. [Google Scholar] [CrossRef]
- Zhang, H.; Liu, L.; Zhou, Z. Towards better photocatalysts: First-principles studies of the alloying effects on the photocatalytic activities of bismuth oxyhalides under visible light. Phys. Chem. Chem. Phys. 2012, 14, 1286–1292. [Google Scholar] [CrossRef] [PubMed]
- Xia, J.; Xu, L.; Zhang, J.; Yin, S.; Li, H.; Xu, H.; Di, J. Improved visible light photocatalytic properties of Fe/BiOCl microspheres synthesized via self-doped reactable ionic liquids. CrystEngComm 2013, 15, 10132. [Google Scholar] [CrossRef]
- Yu, Y.; Cao, C.; Liu, H.; Li, P.; Wei, F.; Jiang, Y.; Song, W. A Bi/BiOCl heterojunction photocatalyst with enhanced electron–hole separation and excellent visible light photodegrading activity. J. Mater. Chem. A 2014, 2, 1677–1681. [Google Scholar] [CrossRef]
- Ye, L.; Liu, J.; Gong, C.; Tian, L.; Peng, T.; Zan, L. Two Different Roles of Metallic Ag on Ag/AgX/BiOX (X = Cl, Br) Visible Light Photocatalysts: Surface Plasmon Resonance and Z-Scheme Bridge. ACS Catal. 2012, 2, 1677–1683. [Google Scholar] [CrossRef]
- Lin, H.; Li, X.; Cao, J.; Chen, S.; Chen, Y. Novel I-doped BiOBr composites: Modulated valence bands and largely enhanced visible light phtotocatalytic activities. Catal. Commun. 2014, 49, 87–91. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, J.; Wang, H.; Cao, G.; Niu, J. Boron-doped bismuth oxybromide microspheres with enhanced surface hydroxyl groups: Synthesis, characterization and dramatic photocatalytic activity. J. Colloid Interface Sci. 2016, 463, 324–331. [Google Scholar] [CrossRef]
- Lee, W.W.; Lu, C.S.; Chuang, C.W.; Chen, Y.J.; Fu, J.Y.; Siao, C.W.; Chen, C.C. Synthesis of bismuth oxyiodides and their composites: Characterization, photocatalytic activity, and degradation mechanisms. RSC Adv. 2015, 5, 23450–23463. [Google Scholar] [CrossRef]
- Li, Q.; Zhao, X.; Yang, J.; Jia, C.-J.; Jin, Z.; Fan, W. Exploring the effects of nanocrystal facet orientations in g-C3N4/BiOCl heterostructures on photocatalytic performance. Nanoscale 2015, 7, 18971–18983. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Huang, B.; Dai, Y. Engineering BiOX (X = Cl, Br, I) nanostructures for highly efficient photocatalytic applications. Nanoscale 2014, 6, 2009–2026. [Google Scholar] [CrossRef] [PubMed]
- Sun, M.; Zhao, Q.; Du, C.; Liu, Z. Enhanced visible light photocatalytic activity in BiOCl/SnO2: Heterojunction of two wide band-gap semiconductors. RSC Adv. 2015, 5, 22740–22752. [Google Scholar] [CrossRef]
- Liu, R.; Wu, Z.; Tian, J.; Yu, C.; Li, S.; Yang, K.; Liu, X.; Liu, M. The excellent dye-photosensitized degradation performance over hierarchical BiOCl nanostructures fabricated via a facile microwave-hydrothermal process. New J. Chem. 2018, 42, 137–149. [Google Scholar] [CrossRef]
- Li, G.; Jiang, B.; Xiao, S.; Lian, Z.; Zhang, D.; Yu, J.C.; Li, H. An efficient dye-sensitized BiOCl photocatalyst for air and water purification under visible light irradiation. Environ. Sci. Process. Impacts 2014, 16, 1975–1980. [Google Scholar] [CrossRef] [PubMed]
- Zhang, X.; Wang, C.-Y.; Wang, L.-W.; Huang, G.-X.; Wang, W.-K.; Yu, H.-Q. Fabrication of BiOBrxI1−x photocatalysts with tunable visible light catalytic activity by modulating band structures. Sci. Rep. 2016, 6, 22800. [Google Scholar] [CrossRef] [PubMed]
