Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks
Abstract
:1. Introduction
2. Results and Discussion
2.1. Influence of Catalyst Activity by Fe Complex in Precursor
Sample | BET Surface Area (m2 g−1) | Current Density at 0.8 V (mA cm−2) | Limiting Current (A cm−2) | Power Density (mW cm−2) |
---|---|---|---|---|
Zn(mIm)2Fe(Ac)2 | 264.8 | 64.7 | 0.883 | 241.5 |
Zn(mIm)2Fe(Ac)2(Phen)6 | 702.2 | 136.9 | 1.57 | 441.9 |
Zn(mIm)2TPI | 859.3 | 221.9 | 1.86 | 603.3 |
2.2. Influence of Adding Carbon Black to MEA Performance
2.3. MEA Fabrication Optimization
3. Experimental Section
3.1. Materials and Methods
3.2. One-Pot Synthesis of ZIF-Based Electrocatalyst Precursor
3.3. Preparation of Electrocatalyst
3.4. Single Fuel Cell Test
3.4.1. Preparation of Cathode
3.4.2. Preparation of Anode
3.4.3. Preparation of Membrane Electrode Assembly
3.4.4. Fuel Cell Activity Test
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Costamagna, P.; Srinivasan, S. Quantum jumps in the pemfc science and technology from the 1960s to the year 2000 part ii. Engineering, technology development and application aspects. J. Power Sources 2001, 102, 253–269. [Google Scholar] [CrossRef]
- Debe, M.K. Electrocatalyst approaches and challenges for automotive fuel cells. Nature 2012, 486, 43–51. [Google Scholar] [CrossRef] [PubMed]
- Mehta, V.; Cooper, J.S. Review and analysis of pem fuel cell design and manufacturing. J. Power Sources 2003, 114, 32–53. [Google Scholar] [CrossRef]
- Wagner, F.T.; Lakshmanan, B.; Mathias, M.F. Electrochemistry and the future of the automobile. J. Phys. Chem. Lett. 2010, 1, 2204–2219. [Google Scholar] [CrossRef]
- Wong, W.Y.; Daud, W.R.W.; Mohamad, A.B.; Kadhum, A.A.H.; Loh, K.S.; Majlan, E.H. Recent progress in nitrogen-doped carbon and its composites as electrocatalysts for fuel cell applications. Int. J. Hydrogen Energ. 2013, 38, 9370–9386. [Google Scholar] [CrossRef]
- Gewirth, A.A.; Thorum, M.S. Electroreduction of dioxygen for fuel-cell applications: Materials and challenges. Inorg. Chem. 2010, 49, 3557–3566. [Google Scholar] [CrossRef] [PubMed]
- Jasinski, R. A new fuel cell cathode catalyst. Nature 1964, 201, 1212–1213. [Google Scholar] [CrossRef]
- Ma, S.Q.; Goenaga, G.A.; Call, A.V.; Liu, D.J. Cobalt imidazolate framework as precursor for oxygen reduction reaction electrocatalysts. Chem. Eur. J. 2011, 17, 2063–2067. [Google Scholar] [CrossRef] [PubMed]
- Carne, A.; Carbonell, C.; Imaz, I.; Maspoch, D. Nanoscale metal-organic materials. Chem. Soc. Rev. 2011, 40, 291–305. [Google Scholar] [CrossRef] [PubMed]
- James, S.L. Metal-organic frameworks. Chem. Soc. Rev. 2003, 32, 276–288. [Google Scholar] [CrossRef] [PubMed]
- Allendorf, M.D.; Schwartzberg, A.; Stavila, V.; Talin, A.A. A roadmap to implementing metal-organic frameworks in electronic devices: Challenges and critical directions. Chem. Eur. J. 2011, 17, 11372–11388. [Google Scholar] [CrossRef] [PubMed]
- Ariga, K.; Yamauchi, Y.; Rydzek, G.; Ji, Q.M.; Yonamine, Y.; Wu, K.C.W.; Hill, J.P. Layer-by-layer nanoarchitectonics: Invention, innovation, and evolution. Chem. Lett. 2014, 43, 36–68. [Google Scholar] [CrossRef]
- Gascon, J.; Corma, A.; Kapteijn, F.; Xamena, F.X.L.I. Metal organic framework catalysis: Quo vadis? ACS Catal. 2014, 4, 361–378. [Google Scholar] [CrossRef]
- Ryder, M.R.; Tan, J.C. Nanoporous metal organic framework materials for smart applications. Mater. Sci. Technol. 2014, 30, 1598–1612. [Google Scholar] [CrossRef]
- Proietti, E.; Jaouen, F.; Lefevre, M.; Larouche, N.; Tian, J.; Herranz, J.; Dodelet, J.P. Iron-based cathode catalyst with enhanced power density in polymer electrolyte membrane fuel cells. Nat. Commun. 2011, 2. [Google Scholar] [CrossRef] [PubMed]
- Zhao, D.; Shui, J.L.; Chen, C.; Chen, X.Q.; Reprogle, B.M.; Wang, D.P.; Liu, D.J. Iron imidazolate framework as precursor for electrocatalysts in polymer electrolyte membrane fuel cells. Chem. Sci. 2012, 3, 3200–3205. [Google Scholar] [CrossRef]
