Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production
Abstract
:1. Introduction
2. Results and Discussion
2.1. Catalysts Characterization Results
2.2. Auto-Thermal Reforming of Ethanol: Catalytic Tests
2.3. Characterization of Spent Catalysts
2.3.1. Coke Deposition and Sulfur Impact
2.3.2. Coke Speciation by Micro-Raman Spectroscopy
3. Experimental Section
3.1. Catalyst Preparation
3.2. Catalysts Characterization
3.3. Catalytic Test Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Jamsak, W.; Assabumrungrat, S.; Douglas, P.L.; Laosiripojana, N.; Charojrochkul, S. Theoretical performance analysis of ethanol-fuelled solid oxide fuel cells with different electrolytes. Chem. Eng. J. 2006, 119, 11–18. [Google Scholar] [CrossRef]
- Deluga, G.A.; Salge, J.R.; Schmidt, L.D.; Verykios, X.E. Renewable hydrogen from ethanol by autothermal reforming. Science 2004, 303, 993–997. [Google Scholar] [CrossRef] [PubMed]
- Perkas, N.; Amirian, G.; Zhong, Z.; Teo, J.; Gofer, Y.; Gedanken, A. Methanation of carbon dioxide on Ni catalysts on mesoporous ZrO2 doped with rare earth oxides. Catal. Lett. 2009, 130, 455–462. [Google Scholar] [CrossRef]
- Ni, M.; Leung, D.Y.C.; Leu, M.K.H. A review on reforming bio-ethanol for hydrogen production. Int. J. Hydrog. Energy 2007, 32, 3238–3247. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Monforte, G.; Bonura, G.; Ferraro, M.; Dispenza, G.; Antonucci, V.; Aricò, A.S.; Antonucci, P.L. The role of Gadolinia Doped Ceria support on the promotion of CO2 methanation over Ni and Ni-Fe catalysts. Int. J. Hydrog. Energy 2017, 42, 26828–26842. [Google Scholar] [CrossRef]
- Le, M.C.; Van, K.L.; Nguyen, T.H.T.; Nguyen, N.H. The impact of Ce-Zr addition on nickel dispersion and catalytic behavior for CO2 methanation of Ni/AC catalyst at low temperature. J. Chem. 2017. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Ferraro, M.; Antonucci, P.L. Supported catalysts for CO2 methanation: A review. Catalysts 2017, 7, 59. [Google Scholar] [CrossRef]
- Han, S.J.; Bang, Y.J.; Seo, J.G.; Yoo, J.; Song, I.K. Hydrogen production by steam reforming of ethanol over mesoporous Ni–Al2O3–ZrO2 xerogel catalysts: Effect of Zr/Al molar ratio. Int. J. Hydrog. Energy 2013, 38, 1376–1383. [Google Scholar] [CrossRef]
- Candamano, S.; Frontera, P.; Macario, A.; Crea, F.; Nagy, J.B.; Antonucci, P.L. Preparation and characterization of active Ni-supported catalyst for syngas production. Chem. Eng. Res. Des. 2015, 96, 78–86. [Google Scholar] [CrossRef]
- Chen, H.Q.; Yu, H.; Yang, G.X.; Peng, F.; Wang, H.J.; Wang, J. Auto-thermal ethanol micro-reformer with a structural Ir/La2O3/ZrO2 catalyst for hydrogen production. Chem. Eng. J. 2011, 167, 322–327. [Google Scholar] [CrossRef]
- Mauriello, F.; Paone, E.; Pietropaolo, R.; Balu, A.M.; Luque, R. Catalytic Transfer Hydrogenolysis of Lignin-Derived Aromatic Ethers Promoted by Bimetallic Pd/Ni Systems. ACS Sustain. Chem. Eng. 2018, 6, 9269–9276. [Google Scholar] [CrossRef]
- Siang, T.J.; Pham, T.L.M.; Cuong, N.V.; Phuong, P.T.T.; Phuc, N.H.H.; Truong, Q.D.; Vo, D.V.N. Combined steam and CO2 reforming of methane for syngas production over carbon-resistant boron-promoted Ni/SBA-15 catalysts. Mesoporous Mesoporous Mater. 2018, 262, 122–132. [Google Scholar] [CrossRef]
