Mechanochemistry in Waste Valorization: Advances in the Synthesis of Catalysts, Polymers, and Functional Materials
Abstract
1. Introduction
2. Methods
2.1. Search Strategy
2.2. Inclusion and Exclusion Criteria
2.3. Study Selection
3. Results
3.1. Mechanochemistry: A Tool to Enhance Waste Valorization into Valuable Products
3.2. Fly Ashes Waste
3.3. Biomass
3.4. Polymer Waste
3.5. Crustaceans
3.6. Synthesis of Materials
3.7. Recovery of Used Battery Metals
Materies | Type of Mill | Milling Parameters | Leaching Parameters | Leaching Efficiency (%) | Ref. |
---|---|---|---|---|---|
LCO | Planetary | Ratio of the rotational-to-revolution speed is fixed at 1, air atmosphere Time: 36 h, Co-grinding reagent: polyvinyl chloride (PVC)-LiCoO2: = 1:1 | H2O, L/S = 250 mL/g, 1 h, agitation | 90% Co and >90% Li | [221] |
LCO | Planetary | Ratio of the rotational-to-revolution speed is fixed at 1, Time: 30 h, air atmosphere Co-grinding reagent: polyvinyl chloride (PVC)/LiCoO2 = 1:1 | H2O, L/S = 250 mL/g, 1 h, agitation | 90% Co and 100% Li | [220] |
CRT | Planetary | Speed: 500 rpm, Time: 240 min | H2O, L/S = 20 mL/g, agitation, 95 °C, 2 h 3 M HNO3, L/S = 150 mL/g, agitation, 95 °C, 2 h | 92.5% Pb | [230] |
LCO | Planetary | Speed: 600 rpm Time: 240 min Co-grinding reagent: LiCoO2/EDTA = 1:4 | H2O: 100 mL, agitated for 30 min | 98% Co and 99% Li | [231] |
LCO | Planetary | Speed: 600 rpm Time: 12 h Co-grinding reagent: LCO/PVC/Fe = 1:1:2 | H2O: 100 mL | 81.1% Co, 91.9% Co was rearranged to CoFexOy and 100% Li | [222] |
LCO | Planetary | Speed: 650 rpm, Time: 250 min Co-grinding reagent: Fe/LiCoO2 = 1:1 | 1 M HNO3; 2 h, 25 °C, magnetic stirring | 99.9% Ni, 91.25% Co, 100% Mn and 77.15% Li | [223] |
LFP | Planetary | Speed: 550 rpm, Time: 120 min, Co-grinding reagent: LiFePO4/EDTA-2Na = 3:1 | 0.6 M H3PO4, S/L = 50 g/L, 20 min, 25 °C | 97.67% Fe and 94.29% Li | [232] |
LCO | Planetary | Speed: 500 rpm Time:60 min | 1.0 M L-ascorbic acid; 20 min; 298 K; 10 g/L | 99% Co and 100% Li | [233] |
LCO | Planetary | Speed: 500 rpm Time:30 min Co-grinding reagent: C | 20 vol% acetic acid; 5 vol% H2O2; 15 min; 298 K | 99.7% Co and 99.8% Li | [234] |
LFP | Planetary | Speed: 500 rpm Time:120 min Co-grinding reagent: oxalic acid ball milling medium:1 mL H2O | H2O | 94% Fe and 99% Li | [235] |
LFP | Planetary | Speed: 500 rpm Time: 360 min Co-grinding reagent: NaCl | H2O | >90% Li | [224] |
WPCB | Planetary | Speed: 400 rpm Time: 240 min Co-grinding reagent: K2S2O8/WPCB = 3:2 | H2O: 50 mL; magnetic stirring; 300 rpm. temperature: 25, 35, 45, and 55 °C | >98% Cu | [236] |
LCO | SPEX 8000 shaker mil | Speed = 1725 rpm Time = 180 min, Co-grinding reagent: Al/LiCoO2 = 1:1 under air atmosphere and LiCoO2/Li = 1:3 and LiCoO2/Ca = 1:1.5 under argon atmosphere | H2O, stirred for a few minutes in air, 1 M Na2CO3, stirred for 1 h, room temperature | 90% Co and 70% Li | [225] |