- Jia, X.; Cao, J.; Lin, H.; Zhang, M.; Guo, X.; Chen, S. Transforming type-I to type-II heterostructure photocatalyst via energy band engineering: A case study of I-BiOCl/I-BiOBr. Appl. Catal. B 2017, 204, 505–514. [Google Scholar] [CrossRef]
- Sánchez-Rodríguez, D.; Méndez Medrano, M.G.; Remita, H.; Escobar-Barrios, V. Photocatalytic properties of BiOCl-TiO2 composites for phenol photodegradation. J. Environ. Chem. Eng. 2018, 6, 1601–1612. [Google Scholar] [CrossRef]
- Zhang, Y.; Park, M.; Kim, H.; Park, S. In-situ synthesis of graphene oxide/BiOCl heterostructured nanofibers for visible-light photocatalytic investigation. J. Alloy. Compd. 2016, 686, 106–114. [Google Scholar] [CrossRef]
- Zhang, J.; Zhang, L.; Shen, X.; Xu, P.; Liu, J. Synthesis of BiOBr/WO 3 p–n heterojunctions with enhanced visible light photocatalytic activity. CrystEngComm 2016, 18, 3856–3865. [Google Scholar] [CrossRef]
- Feng, Y.; Liu, C.; Chen, J.; Che, H.; Xiao, L.; Gu, W.; Shi, W. Facile synthesis of BiOI/CdWO 4 p–n junctions: Enhanced photocatalytic activities and photoelectrochemistry. RSC Adv. 2016, 6, 38290–38299. [Google Scholar] [CrossRef]
- Lei, L.; Jin, H.; Zhang, Q.; Xu, J.; Gao, D.; Fu, Z. A novel enhanced visible-light-driven photocatalyst via hybridization of nanosized BiOCl and graphitic C3N4. Dalt. Trans. 2015, 44, 795–803. [Google Scholar] [CrossRef] [PubMed]
- Ye, L.; Liu, X.; Zhao, Q.; Xie, H.; Zan, L. Dramatic visible light photocatalytic activity of MnOx–BiOI heterogeneous photocatalysts and the selectivity of the cocatalyst. J. Mater. Chem. A 2013, 1, 8978. [Google Scholar] [CrossRef]
- Fan, W.-Q.; Yu, X.-Q.; Song, S.-Y.; Bai, H.-Y.; Zhang, C.; Yan, D.; Liu, C.-B.; Wang, Q.; Shi, W.-D. Fabrication of TiO2–BiOCl double-layer nanostructure arrays for photoelectrochemical water splitting. CrystEngComm 2014, 16, 820–825. [Google Scholar] [CrossRef]
- Ferreira, V.C.; Neves, M.C.; Hillman, A.R.; Monteiro, O.C. Novel one-pot synthesis and sensitisation of new BiOCl–Bi 2 S 3 nanostructures from DES medium displaying high photocatalytic activity. RSC Adv. 2016, 6, 77329–77339. [Google Scholar] [CrossRef]
- He, Z.; Shi, Y.; Gao, C.; Wen, L.; Chen, J.; Song, S. BiOCl/BiVO4 p–n Heterojunction with Enhanced Photocatalytic Activity under Visible-Light Irradiation. J. Phys. Chem. C 2014, 118, 389–398. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Li, H.; Guo, S.; Dai, S. Bismuth oxyhalide layered materials for energy and environmental applications. Nano Energy 2017, 41, 172–192. [Google Scholar] [CrossRef]
- Yang, Y.; Zhang, C.; Lai, C.; Zeng, G.; Huang, D.; Cheng, M.; Wang, J.; Chen, F.; Zhou, C.; Xiong, W. BiOX (X = Cl, Br, I) photocatalytic nanomaterials: Applications for fuels and environmental management. Adv. Colloid Interface Sci. 2018, 254, 76–93. [Google Scholar] [CrossRef]
- Kelly, A.W.; Nicholas, A.; Ahern, J.C.; Chan, B.; Patterson, H.H.; Pike, R.D. Alkali metal bismuth(III) chloride double salts. J. Alloy. Compd. 2016, 670, 337–345. [Google Scholar] [CrossRef]
- Wang, G.; Luo, X.; Huang, Y.; Kuang, A.; Yuan, H.; Chen, H. BiOX/BiOY (X, Y = F, Cl, Br, I) superlattices for visible light photocatalysis applications. RSC Adv. 2016, 6, 91508–91516. [Google Scholar] [CrossRef]
- Song, J.; Wang, B.; Guo, X.; Wang, R.; Dong, Z. Hierarchical nanostructured 3D flowerlike BiOX particles with excellent visible-light photocatalytic activity. J. Nanoparticle Res. 2016, 18, 1–11. [Google Scholar] [CrossRef]
