Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials
Abstract
:1. Introduction
2. 2D and 3D Doped-Carbon Electrocatalysts
3. Hybrid (Metal Oxide-Nitrogen-Carbon) Electrocatalysts
4. Alternative Raw Materials
5. Dual Hetero-Atom Doped Electrocatalysts
6. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Brouzgou, A.; Song, S.Q.; Tsiakaras, P. Low and non-platinum electrocatalysts for pemfcs: Current status, challenges and prospects. Appl. Catal. B Environ. 2012, 127, 371–388. [Google Scholar] [CrossRef]
- Wang, Y.; He, C.; Brouzgou, A.; Liang, Y.; Fu, R.; Wu, D.; Tsiakaras, P.; Song, S. A facile soft-template synthesis of ordered mesoporous carbon/tungsten carbide composites with high surface area for methanol electrooxidation. J. Power Sources 2012, 200, 8–13. [Google Scholar] [CrossRef]
- Brouzgou, A.; Podias, A.; Tsiakaras, P. PEMFCS and AEMFCS directly fed with ethanol: A current status comparative review. J. Appl. Electrochem. 2013, 43, 119–136. [Google Scholar] [CrossRef]
- Wan, K.; Long, G.-F.; Liu, M.-Y.; Du, L.; Liang, Z.-X.; Tsiakaras, P. Nitrogen-doped ordered mesoporous carbon: Synthesis and active sites for electrocatalysis of oxygen reduction reaction. Appl. Catal. B Environ. 2015, 165, 566–571. [Google Scholar] [CrossRef]
- Gong, K.; Du, F.; Xia, Z.; Durstock, M.; Dai, L. Nitrogen-doped carbon nanotube arrays with high electrocatalytic activity for oxygen reduction. Science 2009, 323, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.S.; Park, G.S.; Kim, S.T.; Liu, M.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew. Chem. 2013, 125, 1060–1064. [Google Scholar] [CrossRef]
- Choi, C.H.; Chung, M.W.; Kwon, H.C.; Park, S.H.; Woo, S.I. B, N-and P, N-doped graphene as highly active catalysts for oxygen reduction reactions in acidic media. J. Mater. Chem. A 2013, 1, 3694–3699. [Google Scholar] [CrossRef]
- Xue, Y.; Yu, D.; Dai, L.; Wang, R.; Li, D.; Roy, A.; Lu, F.; Chen, H.; Liu, Y.; Qu, J. Three-dimensional B, N-doped graphene foam as a metal-free catalyst for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2013, 15, 12220–12226. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Niu, J.; Li, M.; Xia, Z. Catalytic mechanisms of sulfur-doped graphene as efficient oxygen reduction reaction catalysts for fuel cells. J. Phys. Chem. C 2014, 118, 3545–3553. [Google Scholar] [CrossRef]
- Park, J.-E.; Jang, Y.J.; Kim, Y.J.; Song, M.-S.; Yoon, S.; Kim, D.H.; Kim, S.-J. Sulfur-doped graphene as a potential alternative metal-free electrocatalyst and Pt-catalyst supporting material for oxygen reduction reaction. Phys. Chem. Chem. Phys. 2014, 16, 103–109. [Google Scholar] [CrossRef] [PubMed]
- Ma, Z.; Dou, S.; Shen, A.; Tao, L.; Dai, L.; Wang, S. Sulfur-doped graphene derived from cycled lithium–sulfur batteries as a metal-free electrocatalyst for the oxygen reduction reaction. Angew. Chem. Int. Ed. 2015, 54, 1888–1892. [Google Scholar] [CrossRef] [PubMed]
- Peng, H.; Mo, Z.; Liao, S.; Liang, H.; Yang, L.; Luo, F.; Song, H.; Zhong, Y.; Zhang, B. High performance Fe-and N-doped carbon catalyst with graphene structure for oxygen reduction. Sci. Rep. 2013. [Google Scholar] [CrossRef]
- Liang, J.; Zhou, R.F.; Chen, X.M.; Tang, Y.H.; Qiao, S.Z. Fe–N decorated hybrids of CNTs grown on hierarchically porous carbon for high-performance oxygen reduction. Adv. Mater. 2014, 26, 6074–6079. [Google Scholar] [CrossRef] [PubMed]
- Wu, J.; Yang, Z.; Li, X.; Sun, Q.; Jin, C.; Strasser, P.; Yang, R. Phosphorus-doped porous carbons as efficient electrocatalysts for oxygen reduction. J. Mater. Chem. A 2013, 1, 9889–9896. [Google Scholar] [CrossRef]
- Zhang, C.; Mahmood, N.; Yin, H.; Liu, F.; Hou, Y. Synthesis of phosphorus-doped graphene and its multifunctional applications for oxygen reduction reaction and lithium ion batteries. Adv. Mater. 2013, 25, 4932–4937. [Google Scholar] [CrossRef] [PubMed]
- Li, R.; Wei, Z.; Gou, X.; Xu, W. Phosphorus-doped graphene nanosheets as efficient metal-free oxygen reduction electrocatalysts. RSC Adv. 2013, 3, 9978–9984. [Google Scholar] [CrossRef]
- Liang, Y.; Wang, H.; Diao, P.; Chang, W.; Hong, G.; Li, Y.; Gong, M.; Xie, L.; Zhou, J.; Wang, J.; et al. Oxygen reduction electrocatalyst based on strongly coupled cobalt oxide nanocrystals and carbon nanotubes. J. Am. Chem. Soc. 2012, 134, 15849–15857. [Google Scholar] [CrossRef] [PubMed]
- Yang, Z.; Yao, Z.; Li, G.; Fang, G.; Nie, H.; Liu, Z.; Zhou, X.; Chen, X.; Huang, S. Sulfur-doped graphene as an efficient metal-free cathode catalyst for oxygen reduction. ACS Nano 2012, 6, 205–211. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.; Wu, D.; Feng, X.; Müllen, K. Nitrogen-doped ordered mesoporous graphitic arrays with high electrocatalytic activity for oxygen reduction. Angew. Chem. Int. Ed. 2010, 49, 2565–2569. [Google Scholar] [CrossRef] [PubMed]