- Frontera, P.; Aloise, A.; Macario, A.; Crea, F.; Antonucci, P.L.; Giordano, G.; Nagy, J.B. Zeolite-supported Ni catalyst for methane reforming with carbon dioxide. Res. Chem. Intermed. 2011, 37, 267–279. [Google Scholar] [CrossRef]
- Baruah, R.; Dixit, M.; Basarkar, P.; Parikh, D.; Bhargav, A. Advances in ethanol autothermal reforming. Renew. Sustain. Energ. Rev. 2015, 51, 1345–1353. [Google Scholar] [CrossRef]
- Chen, H.; Yu, H.; Tang, Y.; Pan, M.; Yang, G.; Peng, F.; Wang, H.; Yang, J. Hydrogen production via autothermal reforming of ethanol over noble metal catalysts supported on oxides. J. Nat. Gas Chem. 2009, 18, 191–198. [Google Scholar] [CrossRef]
- Chen, H.; Yu, H.; Peng, F.; Yang, G.; Wang, H.; Yang, J.; Tang, Y. Autothermal reforming of ethanol for hydrogen production over perovskite LaNiO3. Chem. Eng. J. 2010, 160, 333–339. [Google Scholar] [CrossRef]
- Frontera, P. Alkaline-promoted zeolites for methane dry-reforming catalyst preparation. Adv. Sci. Lett. 2017, 23, 5883–5885. [Google Scholar] [CrossRef]
- Frusteri, F.; Arena, F.; Calogero, G.; Torre, T.; Parmaliana, A. Potassium-enhanced stability of Ni/MgO catalysts in the dry-reforming of methane. Catal. Commun. 2001, 2, 49–56. [Google Scholar] [CrossRef]
- Ghani, A.A.; Torabi, F.; Ibrahim, H. Autothermal reforming process for efficient hydrogen production from crude glycerol using nickel supported catalyst: Parametric and statistical analyses. Energy 2018, 144, 129–145. [Google Scholar] [CrossRef]
- Frontera, P.; Macario, A.; Candamano, S.; Barberio, M.; Crea, F.; Antonucci, P.L. CO2 conversion over supported Ni nanoparticles. Chem. Eng. Trans. 2017, 60, 229–234. [Google Scholar]
- Palma, V.; Ruocco, C.; Meloni, E.; Ricca, A. Activity and stability of novel silica-based catalysts for hydrogen production via oxidative steam reforming of ethanol. Chem. Eng. Trans. 2016, 52, 67–72. [Google Scholar]
- Pandey, D.; Deo, G. Effect of support on the catalytic of supported Ni-Fe catalysts for CO2 methanation reaction. J. Ind. Eng. Chem. 2016, 33, 99–107. [Google Scholar] [CrossRef]
- Wang, C.H.; Ho, K.F.; Chiou, J.Y.Z.; Lee, C.L.; Yang, S.Y.; Yeh, C.T.; Wang, C.B. Oxidative steam reforming of ethanol over PtRu/ZrO2 catalysts modified with sodium and magnesium. Catal. Commun. 2011, 12, 854–858. [Google Scholar] [CrossRef]
- Kugai, J.; Subramani, V.; Song, C.; Engelhard, M.H.; Chin, Y.H. Effects of nanocrystalline CeO2 supports on the properties and performance of Ni–Rh bimetallic catalyst for oxidative steam reforming of ethanol. J. Catal. 2006, 238, 430–440. [Google Scholar] [CrossRef]
- Gutierrez, A.; Karinen, R.; Airaksinen, S.; Kaila, R.; Krause, A.O.I. Autothermal reforming of ethanol on noble metal catalysts. Int. J. Hydrog. Energy 2011, 36, 8967–8977. [Google Scholar] [CrossRef]
- Lin, W.H.; Liu, Y.C.; Chang, H.F. Autothermal reforming of ethanol in a Pd–Ag/Ni composite membrane reactor. Int. J. Hydrog. Energy 2010, 35, 12961–12969. [Google Scholar] [CrossRef]