- Liu, Y.; Xu, J.; Wang, L.; Zhang, H.; Xu, P.; Duan, X.; Sun, H.; Wang, S. Three-Dimensional BiOI/BiOX (X = Cl or Br) Nanohybrids for Enhanced Visible-Light Photocatalytic Activity. Nanomaterials 2017, 7, 64. [Google Scholar] [CrossRef]
- Cui, P.; Wang, J.; Wang, Z.; Chen, J.; Xing, X.; Wang, L.; Yu, R. Bismuth oxychloride hollow microspheres with high visible light photocatalytic activity. Nano Res. 2016, 9, 593–601. [Google Scholar] [CrossRef]
- Sfaelou, S.; Raptis, D.; Dracopoulos, V.; Lianos, P. BiOI solar cells. RSC Adv. 2015, 5, 95813–95816. [Google Scholar] [CrossRef]
- Jin, J.; Wang, Y.; He, T. Preparation of thickness-tunable BiOCl nanosheets with high photocatalytic activity for photoreduction of CO2. RSC Adv. 2015, 5, 100244–100250. [Google Scholar] [CrossRef]
- Li, H.; Shang, J.; Shi, J.; Zhao, K.; Zhang, L. Facet-dependent solar ammonia synthesis of BiOCl nanosheets via a proton-assisted electron transfer pathway. Nanoscale 2016, 8, 1986–1993. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Shang, J.; Ai, Z.; Zhang, L. Efficient visible light nitrogen fixation with BiOBr nanosheets of oxygen vacancies on the exposed {001} Facets. J. Am. Chem. Soc. 2015, 137, 6393–6399. [Google Scholar] [CrossRef] [PubMed]
- Cheng, H.; Huang, B.; Wang, P.; Wang, Z.; Lou, Z.; Wang, J.; Qin, X.; Zhang, X.; Dai, Y. In situ ion exchange synthesis of the novel Ag/AgBr/BiOBr hybrid with highly efficient decontamination of pollutants. Chem. Commun. 2011, 47, 7054–7056. [Google Scholar] [CrossRef]
- Dong, F.; Xiong, T.; Yan, S.; Wang, H.; Sun, Y.; Zhang, Y.; Huang, H.; Wu, Z. Facets and defects cooperatively promote visible light plasmonic photocatalysis with Bi nanowires@BiOCl nanosheets. J. Catal. 2016, 344, 401–410. [Google Scholar] [CrossRef]
- Ai, Z.; Ho, W.; Lee, S.; Zhang, L. Efficient photocatalytic removal of NO in indoor air with hierarchical bismuth oxybromide nanoplate microspheres under visible light. Environ. Sci. Technol. 2009, 43, 4143–4150. [Google Scholar] [CrossRef]
- Huang, C.; Hu, J.; Cong, S.; Zhao, Z.; Qiu, X. Hierarchical BiOCl microflowers with improved visible-light-driven photocatalytic activity by Fe(III) modification. Appl. Catal. B 2015, 174–175, 105–112. [Google Scholar] [CrossRef]
- Dong, G.; Ho, W.; Zhang, L. Photocatalytic NO removal on BiOI surface: The change from nonselective oxidation to selective oxidation. Appl. Catal. B 2015, 168–169, 490–496. [Google Scholar] [CrossRef]
- Dawody, J.; Skoglundh, M.; Fridell, E. The effect of metal oxide additives (WO3, MoO3, V2O5, Ga2O3) on the oxidation of NO and SO2 over Pt/Al2O3 and Pt/BaO/Al2O3 catalysts. J. Mol. Catal. A Chem. 2004, 209, 215–225. [Google Scholar] [CrossRef]
- Qamar, M.; Yamani, Z.H. Bismuth oxychloride-mediated and laser-induced efficient reduction of Cr(VI) in aqueous suspensions. Appl. Catal. A 2012, 439–440, 187–191. [Google Scholar] [CrossRef]
- Xu, H.; Wu, Z.; Ding, M.; Gao, X. Microwave-assisted synthesis of flower-like BN/BiOCl composites for photocatalytic Cr(VI) reduction upon visible-light irradiation. Mater. Des. 2017, 114, 129–138. [Google Scholar] [CrossRef]