- Niwa, H.; Horiba, K.; Harada, Y.; Oshima, M.; Ikeda, T.; Terakura, K.; Ozaki, J.-I.; Miyata, S. X-ray absorption analysis of nitrogen contribution to oxygen reduction reaction in carbon alloy cathode catalysts for polymer electrolyte fuel cells. J. Power Sources 2009, 187, 93–97. [Google Scholar] [CrossRef]
- Ferrandon, M.; Kropf, A.J.; Myers, D.J.; Artyushkova, K.; Kramm, U.; Bogdanoff, P.; Wu, G.; Johnston, C.M.; Zelenay, P. Multitechnique characterization of a polyaniline-iron-carbon oxygen reduction catalyst. J. Phys. Chem. C 2012, 116, 16001–16013. [Google Scholar] [CrossRef]
- Wu, G.; More, K.L.; Johnston, C.M.; Zelenay, P. High-performance electrocatalysts for oxygen reduction derived from polyaniline, iron, and cobalt. Science 2011, 332, 443–447. [Google Scholar] [CrossRef] [PubMed]
- Zhang, P.; Sun, F.; Xiang, Z.; Shen, Z.; Yun, J.; Cao, D. Zif-derived in situ nitrogen-doped porous carbons as efficient metal-free electrocatalysts for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 442–450. [Google Scholar] [CrossRef]
- Zhang, Y.; Chu, M.; Yang, L.; Deng, W.; Tan, Y.; Ma, M.; Xie, Q. Synthesis and oxygen reduction properties of three-dimensional sulfur-doped graphene networks. Chem. Commun. 2014, 50, 6382–6385. [Google Scholar] [CrossRef] [PubMed]
- Fang, B.; Kim, J.H.; Kim, M.-S.; Yu, J.-S. Hierarchical nanostructured carbons with meso–macroporosity: Design, characterization, and applications. Acc. Chem. Res. 2013, 46, 1397–1406. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.G.; Zhou, H.J.; Sun, P.C.; Ding, D.T.; Chen, T.H. Hollow carved single-crystal mesoporous silica templated by mesomorphous polyelectrolyte-surfactant complexes. Chem. Mater. 2010, 22, 3829–3831. [Google Scholar] [CrossRef]
- Liu, Y.-L.; Shi, C.-X.; Xu, X.-Y.; Sun, P.-C.; Chen, T.-H. Nitrogen-doped hierarchically porous carbon spheres as efficient metal-free electrocatalysts for an oxygen reduction reaction. J. Power Sources 2015, 283, 389–396. [Google Scholar] [CrossRef]
- Tao, G.; Zhang, L.; Chen, L.; Cui, X.; Hua, Z.; Wang, M.; Wang, J.; Chen, Y.; Shi, J. N-doped hierarchically macro/mesoporous carbon with excellent electrocatalytic activity and durability for oxygen reduction reaction. Carbon 2015, 86, 108–117. [Google Scholar] [CrossRef]
- Sun, T.; Xu, L.; Li, S.; Chai, W.; Huang, Y.; Yan, Y.; Chen, J. Cobalt-nitrogen-doped ordered macro-/mesoporous carbon for highly efficient oxygen reduction reaction. Appl. Catal. B Environ. 2016, 193, 1–8. [Google Scholar] [CrossRef]
- Duan, J.; Zheng, Y.; Chen, S.; Tang, Y.; Jaroniec, M.; Qiao, S. Mesoporous hybrid material composed of Mn3O4 nanoparticles on nitrogen-doped graphene for highly efficient oxygen reduction reaction. Chem. Commun. 2013, 49, 7705–7707. [Google Scholar] [CrossRef] [PubMed]
- Hao, J.; Liu, Y.; Shen, H.; Li, W.; Li, J.; Li, Y.; Chen, Q. Effect of nickel-ion doping in MnO2 nanoneedles as electrocatalyst for the oxygen reduction reaction. J. Mater. Sci. Mater. Electron. 2016, 27, 6598–6605. [Google Scholar] [CrossRef]
- Bian, W.; Yang, Z.; Strasser, P.; Yang, R. A CoFe2O4/graphene nanohybrid as an efficient bi-functional electrocatalyst for oxygen reduction and oxygen evolution. J. Power Sources 2014, 250, 196–203. [Google Scholar] [CrossRef]
- Huo, R.; Jiang, W.J.; Xu, S.; Zhang, F.; Hu, J.S. Co/CoO/CoFe2O4/G nanocomposites derived from layered double hydroxides towards mass production of efficient Pt-free electrocatalysts for oxygen reduction reaction. Nanoscale 2014, 6, 203–206. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Bian, W.; Wu, J.; Tian, J.-H.; Yang, R. Preparation and electrocatalytic activity of 3D hierarchical porous spinel CoFe2O4 hollow nanospheres as efficient catalyst for oxygen reduction reaction and oxygen evolution reaction. Electrochim. Acta 2015, 151, 276–283. [Google Scholar] [CrossRef]
- Wang, J.; Wu, Z.; Han, L.; Lin, R.; Xin, H.L.; Wang, D. Hollow-structured carbon-supported nickel cobaltite nanoparticles as an efficient bifunctional electrocatalyst for the oxygen reduction and evolution reactions. ChemCatChem 2016, 8, 736–742. [Google Scholar] [CrossRef]
- Lee, E.; Jang, J.-H.; Kwon, Y.-U. Composition effects of spinel MnxCo3−xO4 nanoparticles on their electrocatalytic properties in oxygen reduction reaction in alkaline media. J. Power Sources 2015, 273, 735–741. [Google Scholar] [CrossRef]
