Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation
Abstract
:1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Reduced Graphene Oxide (rGO) Modified Electrode
3.3. Synthesis of PMo12-Pt/rGO
3.4. Characterization
3.5. Electrochemical Measurements
4. Conclusions
Supplementary Files
Supplementary File 1Acknowledgments
Author Contributions
Conflicts of Interest
References
- Kumar, P.; Dutta, K.; Das, S.; Kundu, P.P. An overview of unsolved deficiencies of direct methanol fuel cell technology: Factors and parameters affecting its widespread use. Int. J. Energy Res. 2014, 38, 1367–1390. [Google Scholar] [CrossRef]
- Li, Z.S.; Ji, S.; Pollet, B.G.; Shen, P.K. Supported 3-D Pt nanostructures: The straightforward synthesis and enhanced electrochemical performance for methanol oxidation in an acidic medium. J. Nanopart. Res. 2013, 15, 1959. [Google Scholar] [CrossRef]
- Singh, R.N.; Awasthi, R.; Sharma, C.S. An Overview of Recent Development of Platinum-Based Cathode Materials for Direct Methanol Fuel Cells. Int. J. Electrochem. Sci. 2014, 9, 5607–5639. [Google Scholar]
- Yuan, T.; Yang, J.; Wang, Y.; Ding, H.; Li, X.; Liu, L.; Yang, H. Anodic diffusion layer with graphene-carbon nanotubes composite material for passive direct methanol fuel cell. Electrochim. Acta 2014, 147, 265–270. [Google Scholar] [CrossRef]
- Huang, Y.Q.; Huang, H.L.; Gao, Q.Z.; Gan, C.F.; Liu, Y.G.; Fang, Y.P. Electroless synthesis of two-dimensional sandwich-like Pt/Mn3O4/reduced-graphene-oxide nanocomposites with enhanced electrochemical performance for methanol oxidation. Electrochim. Acta 2014, 149, 34–41. [Google Scholar] [CrossRef]
- Liu, J.Q.; Liu, Z.; Barrow, C.J.; Yang, W.R. Molecularly engineered graphene surfaces for sensing applications: A review. Anal. Chim. Acta 2015, 859, 1–19. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Liu, B.; Lu, Q.P.; Qu, Q.S. Graphene-based materials: Fabrication and application for adsorption in analytical chemistry. J. Chromatogr. A 2014, 1362, 1–15. [Google Scholar] [CrossRef] [PubMed]
- Khadempir, S.; Ahmadpour, A.; Ashraf, N.; Bamoharram, F.F.; Mitchell, S.G.; de la Fuente, J.M. A polyoxometalate-assisted approach for synthesis of Pd nanoparticles on graphene nanosheets: Synergistic behaviour for enhanced electrocatalytic activity. RSC Adv. 2015, 5, 24319–24326. [Google Scholar] [CrossRef]
- Seo, M.H.; Choi, S.M.; Kim, H.J.; Kim, J.H.; Cho, B.K.; Kim, W.B. A polyoxometalate-deposited Pt/CNT electrocatalyst via chemical synthesis for methanol electrooxidation. J. Power Sources 2008, 179, 81–86. [Google Scholar] [CrossRef]
- Zhang, X.F.; Huang, Q.F.; Li, Z.S.; Ma, A.; He, X.L.; Lin, S. Effects of silicotungstic acid on the physical stability and electrocatalytic activity of platinum nanoparticles assembled on graphene. Mater. Res. Bull. 2014, 60, 57–63. [Google Scholar] [CrossRef]
- Ma, A.; Zhang, X.F.; Li, Z.S.; Wang, X.Y.; Ye, L.T.; Lin, S. Graphene and Polyoxometalate Synergistically Enhance Electro-Catalysis of Pd toward Formic Acid Electro-Oxidation. J. Electrochem. Soc. 2014, 161, F1224–F1230. [Google Scholar] [CrossRef]