- Li, G.; Qin, F.; Yang, H.; Lu, Z.; Sun, H.; Chen, R. Facile microwave synthesis of 3D flowerlike BiOBr nanostructures and their excellent CrVIremoval capacity. Eur. J. Inorg. Chem. 2012, 2508–2513. [Google Scholar] [CrossRef]
- Li, G.; Qin, F.; Wang, R.; Xiao, S.; Sun, H.; Chen, R. Journal of Colloid and Interface Science BiOX (X = Cl, Br, I) nanostructures: Mannitol-mediated microwave synthesis, visible light photocatalytic performance, and Cr (VI) removal capacity. J. Colloid Interface Sci. 2013, 409, 43–51. [Google Scholar] [CrossRef]
- Shang, J.; Hao, W.; Lv, X.; Wang, T.; Wang, X.; Du, Y.; Dou, S.; Xie, T.; Wang, D.; Wang, J. Bismuth oxybromide with reasonable photocatalytic reduction activity under visible light. ACS Catal. 2014, 4, 954–961. [Google Scholar] [CrossRef]
- Bai, Y.; Ye, L.; Chen, T.; Wang, P.; Wang, L.; Shi, X.; Wong, P.K. Synthesis of hierarchical bismuth-rich Bi4O5BrxI2−x solid solutions for enhanced photocatalytic activities of CO2 conversion and Cr(VI) reduction under visible light. Appl. Catal. B 2017, 203, 633–640. [Google Scholar] [CrossRef]
- Ye, L.; Su, Y.; Jin, X.; Xie, H.; Zhang, C. Recent advances in BiOX (X = Cl, Br and I) photocatalysts: Synthesis, modification, facet effects and mechanisms. Environ. Sci.-Nano 2014, 1, 90–112. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ji, M.; Yin, S.; Li, H.; Xu, H.; Zhang, Q.; Li, H. Controllable synthesis of Bi4O5Br2 ultrathin nanosheets for photocatalytic removal of ciprofloxacin and mechanism insight. J. Mater. Chem. A 2015, 3, 15108–15118. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Yin, S.; Xu, H.; Xu, L.; Xu, Y.; He, M.; Li, H. Preparation of sphere-like g-C3N4/BiOI photocatalysts via a reactable ionic liquid for visible-light-driven photocatalytic degradation of pollutants. J. Mater. Chem. A 2014, 2, 5340–5351. [Google Scholar] [CrossRef]
- Hao, R.; Xiao, X.; Zuo, X.; Nan, J.; Zhang, W. Efficient adsorption and visible-light photocatalytic degradation of tetracycline hydrochloride using mesoporous BiOI microspheres. J. Hazard. Mater. 2012, 209–210, 137–145. [Google Scholar] [CrossRef] [PubMed]
- Di, J.; Xia, J.; Ji, M.; Wang, B.; Yin, S.; Zhang, Q.; Chen, Z.; Li, H. Advanced photocatalytic performance of graphene-like BN modified BiOBr flower-like materials for the removal of pollutants and mechanism insight. Appl. Catal. B 2016, 183, 254–262. [Google Scholar] [CrossRef]
- Chen, F.; Yang, Q.; Sun, J.; Yao, F.; Wang, S.; Wang, Y.; Wang, X.; Li, X.; Niu, C.; Wang, D.; et al. Enhanced Photocatalytic Degradation of Tetracycline by AgI/BiVO4 Heterojunction under Visible-Light Irradiation: Mineralization Efficiency and Mechanism. ACS Appl. Mater. Interfaces 2016, 8, 32887–32900. [Google Scholar] [CrossRef] [PubMed]
- Gao, S.; Guo, C.; Lv, J.; Wang, Q.; Zhang, Y.; Hou, S.; Gao, J.; Xu, J. A novel 3D hollow magnetic Fe3O4/BiOI heterojunction with enhanced photocatalytic performance for bisphenol A degradation. Chem. Eng. J. 2017, 307, 1055–1065. [Google Scholar] [CrossRef]
- Burkhardt-holm, P. Linking Water Quality to Human Health and Environment: The Fate of Micropollutants; Institute of Water Policy National University: Singapore, 2011. [Google Scholar]
- Thorpe, K.L.; Cummings, R.I.; Hutchinson, T.H.; Scholze, M.; Brighty, G.; Sumpter, J.P.; Tyler, C.R. Relative potencies and combination effects of steroidal estrogens in fish. Environ. Sci. Technol. 2003, 37, 1142. [Google Scholar] [CrossRef]