- Ma, Y.; Wang, R.; Wang, H.; Key, J.; Ji, S. Control of MnO2 nanocrystal shape from tremella to nanobelt for ehancement of the oxygen reduction reaction activity. J. Power Sources 2015, 280, 526–532. [Google Scholar] [CrossRef]
- Odedairo, T.; Yan, X.; Ma, J.; Jiao, Y.; Yao, X.; Du, A.; Zhu, Z. Nanosheets Co3O4 interleaved with graphene for highly efficient oxygen reduction. ACS Appl. Mater. Interfaces 2015, 7, 21373–21380. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Shao, M.; Zhou, L.; Zhang, R.; Zhang, C.; Wei, M.; Evans, D.G.; Duan, X. Directed growth of metal-organic frameworks and their derived carbon-based network for efficient electrocatalytic oxygen reduction. Adv. Mater. 2016, 28, 2337–2344. [Google Scholar] [CrossRef] [PubMed]
- Pan, T.; Liu, H.; Ren, G.; Li, Y.; Lu, X.; Zhu, Y. Metal-free porous nitrogen-doped carbon nanotubes for enhanced oxygen reduction and evolution reactions. Sci. Bull. 2016, 61, 889–896. [Google Scholar] [CrossRef]
- Hao, L.; Zhang, S.; Liu, R.; Ning, J.; Zhang, G.; Zhi, L. Bottom-up construction of triazine-based frameworks as metal-free electrocatalysts for oxygen reduction reaction. Adv. Mater. 2015, 27, 3190–3195. [Google Scholar] [CrossRef] [PubMed]
- Xu, Y.; Jin, S.; Xu, H.; Nagai, A.; Jiang, D. Conjugated microporous polymers: Design, synthesis and application. Chem. Soc. Rev. 2013, 42, 8012–8031. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Su, Z.; Jiang, F.; Yang, L.; Qian, J.; Zhou, Y.; Li, W.; Hong, M. Highly graphitized nitrogen-doped porous carbon nanopolyhedra derived from ZIF-8 nanocrystals as efficient electrocatalysts for oxygen reduction reactions. Nanoscale 2014, 6, 6590–6602. [Google Scholar] [CrossRef] [PubMed]
- Miner, E.M.; Fukushima, T.; Sheberla, D.; Sun, L.; Surendranath, Y.; Dincă, M. Electrochemical oxygen reduction catalysed by Ni3(hexaiminotriphenylene)2. Nat. Commun. 2016, 7, 10942. [Google Scholar] [CrossRef] [PubMed]
- Verma, A.; Jha, A.K.; Basu, S. Manganese dioxide as a cathode catalyst for a direct alcohol or sodium borohydride fuel cell with a flowing alkaline electrolyte. J. Power Sources 2005, 141, 30–34. [Google Scholar] [CrossRef]
- Rojas-Carbonell, S.; Babanova, S.; Serov, A.; Ulyanova, Y.; Singhal, S.; Atanassov, P. Hybrid electrocatalysts for oxygen reduction reaction: Integrating enzymatic and non-platinum group metal catalysis. Electrochim. Acta 2016, 190, 504–510. [Google Scholar] [CrossRef]
- Zhang, G.; Lu, W.; Cao, F.; Xiao, Z.; Zheng, X. N-doped graphene coupled with Co nanoparticles as an efficient electrocatalyst for oxygen reduction in alkaline media. J. Power Sources 2016, 302, 114–125. [Google Scholar] [CrossRef]
- Jin, J.; Pan, F.; Jiang, L.; Fu, X.; Liang, A.; Wei, Z.; Zhang, J.; Sun, G. Catalyst-free synthesis of crumpled boron and nitrogen Co-doped graphite layers with tunable bond structure for oxygen reduction reaction. ACS Nano 2014, 8, 3313–3321. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Wang, Z.; Wu, X.; Liu, X.; Li, M. Synergistic effect between strongly coupled coal layered double hydroxides and graphene for the electrocatalytic reduction of oxygen. Electrochim. Acta 2016, 192, 196–204. [Google Scholar] [CrossRef]
- Han, J.; Sa, Y.J.; Shim, Y.; Choi, M.; Park, N.; Joo, S.H.; Park, S. Coordination chemistry of [Co(acac)2] with N-doped graphene: Implications for oxygen reduction reaction reactivity of organometallic Co-O4-N species. Angew. Chem. Int. Ed. 2015, 54, 12622–12626. [Google Scholar] [CrossRef] [PubMed]
- Chao, S.; Bai, Z.; Cui, Q.; Yan, H.; Wang, K.; Yang, L. Hollowed-out octahedral Co/N-codoped carbon as a highly efficient non-precious metal catalyst for oxygen reduction reaction. Carbon 2015, 82, 77–86. [Google Scholar] [CrossRef]
- Zhan, Y.; Du, G.; Yang, S.; Xu, C.; Lu, M.; Liu, Z.; Lee, J.Y. Development of cobalt hydroxide as a bifunctional catalyst for oxygen electrocatalysis in alkaline solution. ACS Appl. Mater. Interfaces 2015, 7, 12930–12936. [Google Scholar] [CrossRef] [PubMed]
- Hou, Y.; Wen, Z.; Cui, S.; Ci, S.; Mao, S.; Chen, J. An advanced nitrogen-doped graphene/cobalt-embedded porous carbon oolyhedron hybrid for efficient catalysis of oxygen reduction and water splitting. Adv. Funct. Mater. 2015, 25, 872–882. [Google Scholar] [CrossRef]
- Wu, Y.; Shi, Q.; Li, Y.; Lai, Z.; Yu, H.; Wang, H.; Peng, F. Nitrogen-doped graphene-supported cobalt carbonitride@oxide core–shell nanoparticles as a non-noble metal electrocatalyst for an oxygen reduction reaction. J. Mater. Chem. A 2015, 3, 1142–1151. [Google Scholar] [CrossRef]