- Wu, H.; Pantaleo, G.; La Parola, V.; Venezia, A.M.; Collard, X.; Aprile, C.; Liotta, L.F. Bi- and trimetallic Ni catalysts over Al2O3 and Al2O3-MOx (M = Ce or Mg) oxides for methane dry reforming: Au and Pt additive effects. Appl. Catal. B Environ. 2014, 156–157, 350–361. [Google Scholar] [CrossRef]
- Kozlov, A.I.; Kim, D.H.; Yezerets, A.; Anderson, P.; Kung, H.H.; Kung, M.C. Effect of preparation method and redox treatment on the reducibility and structure of supported Ceria-Zirconia Mixed Oxide. J. Catal. 2002, 209, 417–426. [Google Scholar] [CrossRef]
- Hwang, S.; Hong, U.G.; Lee, J.; Seo, J.G.; Baik, J.H.; Koh, D.J.; Lim, H.; Song, I.K. Methanation of carbon dioxide over mesoporous Ni-Fe-Al2O3 catalysts prepared by a coprecipitation method: Effect of precipitation agent. Int. Eng. Chem. 2013, 19, 2016–2021. [Google Scholar] [CrossRef]
- Ashok, J.; Ang, M.L.; Kawi, S. Enhanced activity of CO2 methanation over Ni/CeO2-ZrO2 catalysts: Influence of preparation methods. Catal. Today 2017, 281, 304–311. [Google Scholar] [CrossRef]
- Lohsoontorn, P.; Brett, D.J.L.; Brandon, N.P. Thermodynamic predictions of the impact of fuel composition on the propensity of sulphur to interact with Ni and ceria-based anodes for solid oxide fuel cells. J. Power Sources 2008, 175, 60–67. [Google Scholar] [CrossRef]
- Kesavan, J.K.; Luisetto, I.; Tuti, S.; Meneghini, C.; Iucci, G.; Battocchio, C.; Mobilio, S.; Casciardi, S.; Sisto, R. Nickel supported on YSZ: The effect of Ni particle size on the catalytic activity for CO2 methanation. J. CO2 Util. 2018, 23, 200–211. [Google Scholar] [CrossRef]
- Lo Faro, M.; Modaferri, V.; Frontera, P.; Antonucci, P.L.; Aricò, A.S. Catalytic behavior of Ni-modified perovskite and doped ceria composite catalyst for the conversion of odorized propane to syngas. Fuel Process. Technol. 2013, 113, 28–33. [Google Scholar] [CrossRef]
- An, W.; Gatewood, D.; Dunlap, B.; Turner, C.H. Catalytic activity of bimetallic nickel alloys for solid-oxide fuel cell anode reactions from density-functional theory. J. Power Sources 2006, 159, 68–72. [Google Scholar] [CrossRef]
- Fu, C.J.; Chan, S.H.; Ge, X.M.; Liu, Q.L.; Pasciak, G. A promising Ni-Fe bimetallic anode for intermediate-temperature SOFC based on Gd-doped ceria electrolyte. Int. J. Hydrog. Energy 2011, 36, 13727–13734. [Google Scholar] [CrossRef]
- Paik, S.C.; Chung, J.S. Selective catalytic reduction of sulfur dioxide with hydrogen to elemental sulfur over Co-Mo/Al2O3. Appl. Catal. B Environ. 1995, 5, 233–243. [Google Scholar] [CrossRef]
- Alvarez, E.; Mendioroz, S.; Palacios, J.M. Catalyst for the elimination of sulfur dioxide from stream by the Claus reaction at low temperature. Appl. Catal. A Gen. 1993, 93, 231–244. [Google Scholar] [CrossRef]
- Borchert, H.; Borchert, Y.; Kaichev, V.V.; Prosvirin, I.P.; Alikina, G.M.; Lukashevich, A.I.; Zaikovskii, V.I.; Moroz, E.M.; Paukshtis, E.A.; Bukhtiyarov, V.I.; et al. Nanostructured, Gd-doped ceria promoted by Pt or Pd: Investigation of the electronic and surface structures and relations to chemical properties. J. Phys. Chem. B 2005, 109, 20077–20086. [Google Scholar] [CrossRef] [PubMed]