LCO | Planetary | Speed = 700 rpm Time = 90 min, and LiCoO2/Li and LiCoO2/Ca atmospheric pressure Co-grinding reagent: dry ice; mass ratio = 1:20, NaCl, SiO2; LCO/NaCl mass ratio = 1:6, LCO/SiO2 mass ratio = 1:2, room temperature | H2O, magnetic stirring, room temperature, 5 min | 95% Li | [237] |
LCO | Planetary | Speed: 500 rpm, Time: 720 min, Co-grinding reagent: LiCoO2/NaCl = 1:6 and LiCoO2/SiO2 = 1:2, room temperature and atmospheric pressure | H2O, magnetic stirring, room temperature, 5 min | 92.89% Li | [238] |
NCM | Planetary | Speed: 550 rpm Time: 120 min Co-grinding reagent: Zn powder | 1.5 M H2SO4; 15 min; 323 K; 20 g/L | 96.2% Ni, 94.3% Co, 91.0% Mn and 99.9% Li | [239] |
LNCM | Planetary | Speed: 800 rpm Time: 180 min Co-grinding reagent: (NH4)2SO4, sucrose and powder Fe | 1 M H2SO4; 298 K, 15 min; pH 2.0; 25 g/L. | 99.1% Li, 96.2% Co, 99.9% Ni and 99.2% Mn, | [213] |
LCO | Planetary | Speed: 500 rpm Time: 120 min | 1 M H2SO4; 0.03 M NH4Cl; 60 min; 353 K; 20 g/L | 99.22% Co and 100% Li | [240] |
LCO | Planetary | Speed: 500 rpm, Time: 240 min, Co-grinding reagent: LCO/alginic acid = 1:10 and 2 mL of H2O2 | H2O, room temperature, and agitated for 5 min | 97.58% Li and 98.59% Co | [241] |
LCO | Planetary | Speed:400 rpm Time:60 min Co-grinding reagent: Grape skin powder | 0.15 M citric acid; 323 K; 30 min; 30 g/L | 98.87% Co and 99.33% Li | [227] |
LCO, NMC, LMO and LFP | SPEX 8000 shaker mill | Speed = 1725 rpm Time = 180 min, Co-grinding reagent: Al/LiCoO2 = 1:1, Al/NMC = 1:2.33, LiMn2O4/Al = 1:2.33, LiFePO4/Al = 1:3 and LCO:NMC:LMO:LFP:7.33Al, all experiments were performed in air atmosphere | H2O, stirred for a few minutes in air, room temperature | 29.8–39.6% Li | [226] |
LCO, NMC, LMO and LFP | SPEX 8000 shaker mill | Speed = 1725 rpm. Time = 180 min, Co-grinding reagent: Al/LiCoO2 = 1:1, Al/NMC = 1:2.33, LiMn2O4/Al = 1:2.33, LiFePO4/Al = 1:3 and LCO:NMC:LMO:LFP:7.33Al, all experiments were performed in air atmosphere | H2O, stirred for a few minutes in air, room temperature, carbonatization and recrystallization at 70 °C | 55.6–75.9% Li | [226] |
LCO | Planetary | Speed = 650 rpm, time = 90 min, ball-to-powder mass ratio = 60:1 | EDTA 0.052 M, H2O2 0.3 vol.% at room temperature and leaching time = 60 min | 100% Co and 98.2% Li | [242] |
LCO | Planetary | Speed: 600 rpm, Time: 60 min, Co-grinding reagent: citric acid/LCO = 1 and ascorbic acid/LCO = 0.5 | H2O, S/L = 775 g/L, 15 min, room temperature | 97.2% Co and 99.7% Li | [243] |
LCO | Planetary | revolution speed of 100 r/min, rotation speed of 468 r/min, Time: 120 min, Co-grinding reagent: H2SO4 0.5 M, H2O2 2 M and LCO | Saturated H2C2O4 solution, S/L = 20 | 98.96% Co | [228] |