- Yan, Z.; Lu, G.; Liu, J.; Jin, S.; Bay, Z. An integrated assessment of estrogenic contamination and feminization risk in fish in Taihu Lake, China. Ecotoxicol. Environ. Saf. 2012, 84, 334–340. [Google Scholar] [CrossRef]
- Schwindt, A.R.; Winkelman, D.L.; Keteles, K.; Murphy, M.; Vajda, A.M. An environmental oestrogen disrupts fish population dynamics through direct and transgenerational effects on survival and fecundity. J. Appl. Ecol. 2014, 51, 582–591. [Google Scholar] [CrossRef]
- Chen, Q.; Shi, J.; Liu, X.; Wu, W.; Liu, B.; Zhang, H. Simulation of estrogen transport and behavior in laboratory soil columns using a cellular automata model. J. Contam. Hydrol. 2013, 146, 51–62. [Google Scholar] [CrossRef]
- Langston, W.J.; Burt, G.R.; Chesman, B.S.; Vane, C.H. Partitioning, bioavailability and effects of oestrogens and xeno-oestrogens in the aquatic environment. J. Mar. Biol. Assoc. 2005, 85, 1–31. [Google Scholar] [CrossRef]
- Hamid, H.; Eskicioglu, C. Fate of estrogenic hormones in wastewater and sludge treatment: A review of properties and analytical detection techniques in sludge matrix. Water Res. 2012, 46, 5813–58133. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Shi, J.; Zhang, H.; Zhan, X.; Shen, G.; Hu, S. Estimating Estrogen Release and Load from Humans and Livestock in Shanghai, China. J. Environ. Qual. 2014, 43, 568–577. [Google Scholar] [CrossRef] [PubMed]
- Hannah, R.; D’Aco, V.; Anderson, P.; Buzby, M.; Caldwell, D.; Cunningham, V.; Ericson, J.; Johnson, A.; Parke, N.; Samuelian, J. Sumpter Exposure assessment of 17α-ethinylestradiol in surface waters of the United States and Europe. Environ. Toxicol. Chem. 2009, 28, 2725. [Google Scholar] [CrossRef] [PubMed]
- Filby, A.L.; Thorpe, K.L.; Tyler, C.R. Multiple molecular effect pathways of an environmental oestrogen in fish. J. Mol. Endocrinol. 2006, 37, 121–134. [Google Scholar] [CrossRef] [PubMed]
- Kumar, A.; Xagoraraki, I. Pharmaceuticals, personal care products and endocrine-disrupting chemicals in U.S. surface and finished drinking waters: A proposed ranking system. Sci. Total Environ. 2010, 408, 5972–5989. [Google Scholar] [CrossRef] [PubMed]
- Yin, G.-G.; Kookana, R.S.; Ru, Y.-J. Occurrence and fate of hormone steroids in the environmen. Environ. Int. 2002, 28, 545–551. [Google Scholar] [PubMed]
- Hallgren, P.; Nicolle, A.; Hansson, L.-A.; Brönmark, C.; Nikoleris, L.; Hyder, M.; Persson, A. Synthetic estrogen directly affects fish biomass and may indirectly disrupt aquatic food webs. Environ. Toxicol. Chem. 2014, 33, 930–936. [Google Scholar] [CrossRef]
- Ferguson, E.M.; Allinson, M.; Allinson, G.; Swearer, S.E.; Hassell, K.L.; Bay, P.P. Fluctuations in natural and synthetic estrogen concentrations in a tidal estuary in south-eastern Australia. Water Res. 2012, 47, 1604–1615. [Google Scholar] [CrossRef]
- Keller, E.; Kramer, V.Z. A Strong Deviation from Vegard’s Rule: X-ray Powder Investigations of the Three Quasi-Binary Phase Systems BiOX-BiOY (X, Y = Cl, Br, I). Zeitschrift für Naturforschung B 2005, 60, 1255–1263. [Google Scholar] [CrossRef]
- Chang, X.; Huang, J.; Cheng, C.; Sui, Q.; Sha, W.; Ji, G.; Deng, S.; Yu, G. BiOX (X = Cl, Br, I) photocatalysts prepared using NaBiO3 as the Bi source: Characterization and catalytic performance. Catal. Commun. 2010, 11, 460–464. [Google Scholar] [CrossRef]