- Brito, J.L.; Laine, J. Reducibility of Ni-Mo/Al2O3 catalysts: A TPR study. J. Catal. 1993, 139, 540–550. [Google Scholar] [CrossRef]
- Pastor-Pérez, L.; Le Saché, E.; Jones, C.; Gu, S.; Arellano-Garcia, H.; Reina, T.R. Synthetic natural gas production from CO2 over Ni-x/CeO2-ZrO2 (x = Fe, Co) catalysts: Influence of promoters and space velocity. Catal. Today 2017. [Google Scholar] [CrossRef]
- Çağlayan, B.S.; Aksoylu, A.E. Water gas shift activity of ceria supported Au-Re catalysts. Catal. Commun. 2011, 12, 1206–1211. [Google Scholar] [CrossRef]
- Sagar, G.V.; Rao, P.V.; Srikanth, C.S.; Chary, K.V. Dispersion and reactivity of copper catalysts supported on Al2O3-ZrO2. J. Phys. Chem. B 2006, 110, 13381–13388. [Google Scholar] [CrossRef] [PubMed]
- Lo Faro, M.; Frontera, P.; Antonucci, P.L.; Aricò, A.S. Ni-Cu based catalysts prepared by two different methods and their catalytic activity toward the ATR of methane. Chem. Eng. Res. Des. 2015, 93, 269–277. [Google Scholar] [CrossRef]
- Liu, H.; Yin, C.; Li, H.; Liu, B.; Li, X.; Chai, Y.; Li, Y.; Liu, C. Synthesis, characterization and hydrodesulfurization properties of nickel–copper–molybdenum catalysts for the production of ultra-low sulfur diesel. Fuel 2014, 129, 138–146. [Google Scholar] [CrossRef]
- Laiyuan, C.; Yuequin, N.; Jingling, Z.; Liwu, L. Role of sulfur in a skewed reforming catalyst with a low platinum content and a high rhenium-to-platinum ratio. Appl. Catal. A Gen. 1993, 97, 133–143. [Google Scholar] [CrossRef]
- Rodríguez-Castellón, E.; Jiménez-López, A.; Eliche-Quesada, D. Nickel and cobalt promoted tungsten and molybdenum sulfide mesoporous catalysts for hydrodesulfurization. Fuel 2008, 87, 1195–1206. [Google Scholar] [CrossRef]
- Lakhapatri, S.L.; Abraham, M.A. Deactivation due to sulfur poisoning and carbon deposition on Rh-Ni/Al2O3 catalyst during steam reforming of sulfur-doped n-hexadecane. Appl. Catal. A 2009, 364, 113–121. [Google Scholar] [CrossRef]
- Froment, G.F. Production of synthesis gas by steam- and CO2-reforming of natural ga. J. Mol. Catal. A Chem. 2000, 163, 147–156. [Google Scholar] [CrossRef]
- Simson, A.; Crowley, S.; Castaldi, M.J. The impact of sulfur on ethanol steam reforming. Catal. Lett. 2016, 146, 1361–1372. [Google Scholar] [CrossRef]
- Bion, N.; Duprez, D.; Epron, F. Design of nanocatalysts for green hydrogen production from bioethanol. ChemSusChem 2012, 5, 76–84. [Google Scholar] [CrossRef] [PubMed]
- Ferrari, A.C.; Robertson, J. Raman spectroscopy in carbons: From nanotubes to diamond. Phylos. Trans. R. Soc. A 2004, 362, 2269–2565. [Google Scholar] [CrossRef]
- Gallo, A.; Pirovano, C.; Ferrini, P.; Marelli, M.; Psaro, R.; Santangelo, S.; Faggio, G.; Dal Santo, V. Influence of reaction parameters on the activity of ruthenium based catalysts for glycerol steam reforming. Appl. Catal. B Environ. 2012, 121–122, 40–49. [Google Scholar] [CrossRef]