- Ge, L.; Yang, Y.; Wang, L.; Zhou, W.; De Marco, R.; Chen, Z.; Zou, J.; Zhu, Z. High activity electrocatalysts from metal–organic framework-carbon nanotube templates for the oxygen reduction reaction. Carbon 2015, 82, 417–424. [Google Scholar] [CrossRef]
- Yang, W.; Liu, X.; Yue, X.; Jia, J.; Guo, S. Bamboo-like carbon nanotube/Fe3C nanoparticle hybrids and their highly efficient catalysis for oxygen reduction. J. Am. Chem. Soc. 2015, 137, 1436–1439. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.; Li, R.; Chang, X.; Xue, C.; Gou, X. Hybrid of porous cobalt oxide nanospheres and nitrogen-doped graphene for applications in lithium-ion batteries and oxygen reduction reaction. J. Power Sources 2015, 290, 25–34. [Google Scholar] [CrossRef]
- Lv, L.-B.; Ye, T.-N.; Gong, L.-H.; Wang, K.-X.; Su, J.; Li, X.-H.; Chen, J.-S. Anchoring cobalt nanocrystals through the plane of graphene: Highly integrated electrocatalyst for oxygen reduction reaction. Chem. Mater. 2015, 27, 544–549. [Google Scholar] [CrossRef]
- Cao, S.; Han, N.; Han, J.; Hu, Y.; Fan, L.; Zhou, C.; Guo, R. Mesoporous hybrid shells of carbonized polyaniline/Mn2O3 as non-precious efficient oxygen reduction reaction catalyst. ACS Appl. Mater. Interfaces 2016, 8, 6040–6050. [Google Scholar] [CrossRef] [PubMed]
- Huang, W.; Zhong, H.; Li, D.; Tang, P.; Feng, Y. Reduced graphene oxide supported CoO/MnO2 electrocatalysts from layered double hydroxides for oxygen reduction reaction. Electrochim. Acta 2015, 173, 575–580. [Google Scholar] [CrossRef]
- Zheng, Y.; Jiao, Y.; Ge, L.; Jaroniec, M.; Qiao, S.Z. Two-step boron and nitrogen doping in graphene for enhanced synergistic catalysis. Angew. Chem. 2013, 125, 3192–3198. [Google Scholar] [CrossRef]
- Zhao, Y.; Yang, L.; Chen, S.; Wang, X.; Ma, Y.; Wu, Q.; Jiang, Y.; Qian, W.; Hu, Z. Can boron and nitrogen co-doping improve oxygen reduction reaction activity of carbon nanotubes? J. Am. Chem. Soc. 2013, 135, 1201–1204. [Google Scholar] [CrossRef] [PubMed]
- Ding, W.; Wei, Z.; Chen, S.; Qi, X.; Yang, T.; Hu, J.; Wang, D.; Wan, L.J.; Alvi, S.F.; Li, L. Space-confinement-induced synthesis of pyridinic-and pyrrolic-nitrogen-doped graphene for the catalysis of oxygen reduction. Angew. Chem. 2013, 125, 11971–11975. [Google Scholar] [CrossRef]
- Cao, Y.; Wei, Z.; He, J.; Zang, J.; Zhang, Q.; Zheng, M.; Dong, Q. α-MnO2 nanorods grown in situ on graphene as catalysts for Li–O2 batteries with excellent electrochemical performance. Energy Environ. Sci. 2012, 5, 9765–9768. [Google Scholar] [CrossRef]
- Qu, L.; Liu, Y.; Baek, J.-B.; Dai, L. Nitrogen-doped graphene as efficient metal-free electrocatalyst for oxygen reduction in fuel cells. ACS Nano 2010, 4, 1321–1326. [Google Scholar] [CrossRef] [PubMed]
- Lin, Z.; Waller, G.; Liu, Y.; Liu, M.; Wong, C.P. Facile synthesis of nitrogen-doped graphene via pyrolysis of graphene oxide and urea, and its electrocatalytic activity toward the oxygen-reduction reaction. Adv. Energy Mater. 2012, 2, 884–888. [Google Scholar] [CrossRef]
- He, D.; Jiang, Y.; Lv, H.; Pan, M.; Mu, S. Nitrogen-doped reduced graphene oxide supports for noble metal catalysts with greatly enhanced activity and stability. Appl. Catal. B Environ. 2013, 132, 379–388. [Google Scholar] [CrossRef]
- Li, X.-H.; Antonietti, M. Metal nanoparticles at mesoporous N-doped carbons and carbon nitrides: Functional mott–schottky heterojunctions for catalysis. Chem. Soc. Rev. 2013, 42, 6593–6604. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-G.; Zhang, J.; Yuan, Y.; Lv, H.; Tian, Y.; Wu, D.; Li, Q.-W. In-situ formation of cobalt-phosphate oxygen-evolving complex-anchored reduced graphene oxide nanosheets for oxygen reduction reaction. Sci. Rep. 2013. [Google Scholar] [CrossRef] [PubMed]
- Zhao, H.; Hui, K.S.; Hui, K.N. Synthesis of nitrogen-doped multilayer graphene from milk powder with melamine and their application to fuel cells. Carbon 2014, 76, 1–9. [Google Scholar] [CrossRef]
- Li, Z.; Xu, Z.; Tan, X.; Wang, H.; Holt, C.M.B.; Stephenson, T.; Olsen, B.C.; Mitlin, D. Mesoporous nitrogen-rich carbons derived from protein for ultra-high capacity battery anodes and supercapacitors. Energy Environ. Sci. 2013, 6, 871–878. [Google Scholar] [CrossRef]
- Senoz, E.; Stanzione, J.F.; Reno, K.H.; Wool, R.P.; Miller, M.E.N. Pyrolyzed chicken feather fibers for biobased composite reinforcement. J. Appl. Polym. Sci. 2013, 128, 983–989. [Google Scholar] [CrossRef]
- Wang, X.; Zou, L.; Fu, H.; Xiong, Y.; Tao, Z.; Zheng, J.; Li, X. Noble metal-free oxygen reduction reaction catalysts derived from prussian blue nanocrystals dispersed in polyaniline. ACS Appl. Mater. Interfaces 2016, 8, 8436–8444. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Wang, G.; Miao, S.; Jiang, X.; Li, J.; Bao, X. Synthesis of Fe/Fe3C nanoparticles encapsulated in nitrogen-doped carbon with single-source molecular precursor for the oxygen reduction reaction. Carbon 2014, 75, 381–389. [Google Scholar] [CrossRef]