- Shao, Y.Y.; Wang, J.; Engelhard, M.; Wang, C.M.; Lin, Y.H. Facile and controllable electrochemical reduction of graphene oxide and its applications. J. Mater. Chem. 2010, 20, 743–748. [Google Scholar] [CrossRef]
- Ping, J.F.; Wang, Y.X.; Fan, K.; Wu, J.; Ying, Y.B. Direct electrochemical reduction of graphene oxide on ionic liquid doped screen-printed electrode and its electrochemical biosensing application. Biosens. Bioelectron. 2011, 28, 204–209. [Google Scholar] [CrossRef] [PubMed]
- Guo, H.L.; Wang, X.F.; Qian, Q.Y.; Wang, F.B.; Xia, X.H. A Green Approach to the Synthesis of Graphene Nanosheets. ACS Nano 2009, 3, 2653–2659. [Google Scholar] [CrossRef] [PubMed]
- Wang, Z.J.; Wu, S.X.; Zhang, J.; Chen, P.; Yang, G.C.; Zhou, X.Z.; Zhang, Q.C.; Yan, Q.Y.; Zhang, H. Comparative studies on single-layer reduced graphene oxide films obtained by electrochemical reduction and hydrazine vapor reduction. Nanoscale Res. Lett. 2012, 7, 1–7. [Google Scholar] [CrossRef] [PubMed]
- Sun, Z.Y.; He, J.B.; Kumbhar, A.; Fang, J.Y. Nonaqueous Synthesis and Photoluminescence of ITO Nanoparticles. Langmuir 2010, 26, 4246–4250. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Li, H.L.; Li, S.; Liu, F.; Wu, L.X. Electrochemical-Reduction-Assisted Assembly of a Polyoxometalate/Graphene Nanocomposite and Its Enhanced Lithium-Storage Performance. Chem. Eur. J. 2013, 19, 10895–10902. [Google Scholar] [CrossRef] [PubMed]
- Li, H.L.; Pang, S.P.; Wu, S.; Feng, X.L.; Müllen, K.; Bubeck, C. Layer-by-Layer Assembly and UV Photoreduction of Graphene Polyoxometalate Composite Films for Electronics. J. Am. Chem. Soc. 2011, 133, 9423–9429. [Google Scholar] [CrossRef] [PubMed]
- Liu, R.J.; Li, S.W.; Yu, X.L.; Zhang, G.J.; Zhang, S.J.; Yao, J.N.; Zhi, L.J. A general green strategy for fabricating metal nanoparticles/polyoxometalate/graphene tri-component nanohybrids: Enhanced electrocatalytic properties. J. Mater. Chem. 2012, 22, 3319–3322. [Google Scholar] [CrossRef]
- Han, D.M.; Guo, Z.P.; Zeng, R.; Kim, C.J.; Meng, Y.Z.; Liu, H.K. Multiwalled carbon nanotube-supported Pt/Sn and Pt/Sn/PMo12 electrocatalysts for methanol electro-oxidation. Int. J. Hydrogen Energy 2009, 34, 2426–2434. [Google Scholar] [CrossRef]
- Roth, C.; Goetz, M.; Fuess, H. Synthesis and characterization of carbon-supported Pt–Ru–WOx catalysts by spectroscopic and diffraction methods. J. Appl. Electrochem. 2001, 31, 793–798. [Google Scholar] [CrossRef]
- Liu, Z.L.; Guo, B.; Hong, L.; Lim, T.H. Microwave heated polyol synthesis of carbon-supported PtSn nanoparticles for methanol electrooxidation. Electrochem. Commun. 2005, 8, 83–90. [Google Scholar] [CrossRef]
- Xin, Y.; Liu, J.G.; Zhou, Y.; Liu, W.; Gao, J.; Xie, Y.; Zou, Z. Preparation and characterization of Pt supported on graphene with enhanced electrocatalytic activity in fuel cell. J. Power Sources 2011, 196, 1012–1018. [Google Scholar] [CrossRef]
- Bhattacharyya, K.; Majeed, J.; Dey, K.K.; Ayyub, P.; Tyagi, A.K.; Bharadwaj, S.R. Effect of Mo-Incorporation in the TiO2 Lattice: A Mechanistic Basis for Photocatalytic Dye Degradation. J. Phys. Chem. C 2014, 118, 15946–15962. [Google Scholar] [CrossRef]