- Deng, Z.; Tang, F.; Muscat, A.J. Strong blue photoluminescence from single-crystalline bismuth oxychloride nanoplates. Nanotechnology 2008, 19, 295705. [Google Scholar] [CrossRef]
- Chang, X.; Huang, J.; Tan, Q.; Wang, M.; Ji, G.; Deng, S.; Yu, G. Photocatalytic degradation of PCP-Na over BiOI nanosheets under simulated sunlight irradiation. Catal. Commun. 2009, 10, 1957–1961. [Google Scholar] [CrossRef]
- Meng, S.; Bi, Y.; Yan, T.; Zhang, Y.; Wu, T.; Shao, Y.; Wei, D.; Du, B. Room-temperature fabrication of bismuth oxybromide/oxyiodide photocatalyst and efficient degradation of phenolic pollutants under visible light. J. Hazard. Mater. 2018, 358, 20–32. [Google Scholar] [CrossRef] [PubMed]
- Lam, S.; Sin, J.; Abdullah, A.Z.; Mohamed, A.R. Photocatalytic degradation of resorcinol, an endocrine disrupter, by TiO 2 and ZnO suspensions. Environ. Technol. 2013, 34, 1097–1106. [Google Scholar] [CrossRef]
- Arthur, R.B.; Bonin, J.L.; Ardill, L.P.; Rourk, E.J.; Patterson, H.H.; Stemmler, E.A. Photocatalytic degradation of ibuprofen over BiOCl nanosheets with identification of intermediates. J. Hazard. Mater. 2018, 358, 1–9. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; Sun, S.; Chen, R.; Zhang, T.; Ren, B.; Dionysiou, D.D.; Wu, Z.; Liu, X.; Ye, M. Adsorption behavior and mechanism of ibuprofen onto BiOCl microspheres with exposed {001} facets. Environ. Sci. Pollut. Res. 2017, 24, 9556–9565. [Google Scholar] [CrossRef]
- Li, J.; Sun, S.; Qian, C.; He, L.; Chen, K.K.; Zhang, T.; Chen, Z.; Ye, M. The role of adsorption in photocatalytic degradation of ibuprofen under visible light irradiation by BiOBr microspheres. Chem. Eng. J. 2016, 297, 139–147. [Google Scholar] [CrossRef]
- Gamarra, J.S.; Godoi, A.F.L.; de Vasconcelos, E.C.; de Souza, K.M.T.; Ribas de Oliveira, C.M. Environmental Risk Assessment (ERA) of diclofenac and ibuprofen: A public health perspective. Chemosphere 2015, 120, 462–469. [Google Scholar] [CrossRef]
- Castell, J.V.; Gomez, L.M.J.; Miranda, M.A.; Morera, I.M. Photolytic Degradation of Ibuprofen. Toxicity of the Isolated Photoproducts on Fibroblasts and Erythrocytes. Photochem. Photobiol. 1987, 46, 991–996. [Google Scholar] [CrossRef]
- Da Silva, J.C.C.; Teodoro, J.A.R.; Afonso, R.J.D.C.F.; Aquino, S.F.; Augusti, R. Photolysis and photocatalysis of ibuprofen in aqueous medium: Characterization of by-products via liquid chromatography coupled to high-resolution mass spectrometry and assessment of their toxicities against Artemia Salina. J. Mass Spectrom. 2014, 49, 145–153. [Google Scholar] [CrossRef] [PubMed]
- Jacobs, L.E.; Fimmen, R.L.; Chin, Y.-P.; Mash, H.E.; Weavers, L.K. Fulvic acid mediated photolysis of ibuprofen in water. Water Res. 2011, 45, 4449–4458. [Google Scholar] [CrossRef] [PubMed]
- Jakimska, A.; Śliwka-Kaszyńska, M.; Reszczyńska, J.; Namieśnik, J.; Kot-Wasik, A. Elucidation of transformation pathway of ketoprofen, ibuprofen, and furosemide in surface water and their occurrence in the aqueous environment using UHPLC-QTOF-MS. Anal. Bioanal. Chem. 2014, 406, 3667–3680. [Google Scholar] [CrossRef] [PubMed]
- Li, F.H.; Yao, K.; Lv, W.Y.; Liu, G.G.; Chen, P.; Huang, H.P.; Kang, Y.P. Photodegradation of Ibuprofen Under UV–Vis Irradiation: Mechanism and Toxicity of Photolysis Products. Bull. Environ. Contam. Toxicol. 2015, 94, 479–483. [Google Scholar] [CrossRef] [PubMed]