- Wang, R.; Wang, H.; Zhou, T.; Key, J.; Ma, Y.; Zhang, Z.; Wang, Q.; Ji, S. The enhanced electrocatalytic activity of okara-derived N-doped mesoporous carbon for oxygen reduction reaction. J. Power Sources 2015, 274, 741–747. [Google Scholar] [CrossRef]
- Zhou, R.; Qiao, S.Z. An Fe/N co-doped graphitic carbon bulb for high-performance oxygen reduction reaction. Chem. Commun. 2015, 51, 7516–7519. [Google Scholar] [CrossRef] [PubMed]
- Strickland, K.; Miner, E.; Jia, Q.; Tylus, U.; Ramaswamy, N.; Liang, W.; Sougrati, M.-T.; Jaouen, F.; Mukerjee, S. Highly active oxygen reduction non-platinum group metal electrocatalyst without direct metal-nitrogen coordination. Nat. Commun 2015, 6, 7343. [Google Scholar] [CrossRef] [PubMed]
- Rana, M.; Arora, G.; Gautam, U.K. N-and S-doped high surface area carbon derived from soya chunks as scalable and efficient electrocatalysts for oxygen reduction. Sci. Technol. Adv. Mater. 2016, 16, 014803. [Google Scholar] [CrossRef]
- Chao, S.; Cui, Q.; Wang, K.; Bai, Z.; Yang, L.; Qiao, J. Template-free synthesis of hierarchical yolk-shell Co and N codoped porous carbon microspheres with enhanced performance for oxygen reduction reaction. J. Power Sources 2015, 288, 128–135. [Google Scholar] [CrossRef]
- She, Y.; Lu, Z.; Ni, M.; Li, L.; Leung, M.K.H. Facile synthesis of nitrogen and sulfur codoped carbon from ionic liquid as metal-free catalyst for oxygen reduction reaction. ACS Appl. Mater. Interfaces 2015, 7, 7214–7221. [Google Scholar] [CrossRef] [PubMed]
- Xi, J.; Xia, Y.; Xu, Y.; Xiao, J.; Wang, S. (Fe,Co)@nitrogen-doped graphitic carbon nanocubes derived from polydopamine-encapsulated metal-organic frameworks as a highly stable and selective non-precious oxygen reduction electrocatalyst. Chem. Commun. 2015, 51, 10479–10482. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.-W.; Su, D. Heterogeneous nanocarbon materials for oxygen reduction reaction. Energy Environ. Sci. 2014, 7, 576–591. [Google Scholar] [CrossRef]
- Daems, N.; Sheng, X.; Vankelecom, I.F.; Pescarmona, P.P. Metal-free doped carbon materials as electrocatalysts for the oxygen reduction reaction. J. Mater. Chem. A 2014, 2, 4085–4110. [Google Scholar] [CrossRef]
- Sheng, X.; Daems, N.; Geboes, B.; Kurttepeli, M.; Bals, S.; Breugelmans, T.; Hubin, A.; Vankelecom, I.F.; Pescarmona, P.P. N-doped ordered mesoporous carbons prepared by a two-step nanocasting strategy as highly active and selective electrocatalysts for the reduction of O2 to H2O2. Appl. Catal. B Environ. 2015, 176, 212–224. [Google Scholar] [CrossRef]
- Wu, J.; Jin, C.; Yang, Z.; Tian, J.; Yang, R. Synthesis of phosphorus-doped carbon hollow spheres as efficient metal-free electrocatalysts for oxygen reduction. Carbon 2015, 82, 562–571. [Google Scholar] [CrossRef]
- Xiao, M.; Zhu, J.; Feng, L.; Liu, C.; Xing, W. Meso/macroporous nitrogen-doped carbon architectures with iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv. Mater. 2015, 27, 2521–2527. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Wang, Y.; Dong, L.; Chen, X.; Xin, G.; Zhang, Y.; Zang, J. One-step synthesis of shell/core structural boron and nitrogen co-doped graphitic carbon/nanodiamond as efficient electrocatalyst for the oxygen reduction reaction in alkaline media. Electrochim. Acta 2016, 194, 161–167. [Google Scholar] [CrossRef]
- Niu, W.; Li, L.; Liu, X.; Wang, N.; Liu, J.; Zhou, W.; Tang, Z.; Chen, S. Mesoporous N-doped carbons prepared with thermally removable nanoparticle templates: An efficient electrocatalyst for oxygen reduction reaction. J. Am. Chem. Soc. 2015, 137, 5555–5562. [Google Scholar] [CrossRef] [PubMed]
- Kakaei, K.; Balavandi, A. Synthesis of halogen-doped reduced graphene oxide nanosheets as highly efficient metal-free electrocatalyst for oxygen reduction reaction. J. Colloid Interface Sci. 2016, 463, 46–54. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Fu, X.; Li, M.; Wang, F.; Wang, Q.; Kang, G.; Peng, F. Novel silicon-doped, silicon and nitrogen-codoped carbon nanomaterials with high activity for the oxygen reduction reaction in alkaline medium. J. Mater. Chem. A 2015, 3, 3289–3293. [Google Scholar] [CrossRef]
- Bag, S.; Mondal, B.; Das, A.K.; Raj, C.R. Nitrogen and sulfur dual-doped reduced graphene oxide: Synergistic effect of dopants towards oxygen reduction reaction. Electrochim. Acta 2015, 163, 16–23. [Google Scholar] [CrossRef]