- Santangelo, S. Controlled surface functionalisation of carbon nanotubes by nitric acid vapors generated from sub-azeotropic solution. Surf. Interface Anal. 2016, 48, 17–25. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Interpretation of Raman spectra of disordered and amorphous carbon. Phys. Rev. B 2000, 61, 14095–14107. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Robertson, J. Resonant Raman spectroscopy of disordered, amorphous, and diamondlike carbon. Phys. Rev. B 2001, 64. [Google Scholar] [CrossRef]
- Thomsen, C.; Reich, S. Double Resonant Raman Scattering in Graphite. Phys. Rev. Lett. 2000, 85, 5214–5217. [Google Scholar] [CrossRef] [PubMed]
- Messina, G.; Santangelo, S. Multi-wavelength Raman investigation of sputtered a-C film nanostructure. Surf. Coat. Technol. 2006, 200, 5427–5434. [Google Scholar] [CrossRef]
- Ferrari, A.C.; Kleinsorge, B.; Adamoploulos, G.; Robertson, J.; Milne, W.I.; Stolojan, V.; Brown, L.M.; Li Bassi, A.; Tanner, B.K. Stress reduction and bond stability during thermal annealing of tetrahedral amorphous carbon. J. Appl. Phys. 1999, 85, 7191–7197. [Google Scholar] [CrossRef]
- Cai, W.; Ramirez de la Piscina, P.; Homs, N. Hydrogen production from the steam reforming of bio-butanol over novel supported Co-based bimetallic catalysts. Biores. Technol. 2012, 107, 482–486. [Google Scholar] [CrossRef] [PubMed]
- Rakass, S.; Oudghiri-Hassani, H.; Abatzoglou, N.; Rowntree, P. A study of the surface properties and steam reforming catalytic activity of nickel powders impregnated by n-alkanethiols. J. Power Sources 2006, 162, 579–588. [Google Scholar] [CrossRef]
Catalysts | Coke Amount (wt%) | |||
---|---|---|---|---|
600 °C | 800 °C | |||
Without H2S | Without H2S | 100 ppm of H2S | 200 ppm of H2S | |
NiMoCu/GDC | 23.7 | 0.10 | 5.46 | 5.48 |
NiMoRe/GDC | 29.8 | 0.25 | 0.62 | 2.94 |
NiMoCo/GDC | 26.3 | 0.34 | 7.63 | 9.69 |
Catalysts | Coke Amount (wt%) | C2H4 (vol.%) | H2 (vol.%) | ||||||
---|---|---|---|---|---|---|---|---|---|
Without H2S | 100 ppm of H2S | 200 ppm of H2S | Without H2S | 100 ppm of H2S | 200 ppm of H2S | Without H2S | 100 ppm of H2S | 200 ppm of H2S | |
NiMoCu/GDC | 0.10 | 5.46 | 5.48 | 0.74 | 8.51 | 4.12 | 37.36 | 16.10 | 12.81 |
NiMoRe/GDC | 0.25 | 0.62 | 2.94 | 3.24 | 11.83 | 4.19 | 28.59 | 20.26 | 12.80 |
NiMoCo/GDC | 0.34 | 7.63 | 9.69 | 3.34 | 12.41 | 10.46 | 31.70 | 19.50 | 15.20 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Frontera, P.; Macario, A.; Malara, A.; Santangelo, S.; Triolo, C.; Crea, F.; Antonucci, P. Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production. Catalysts 2018, 8, 435. https://doi.org/10.3390/catal8100435
Frontera P, Macario A, Malara A, Santangelo S, Triolo C, Crea F, Antonucci P. Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production. Catalysts. 2018; 8(10):435. https://doi.org/10.3390/catal8100435
Chicago/Turabian StyleFrontera, Patrizia, Anastasia Macario, Angela Malara, Saveria Santangelo, Claudia Triolo, Fortunato Crea, and Pierluigi Antonucci. 2018. "Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production" Catalysts 8, no. 10: 435. https://doi.org/10.3390/catal8100435
APA StyleFrontera, P., Macario, A., Malara, A., Santangelo, S., Triolo, C., Crea, F., & Antonucci, P. (2018). Trimetallic Ni-Based Catalysts over Gadolinia-Doped Ceria for Green Fuel Production. Catalysts, 8(10), 435. https://doi.org/10.3390/catal8100435