- Ruggeri, G.; Ghigo, G.; Maurino, V.; Minero, C.; Vione, D. Photochemical transformation of ibuprofen into harmful 4-isobutylacetophenone: Pathways, kinetics, and significance for surface waters. Water Res. 2013, 47, 6109–6121. [Google Scholar] [CrossRef] [PubMed]
- Szabó, R.K.; Megyeri, C.; Illés, E.; Gajda-Schrantz, K.; Mazellier, P.; Dombi, A. Phototransformation of ibuprofen and ketoprofen in aqueous solutions. Chemosphere 2011, 84, 1658–1663. [Google Scholar] [CrossRef] [PubMed]
- Achilleos, A.; Hapeshi, E.; Xekoukoulotakis, N.P.; Mantzavinos, D.; Fatta-Kassinos, D. UV-A and solar photodegradation of ibuprofen and carbamazepine catalyzed by TiO2. Sep. Sci. Technol. 2010, 45, 1564–1570. [Google Scholar] [CrossRef]
- Braz, F.S.; Silva, M.R.A.; Silva, F.S.; Andrade, S.J.; Fonseca, A.L.; Kondo, M.M. Photocatalytic Degradation of Ibuprofen Using TiO2 and Ecotoxicological Assessment of Degradation Intermediates against Daphnia similis. J. Environ. Prot. 2014, 5, 620–626. [Google Scholar] [CrossRef]
- Choina, J.; Kosslick, H.; Fischer, C.; Flechsig, G.-U.; Frunza, L.; Schulz, A. Photocatalytic decomposition of pharmaceutical ibuprofen pollutions in water over titania catalyst. Appl. Catal. B 2013, 129, 589–598. [Google Scholar] [CrossRef]
- Mendez-Arriaga, F.; Torres-Palma, R.A.; Petrier, C.; Esplugas, S.; Gimenez, J.; Pulgarin, C. Ultrasonic treatment of water contaminated with ibuprofen. Water Res. 2008, 42, 4243–4248. [Google Scholar] [CrossRef]
- Michael, I.; Achilleos, A.; Lambropoulou, D.; Torrens, V.O.; Pérez, S.; Petrović, M.; Barceló, D.; Fatta-Kassinos, D. Proposed transformation pathway and evolution profile of diclofenac and ibuprofen transformation products during (sono)photocatalysis. Appl. Catal. B 2014, 147, 1015–1027. [Google Scholar] [CrossRef]
- Illés, E.; Takács, E.; Dombi, A.; Gajda-Schrantz, K.; Rácz, G.; Gonter, K.; Wojnárovits, L. Hydroxyl radical induced degradation of ibuprofen. Sci. Total Environ. 2013, 447, 286–292. [Google Scholar] [CrossRef] [PubMed]
- Tobergte, D.R.; Curtis, S. Environmentally Benign Photocatalysts Applications of Titanium Oxide-Based Materials; Springer: Berlin/Heidelberg, Germany, 2010; ISBN 9788578110796. [Google Scholar]
- Song, Z.; Dong, X.; Wang, N.; Zhu, L.; Luo, Z.; Fang, J.; Xiong, C. Efficient photocatalytic defluorination of perfluorooctanoic acid over BiOCl nanosheets via a hole direct oxidation mechanism. Chem. Eng. J. 2017, 317, 925–934. [Google Scholar] [CrossRef]
- Moyet, M.A.; Arthur, R.B.; Lueders, E.E.; Breeding, W.P.; Patterson, H.H. The role of Copper (II) ions in Cu-BiOCl for Use in the Photocatalytic Degradation of Atrazine. J. Environ. Chem. Eng. 2018, 6, 5595–5601. [Google Scholar] [CrossRef]
- Granados-Oliveros, G.; Páez-Mozo, E.A.; Ortega, F.M.; Ferronato, C.; Chovelon, J.M. Degradation of atrazine using metalloporphyrins supported on TiO2 under visible light irradiation. Appl. Catal. B 2009, 89, 448–454. [Google Scholar] [CrossRef]
- Libanori, R.; Giraldi, T.R.; Longo, E.; Leite, E.R.; Ribeiro, C. Effect of TiO2 surface modification in Rhodamine B photodegradation. J. Sol-Gel Sci. Technol. 2009, 49, 95–100. [Google Scholar] [CrossRef]