- Jiang, T.; Wang, Y.; Wang, K.; Liang, Y.; Wu, D.; Tsiakaras, P.; Song, S. A novel sulfur-nitrogen dual doped ordered mesoporous carbon electrocatalyst for efficient oxygen reduction reaction. Appl. Catal. B Environ. 2016, 189, 1–11. [Google Scholar] [CrossRef]
- Li, W.; Yang, D.; Chen, H.; Gao, Y.; Li, H. Sulfur-doped carbon nanotubes as catalysts for the oxygen reduction reaction in alkaline medium. Electrochim. Acta 2015, 165, 191–197. [Google Scholar] [CrossRef]
- Ju, Y.-W.; Yoo, S.; Kim, C.; Kim, S.; Jeon, I.-Y.; Shin, J.; Baek, J.-B.; Kim, G. Fe@N-graphene nanoplatelet-embedded carbon nanofibers as efficient electrocatalysts for oxygen reduction reaction. Adv. Sci. 2016, 3. [Google Scholar] [CrossRef] [PubMed]
- Zhong, S.; Zhou, L.; Wu, L.; Tang, L.; He, Q.; Ahmed, J. Nitrogen-and boron-co-doped core–shell carbon nanoparticles as efficient metal-free catalysts for oxygen reduction reactions in microbial fuel cells. J. Power Sources 2014, 272, 344–350. [Google Scholar] [CrossRef]
- Bai, J.; Zhu, Q.; Lv, Z.; Dong, H.; Yu, J.; Dong, L. Nitrogen-doped graphene as catalysts and catalyst supports for oxygen reduction in both acidic and alkaline solutions. Int. J. Hydrog. Energy 2013, 38, 1413–1418. [Google Scholar] [CrossRef]
- Cheng, Y.; Tian, Y.; Fan, X.; Liu, J.; Yan, C. Boron doped multi-walled carbon nanotubes as catalysts for oxygen reduction reaction and oxygen evolution reactionin in alkaline media. Electrochim. Acta 2014, 143, 291–296. [Google Scholar] [CrossRef]
- Pumera, M. Heteroatom modified graphenes: Electronic and electrochemical applications. J. Mater. Chem. C 2014, 2, 6454–6461. [Google Scholar] [CrossRef]
Catalyst | Preparation Method and Experimental Conditions | Limiting Current (Jd; d = disc), Kinetic Current Density (Jk), Half Wave Potential (E1/2)) | Reference |
---|---|---|---|
N-HCS (hierarchically mesoporous spheres)-900 | Nanocasting method, 0.1 M KOH, oxygen saturated 20 mV·s−1, 1600 rpm | Jd = 4.7 mA·cm−2 Jk = 20.0 mA·cm−2 @ 0.3 V vs. Ag/AgCl sat. KCl (0.85 V vs. RHE) E1/2 = 0.748 V vs. RHE | [27] |
3D-HPC-N (N-doped-3D-hierarchically porous carbon materials)-850 | Hierarchically macro/mesoporous silica as a hard template followed by a simple N-doping procedure and 0.1 M KOH, oxygen saturated 5 mV·s−1, 1600 rpm (0.1 M KOH + 3.0 M MeOH) | Jd = 4.4 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.753 V vs. RHE | [28] |
3D Co-N-OMMC-0.6 (Co(NO3)2·6H2O) (ordered macro-mesoporous carbon) | Dual-templating synthesis approach in a one-pot controllable procedure by the use of silica colloidal crystal (opal) as a macroporous mold and triblock copolymer Pluronic F127 as a mesoporous template and 0.1 M KOH, oxygen saturated; 5 mV·s−1, 1600 rpm (0.1 M KOH + 1.0 M MeOH) | Jd = 5.8 mA·cm−2 (Inactive in MeOH presence), Jk = 23.2 mA·cm−2 @ 0.7 V vs. RHE, E1/2 = 0.83 V vs. RHE | [29] |
3D hierarchical porous-CoFe2O4 hollow nanospheres | Hydrothermal method and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.3 mA·cm−2 E1/2 = 0.58 V vs. RHE | [34] |
3D hollow NiCo2O4/C | Transformation from solid NiCo2 alloy nanoparticles through the Kirkendall effect and 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm | Jd = 5.7 mA·cm−2 E1/2 = 0.68 V vs. RHE | [35] |
3D Nanosheet Co3O4-doped-graphene | Microwave argon-plasma synthesis approach and 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm | Jd = 5.7 mA·cm−2 Jk = 34mAcm−2 @ 0.75 V vs. RHE E1/2 = 0.832 V vs. RHE | [38] |
2D-CoAl-LDH@ZIF-67-800 (LDH: layered double hydroxides, ZIF: zeolitic imidazolate framework) | In situ nucleation and directed growth of MOFs arrays on the surface of LDHs nanoplatelets followed by a subsequent pyrolysis process and 0.1 M KOH, oxygen saturated 10 mV·s−1, 1500 rpm (0.1 M KOH + 2.0 M MeOH) | Jd = 5.2 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.675 V vs. RHE | [39] |
3D-NCNT-900 (N-doped carbon nanotubes) | PPy nanotubes were synthesized by the chemical oxidative polymerization of pyrrole, in the presence of FeCl3 as an oxidant, and p-toluene sulfonic acid (TsOH) as a dopant and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm (0.1 M KOH + 5.0 M MeOH) | Jd = 5.2 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.707 V vs. RHE | [40] |
3D-N-doped-TTF-700 (thermalized triazine-based framework) | A nitrogen-containing molecule, terephthalonitrile, as the basic building block and through first trimerization into a 2D covalent triazine-based framework and 0.1 M KOH, oxygen saturated; 10 mV·s−1, 1600 rpm | Jd = 4.0 mA·cm−2 E1/2 = 0.767 V vs. RHE | [41] |
Catalyst | Preparation Method and Experimental Conditions | Limiting Current (Jd; d = disc), Kinetic Current Density (Jk), Half Wave Potential (E1/2)) | Reference |