- Ji, Z.Y.; Shen, X.P.; Zhu, G.X.; Chen, K.M.; Fu, G.H.; Tong, L. Enhanced electrocatalytic performance of Pt-based nanoparticles on reduced graphene oxide for methanol oxidation. J. Electroanal. Chem. 2012, 682, 95–100. [Google Scholar] [CrossRef]
- Ding, Y.H.; Zhang, P.; Zhuo, Q.; Ren, H.M.; Yang, Z.M.; Jiang, Y. A green approach to the synthesis of reduced graphene oxide nanosheets under UV irradiation. Nanotechnology 2011, 22, 215601–215605. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.Q.; Jiang, F.X.; Yue, R.R.; Wang, H.W.; Du, Y.K. Enhanced photo-electrocatalytic performance of Pt/RGO/TiO2 on carbon fiber towards methanol oxidation in alkaline media. J. Solid State Electrochem. 2014, 18, 515–522. [Google Scholar] [CrossRef]
- Kang, Z.H.; Wang, Y.B.; Wang, E.B.; Lian, S.Y.; Gao, L.; You, W.S.; Hu, C.W.; Xu, L. Polyoxometalates nanoparticles: Synthesis, characterization and carbon nanotube modification. Solid State Commun. 2004, 29, 559–564. [Google Scholar] [CrossRef]
- Dios, M.; Salgueirino, V.; Perez-Lorenzo, M.; Correa-Duarte, M.A. Synthesis of Carbon Nanotube-Inorganic Hybrid Nanocomposites: An Instructional Experiment in Nanomaterials Chemistry. J. Chem. Educ. 2012, 89, 280–283. [Google Scholar]
- Ye, L.T.; Li, Z.S.; Zhang, L.; Lei, F.L.; Lin, S. A green one-pot synthesis of Pt/TiO2/Graphene composites and its electro-photo-synergistic catalytic properties for methanol oxidation. J. Colloid Interface Sci. 2014, 433, 156–162. [Google Scholar] [CrossRef] [PubMed]
- Kim, M.S.; Fang, B.Z.; Chaudhari, N.K.; Song, M.Y.; Bae, T.S.; Yu, J.S. A highly efficient synthesis approach of supported Pt-Ru catalyst for direct methanol fuel cell. Electrochim. Acta 2010, 55, 4543–4550. [Google Scholar] [CrossRef]
- Zhao, X.; Zhu, J.B.; Liang, L.; Liu, C.P.; Liao, J.H. Enhanced electroactivity of Pd nanocrystals supported on H3PMo12O40/carbon for formic acid electrooxidation. J. Power Sources 2012, 210, 392–396. [Google Scholar] [CrossRef]
- Zeng, Q.; Cheng, J.S.; Tang, L.H.; Liu, X.F.; Liu, Y.Z.; Li, J.H.; Jiang, J.H. Self-Assembled Graphene-Enzyme Hierarchical Nanostructures for Electrochemical Biosensing. Adv. Funct. Mater. 2010, 20, 3366–3372. [Google Scholar] [CrossRef]
- Hummers, W.S., Jr.; Offeman, R.E. Preparation of graphitic oxide. J. Am. Chem. Soc. 1958, 80, 1339. [Google Scholar] [CrossRef]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Zhang, X.; He, X.; Ma, A.; Le, L.; Lin, S. Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation. Catalysts 2015, 5, 1275-1288. https://doi.org/10.3390/catal5031275
Wang X, Zhang X, He X, Ma A, Le L, Lin S. Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation. Catalysts. 2015; 5(3):1275-1288. https://doi.org/10.3390/catal5031275
Chicago/Turabian StyleWang, Xiaoying, Xiaofeng Zhang, Xiaolei He, Ai Ma, Lijuan Le, and Shen Lin. 2015. "Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation" Catalysts 5, no. 3: 1275-1288. https://doi.org/10.3390/catal5031275
APA StyleWang, X., Zhang, X., He, X., Ma, A., Le, L., & Lin, S. (2015). Facile Electrodeposition of Flower-Like PMo12-Pt/rGO Composite with Enhanced Electrocatalytic Activity towards Methanol Oxidation. Catalysts, 5(3), 1275-1288. https://doi.org/10.3390/catal5031275