- Wen, X.J.; Niu, C.G.; Guo, H.; Zhang, L.; Liang, C.; Zeng, G.M. Photocatalytic degradation of levofloxacin by ternary Ag2CO3/CeO2/AgBr photocatalyst under visible-light irradiation: Degradation pathways, mineralization ability, and an accelerated interfacial charge transfer process study. J. Catal. 2018, 358, 211–223. [Google Scholar] [CrossRef]
- Sudrajat, H.; Sujaridworakun, P. Insights into structural properties of Cu species loaded on Bi2O3 hierarchical structures for highly enhanced photocatalysis. J. Catal. 2017, 352, 394–400. [Google Scholar] [CrossRef]
Catalyst | 0 min UV (Pre-Ads.) | 0 min UV (Post Ads.) | 20 min UV | 30 min UV |
---|---|---|---|---|
BiOCl | 100 | 46.0 | 18.9 | 0 * |
BiOI | 100 | 38.1 | 0.607 | 0 * |
TiO2 | 100 | 68.1 | 28.7 | 3.85 |
No catalyst | 100 | 100 | 84.1 | 82.4 |
Catalyst Type | Surface Area |
---|---|
BiOCl | 2.677 |
BiOI | 11.07 |
TiO2 | 50.00 |
Compound Number a | Retention Time (HPLC; min) | Retention Time (LCMS; min) | Wavelength Max (nm) c | Molecular Formula | Exact Mass (Predicted) d | Ions Detected, MS | Product Ions Detected, MS/MS i |
---|---|---|---|---|---|---|---|
1 (IBP) | 19.29 | 25.87 | 220, 264 | C13H18O2 | 206.131 | 224.165 f; 207.138 e | 224.16; 161.13 (-CO2H); 119.08 (-C3H6); 105.07 (C8H9+); 91.05 (C7H7+); 57.07 (C4H9+); 43.06 (C3H7+); 41.04 (C3H5+) |
2 (IBPE) | 18.01 | 24.43 | 220, 264 | C12H18O | 178.136 | 161.132 g | 161.13; 119.08 (-C3H6); 117.07 (-C3H8); 105.07 (C8H9+); 91.05 (C7H7+); 57.07 (C4H9+); 43.06 (C3H7+); 41.04 (C3H5+) |
3 (IBAP) | 20.93 | 26.97 | 255 | C12H16O | 176.120 | 177.127 e | 177.12; 121.06 (-C4H8); 57.07 (C4H9+); 43.02 (CH3CO+) |
4 | 4.64 | 11.06 | 310 | C12H18O3 | 210.126 | 193.123 g, 233.116 h | --- j |
5 | 5.58 | --- b | 254, 300 (w) | --- b | --- b | --- b | --- b |
6 | 7.25 | --- b | 320 | --- b | --- b | --- b | --- b |
7 | 7.97 | 14.40 | 258 | C12H18O3 | 210.126 | 193.123 g, 233.116 h | 193.123; 175.10 (-H2O); 137.06 (-C4H8); 57.07 (C4H9+); 43.02 (CH3CO+) |
8 | 10.68 | 17.31 | 254 | C12H16O2 | 192.115 | 193.119 e | |
9 | 11.54 | 17.83 | 296 | C12H16O3 | 208.1099 | 209.117 c | 209.12; 191.09 (-H2O); 125.06 (-C6H8O); 85.07 (C5H9O+); 57.07 (C4H9+); 43.02 (CH3CO+) |
10 | 14.37 | --- b | 260, 300 (w) | --- b | --- b | --- b | --- b |
11 | 16.61 | 23.22 | 220, 264, 315 | C12H16O2 | 192.115 | 193.119 e | 193.12; 57.07 (C4H9+); 43.02 (CH3CO+) |
12 | 17.00 | 23.42 | 312 | C11H16O | 164.120 | 165.127 e | 165.13; 147.12 (-H2O); 43.02 (CH3CO+) |
13 | 17.85 | 24.18 | 305 | C11H16O | 164.120 | 165.127 e | --- j |
14 | 22.63 | 28.49 | 215, 263, 327 | C12H16O2 | 192.115 | 193.122 e | 193.12; 175.11 (-H2O); 137.07 (-C4H8); 57.07 (C4H9+); 43.02 (CH3CO+) |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Arthur, R.B.; Ahern, J.C.; Patterson, H.H. Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts 2018, 8, 604. https://doi.org/10.3390/catal8120604
Arthur RB, Ahern JC, Patterson HH. Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts. 2018; 8(12):604. https://doi.org/10.3390/catal8120604
Chicago/Turabian StyleArthur, Robert B., John C. Ahern, and Howard H. Patterson. 2018. "Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants" Catalysts 8, no. 12: 604. https://doi.org/10.3390/catal8120604
APA StyleArthur, R. B., Ahern, J. C., & Patterson, H. H. (2018). Application of BiOX Photocatalysts in Remediation of Persistent Organic Pollutants. Catalysts, 8(12), 604. https://doi.org/10.3390/catal8120604