---|---|---|---|
Co0.03@CoO-N-doped graphene carbon shells-800 | Introduction of metal precursor (cobalt nitrate) to sucrose and urea followed by pyrolyzing and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm, (0.1 M KOH + 0.5 M MeOH) | Jd = 4.1 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.81 V vs. RHE | [47] |
BCN-2.5 at. %-1000 | CVD synthesis of BCN sheets by thermally decomposing solid B C- and N-containing precursors at normal pressure and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm, (0.1 M KOH + 2.0 M MeOH) | Jd = 6.0 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.707 V vs. RHE Jk = 26.62 mA·cm−2 | [48] |
CoAl-LDHs (layered double hydroxide)/rGO (reduced graphene oxide) | Grow CoAl-LDHs on the surface of GO in-situ via coprecipitation and subsequently hydrothermal treatment and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 4.8 mA·cm−2 E1/2 = 0.853 V vs. RHE | [49] |
CoII-A-rG-O (hybrid-ammonium) hydroxide-reduced graphene) | Synthesis at room temperature of archetypical hybrid materials consisting of cobalt-based organometallic complexes ([Co(acac)2], acac = acetylacetonate) coordinated to N-doped graphenes and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.4 mA·cm−2 E1/2 = 0.81 V vs. RHE Jk = 8.9 mA·cm−2 at 0.8 V vs. RHE | [50] |
Co/N-HCOs (Co/N-co-doped hollowed-out carbon octahedrons) | Octahedral Co(II) complex with 2,6-bis(benzimidazol-2-yl)pyridine (BBP) as the precursor and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 4.9 mA·cm−2 E1/2 = 0.81 V vs. RHE | [51] |
Co(OH)2-nanoplate/N-RGO (N-doped reduced graphene oxide) | Hydrothermal method and 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm | Jd = 4.7 mA·cm−2 E1/2 = 0.66 V vs. RHE | [52] |
N/Co-doped PCP(porous carbon polyhedron)/NRGO | Pyrolysis of graphene oxide-supported cobalt-based zeolitic imidazolate-framework and 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm (0.1 M KOH + 3.0 M MeOH) | Jd = 7.8 mA·cm−2 (Inactive even after of 48h) Jk = 11.6 mA·cm−2 at 0.7 V vs. RHE E1/2 = 0.93 V vs. RHE | [53] |
CoCN@CoOx(18)/NG (cobaltcarbonitride/nitrogen doped graphene) | High temperature ammonia nitridation method and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm, (0.1 M KOH + 1.0 M MeOH) | Jd = 5.9 mA·cm−2 (Inactive in MeOH presence) E1/2 0.763 V vs. RHE | [54] |
C-CZ-4(N-CNTs)-1000 | In situ growth of metal–organic frameworks (ZIF-8) on carbon nanotubes, followed by pyrolysis and 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm (0.1 M KOH + 1.0 M MeOH) | Jd = 6.0 mA·cm−2 (Inactive in MeOH presence) E1/2 = 0.887 V vs. RHE | [55] |
Bamboo-like CNT/Fe3C nanoparticle hybrids-800 | Annealing a mixture of PEG-PPG-PEG Pluronic P123, melamine, and Fe(NO3)3 at 800 °C in N2 and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 4.0 mA·cm−2 E1/2 = 0.861 V vs. RHE | [56] |
Co3O4/NG (nitrogen-doped graphene) | Hydrothermal reaction of GO, MR, and CoCl2 followed by a two-step heat treatment and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 4.6 mA·cm−2 E1/2 = 0.74 V vs. RHE | [57] |
CoNPs@NG (nitrogen-doped graphene) | Thermal condensation of biomass and corresponding metal salts and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm (0.1 M KOH + 1.0 M MeOH) | Jd = 7.2 mA·cm−2 E1/2 = 1.01 V vs. RHE | [58] |
C(PANI)/Mn2O3 | Surface protected calcination processes and 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.61 mA·cm−2 E1/2 = 0.784 V vs. RHE | [59] |
Catalyst | Preparation Method and Experimental Conditions | Limiting Current (Jd; d = disc), Kinetic Current Density (Jk), Half Wave Potential (E1/2) | Reference |
---|---|---|---|
C-2PANI (polyaniline)/PBA (prussian blue analogue), 2-aniline/(aniline + PBA) | Mixing and pyrolysis & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 6.1 mA·cm−2 E1/2 = 0.85 V vs RHE | [73] |
AFC-600 (ammonium ferric citrate, 600: treatment temperature) | A single-source molecular precursor containing carbon, nitrogen and transition metal & 1.0 M NaOH, oxygen saturated, 10 mV·s−1, 2500 rpm | Jd = 2.6 mA·cm−2 E1/2 = 0.881 V vs. RHE | [74] |
N(okara source)-C-800 | Nitrogen-doped carbon by okara treatment using also FeCl3 & 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm | Jd = 4.0 mA·cm−2 E1/2 = 0.86 V vs. RHE | [75] |
Fe/N-gCB (co-doped graphitic carbon bulb) | Prussian blue (PB) as the only precursor & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.0 mA·cm−2 E1/2 = 0.81 V vs. RHE | [76] |
FePhen@MOF-ArNH3 | Encapsulation synthesis and heat treatment in ammonia & 0.1 M KOH, oxygen saturated, 20 mV·s−1, 1600 rpm | Jd = 5.6 mA·cm−2 E1/2 = 0.86 V vs. RHE | [77] |