- Zhao, D.; Shui, J.L.; Grabstanowicz, L.R.; Chen, C.; Commet, S.M.; Xu, T.; Lu, J.; Liu, D.J. Highly efficient non-precious metal electrocatalysts prepared from one-pot synthesized zeolitic imidazolate frameworks. Adv. Mater. 2014, 26, 1093–1097. [Google Scholar] [CrossRef] [PubMed]
- Xia, W.; Zhu, J.H.; Guo, W.H.; An, L.; Xia, D.G.; Zou, R.Q. Well-defined carbon polyhedrons prepared from nano metal-organic frameworks for oxygen reduction. J. Mater. Chem. A 2014, 2, 11606–11613. [Google Scholar] [CrossRef]
- Zhao, S.L.; Yin, H.J.; Du, L.; He, L.C.; Zhao, K.; Chang, L.; Yin, G.P.; Zhao, H.J.; Liu, S.Q.; Tang, Z.Y. Carbonized nanoscale metal-organic frameworks as high performance electrocatalyst for oxygen reduction reaction. ACS Nano 2014, 8, 12660–12668. [Google Scholar] [CrossRef] [PubMed]
- Tian, J.; Morozan, A.; Sougrati, M.T.; Lefevre, M.; Chenitz, R.; Dodelet, J.P.; Jones, D.; Jaouen, F. Optimized synthesis of Fe/N/C cathode catalysts for pem fuel cells: A matter of iron-ligand coordination strength. Angew. Chem. Int. Edit. 2013, 52, 6867–6870. [Google Scholar] [CrossRef] [PubMed]
- Jaouen, F.; Herranz, J.; Lefevre, M.; Dodelet, J.P.; Kramm, U.I.; Herrmann, I.; Bogdanoff, P.; Maruyama, J.; Nagaoka, T.; Garsuch, A.; et al. Cross-laboratory experimental study of non-noble-metal electrocatalysts for the oxygen reduction reaction. ACS Appl. Mater. Inter. 2009, 1, 1623–1639. [Google Scholar] [CrossRef] [PubMed]
- Mikhailenko, S.D.; Afsahi, F.; Kaliaguine, S. Complex impedance spectroscopy study of the thermolysis products of metal-organic frameworks. J. Phys. Chem. C 2014, 118, 9165–9175. [Google Scholar] [CrossRef]
- Inoue, H.; Hosoya, K.; Kannari, N.; Ozaki, J. Influence of heat-treatment of ketjen black on the oxygen reduction reaction of Pt/C catalysts. J. Power Sources 2012, 220, 173–179. [Google Scholar] [CrossRef]
- Lee, J.S.; Park, G.S.; Kim, S.T.; Liu, M.L.; Cho, J. A highly efficient electrocatalyst for the oxygen reduction reaction: N-doped ketjenblack incorporated into Fe/Fe3C-functionalized melamine foam. Angew. Chem. Int. Edit. 2013, 52, 1026–1030. [Google Scholar] [CrossRef] [PubMed]
- Nam, G.; Park, J.; Kim, S.T.; Shin, D.B.; Park, N.; Kim, Y.; Lee, J.S.; Cho, J. Metal-free ketjenblack incorporated nitrogen-doped carbon sheets derived from gelatin as oxygen reduction catalysts. Nano Lett. 2014, 14, 1870–1876. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.R.; Islam, M.N.; Matsuura, T.; Tamano, M.; Hayashi, Y.; Hori, M. Improving the performance of a PEMFC with Ketjenblack EC-600JD carbon black as the material of the microporous layer. Electrochem. Solid-State Lett. 2005, 8, A320–A323. [Google Scholar] [CrossRef]
- Lin, J.B.; Lin, R.B.; Cheng, X.N.; Zhang, J.P.; Chen, X.M. Solvent/additive-free synthesis of porous/zeolitic metal azolate frameworks from metal oxide/hydroxide. Chem. Commun. 2011, 47, 9185–9187. [Google Scholar] [CrossRef] [PubMed]
© 2015 by the authors; licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barkholtz, H.M.; Chong, L.; Kaiser, Z.B.; Xu, T.; Liu, D.-J. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks. Catalysts 2015, 5, 955-965. https://doi.org/10.3390/catal5020955
Barkholtz HM, Chong L, Kaiser ZB, Xu T, Liu D-J. Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks. Catalysts. 2015; 5(2):955-965. https://doi.org/10.3390/catal5020955
Chicago/Turabian StyleBarkholtz, Heather M., Lina Chong, Zachary B. Kaiser, Tao Xu, and Di-Jia Liu. 2015. "Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks" Catalysts 5, no. 2: 955-965. https://doi.org/10.3390/catal5020955
APA StyleBarkholtz, H. M., Chong, L., Kaiser, Z. B., Xu, T., & Liu, D.-J. (2015). Highly Active Non-PGM Catalysts Prepared from Metal Organic Frameworks. Catalysts, 5(2), 955-965. https://doi.org/10.3390/catal5020955