S-P-N-doped graphitized carbon-1000 | Soya (plant) as carbon source-graphitized product as support & 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm (0.1 M KOH + 1.25 M MeOH) | Jd = 3.7 mA·cm−2 (MeOH tolerant) E1/2 = 0.79 V vs. RHE | [78] |
YS-Co/N-PCMs (yolk-shell/porous carbon microspheres) | Template-free hydrothermal method and a subsequent pyrolysis & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.0 mA·cm−2 E1/2 = 0.706 V vs. RHE Jk = 16.0 mA·cm−2 at 0.3 V vs. SCE | [79] |
N-S-co-doped-graphite | Pyrolysis of homogeneous mixture of exfoliated graphitic flakes and ionic liquid 1-butyl-3-methylimidazoliumbis(trifluoromethanesulfonyl) imide & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 2500 rpm | Jd = 6.5 mA·cm−2 E1/2 = 0.768 V vs. RHE | [80] |
Catalyst | Preparation Method and Experimental Conditions | Limiting Current (Jd; d = disc), Kinetic Current Density (Jk), Half-Wave Potential (E1/2)) | Reference |
---|---|---|---|
N-OMC (N-doped ordered mesoporous) | Two-step nanocasting method (DHN as precursors) & 0.1 M KOH, oxygen saturated 10 mV·s−1, 2500 rpm | Jd = 5.8 mA·cm−2 Jk = 22 mA·cm−2 (at 0.4 V vs. Ag/AgCl) E1/2 = 0.853 V vs. RHE | [84] |
P(2 at. %)-CHS (phosphorus-doped hollow spheres) | Hydrothermal method using glucose as a carbon source, tetraphenylphosphonium bromide as a P source and anionic surfactant sodium dodecyl sulfate as a soft template & 0.1 M KOH, oxygen saturated 10 mV·s−1, 1600 rpm | Jd = 5.7 mA·cm−2 E1/2 = 0.883 V vs. RHE | [85] |
Fe3C/N-G(nano graphitic layers)-800 | Pyrolysis of poly (1,8-diaminonapphthalene) (PDAN) using precursors of 1,8-diaminonaphthalene (DAN) and FeCl3 & 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm, (0.1 M KOH + 1.0 M MeOH) | Jd = 5.8 mA·cm−2 E1/2 = 0.86 V vs. RHE (Inactive in MeOH presence) | [86] |
Shell core structural B and N co-doped graphitic carbon/nanodiamond (BN-C/ND) | One-step heat-treatment of the mixture with nanodiamond, melamine, boric acid and FeCl3 & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm (0.1 M KOH + 1.0 M MeOH) | Jd = 6.0 mA·cm−2 E1/2 = 0.22 V vs. Hg/HgO (0.805 V vs. RHE) (Inactive in MeOH presence) | [87] |
Fe-N/C-800 | Thermally removable nanoparticle templates & 0.1 M KOH, oxygen saturated (0.1 M KOH + 1.0 M MeOH) | Jd = 4.9 mA·cm−2 E1/2 = 0.80 V vs. RHE (Inactive in MeOH presence) | [88] |
F, Cl, B and I–doped RGO in presence of NaF | Halogenations of reduced graphene oxide (RGO) with simultaneously fluorine, chlorine, bromine and iodine by electrochemical exfoliation of GO and obtained XRGO in presence of IL and halogen salts (X = F, Cl, Br, I) & 0.5 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm | Jd = 5.7 mA·cm−2 E1/2 = 0.773 V vs. RHE | [89] |
SiN-CNTs | Thermolysis of 3-aminopropyl-triethoxysilane and dimethylsilicone oil, respectively, using FeMo/Al2O3 as catalysts & 0.1 M KOH, oxygen saturated 5 mV·s−1, 1600 rpm (0.1 M KOH + 1.0 M MeOH) | Jd = 6.12 mA·cm−2 E1/2 = 0.753 V vs. RHE (Inactive in MeOH presence) | [90] |
S-N-RGO (reduced graphene oxide) | Single-step non-hydrothermal chemical route Reflux in ethylene glycol at 180 °C for 3 h & 0.1 M KOH, oxygen saturated, 5 mV·s−1, 1600 rpm | Jd = 5.1 mA·cm−2 E1/2 = 0.703 V vs. RHE Jk = 7.7 mA·cm−2 (at 0.6 V vs. Hg/HgO) | [91] |
S1N5-OMC (dual doped with S and N ordered mesoporous carbon) | Polythiophene (PTh) and polypyrrole (PPy) as the precursors, ordered mesoporous silica (SBA-15) as the hard template, and FeCl3 as the catalyst & 0.1 M KOH, oxygen saturated, 10 mV·s−1, 1600 rpm, (0.1 M KOH + 0.5 M MeOH) | Jd = 4.6 mA·cm−2 E1/2 = 0.685 V vs. RHE (Inactive in MeOH presence) | [92] |
© 2016 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC-BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Brouzgou, A.; Song, S.; Liang, Z.-X.; Tsiakaras, P. Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts 2016, 6, 159. https://doi.org/10.3390/catal6100159
Brouzgou A, Song S, Liang Z-X, Tsiakaras P. Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts. 2016; 6(10):159. https://doi.org/10.3390/catal6100159
Chicago/Turabian StyleBrouzgou, Angeliki, Shuqin Song, Zhen-Xing Liang, and Panagiotis Tsiakaras. 2016. "Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials" Catalysts 6, no. 10: 159. https://doi.org/10.3390/catal6100159
APA StyleBrouzgou, A., Song, S., Liang, Z. -X., & Tsiakaras, P. (2016). Non-Precious Electrocatalysts for Oxygen Reduction Reaction in Alkaline Media: Latest Achievements on Novel Carbon Materials. Catalysts, 6(10), 159. https://doi.org/10.3390/catal6100159