LFP | _ | Speed of 30 Hz Time: 4 min Co-grinding reagent: C10H14N2Na2O8 and H2O2 | H2O; 298 K; 30 min | 99.17% Li and 2.39% Fe | [229] |
3.8. Synthesis of Battery-Based Nanocomposites
3.9. Technology Assessment
3.10. Limitations of Technology
3.10.1. Product Purification
3.10.2. Difficulty of Scalability
3.10.3. Parameter Control and Reproducibility
3.10.4. Equipment Wear and Contamination
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Šepelák, V.; Düvel, A.; Wilkening, M.; Becker, K.-D.; Heitjans, P. Mechanochemical Reactions and Syntheses of Oxides. Chem. Soc. Rev. 2013, 42, 7507. [Google Scholar] [CrossRef] [PubMed]
- Takacs, L.M. Carey Lea, the First Mechanochemist. J. Mater. Sci. 2004, 39, 4987–4993. [Google Scholar] [CrossRef]
- Oliveira, P.F.M.; Baron, M.; Chamayou, A.; André-Barrès, C.; Guidetti, B.; Baltas, M. Solvent-Free Mechanochemical Route for Green Synthesis of Pharmaceutically Attractive Phenolhydrazones. RSC Adv. 2014, 4, 56736–56742. [Google Scholar] [CrossRef]
- Baláž, M.; Boldyreva, E.V.; Rybin, D.; Pavlović, S.; Rodríguez-Padrón, D.; Mudrinić, T.; Luque, R. State-of-the-Art of Eggshell Waste in Materials Science: Recent Advances in Catalysis, Pharmaceutical Applications, and Mechanochemistry. Front. Bioeng. Biotechnol. 2021, 8, 612567. [Google Scholar] [CrossRef] [PubMed]
- Descamps, M.; Willart, J.F. Perspectives on the Amorphisation/Milling Relationship in Pharmaceutical Materials. Adv. Drug Deliv. Rev. 2016, 100, 51–66. [Google Scholar] [CrossRef]
- Krusenbaum, A.; Grätz, S.; Tigineh, G.T.; Borchardt, L.; Kim, J.G. The Mechanochemical Synthesis of Polymers. Chem. Soc. Rev. 2022, 51, 2873–2905. [Google Scholar] [CrossRef]
- Rodríguez-Seoane, P.; Domínguez, H.; Torres, M.D. Mechanical Characterization of Biopolymer-based Hydrogels Enriched with Paulownia Extracts Recovered Using a Green Technique. Appl. Sci. 2020, 10, 8439. [Google Scholar] [CrossRef]
- Nagarajan, S.; Radhakrishnan, S.; Kalkura, S.N.; Balme, S.; Miele, P.; Bechelany, M. Overview of Protein-Based Biopolymers for Biomedical Application. Macromol. Chem. Phys. 2019, 220, 1900126. [Google Scholar] [CrossRef]
- James, S.L.; Adams, C.J.; Bolm, C.; Braga, D.; Collier, P.; Friščić, T.; Grepioni, F.; Harris, K.D.M.; Hyett, G.; Jones, W.; et al. Mechanochemistry: Opportunities for New and Cleaner Synthesis. Chem. Soc. Rev. 2012, 41, 413–447. [Google Scholar] [CrossRef] [PubMed]
- Cova, C.M.; Luque, R. Advances in Mechanochemical Processes for Biomass Valorization. BMC Chem. Eng. 2019, 1, 16. [Google Scholar] [CrossRef]
- Liu, X.; Li, Y.; Zeng, L.; Li, X.; Chen, N.; Bai, S.; He, H.; Wang, Q.; Zhang, C. A Review on Mechanochemistry: Approaching Advanced Energy Materials with Greener Force. Adv. Mater. 2022, 34, 2108327. [Google Scholar] [CrossRef] [PubMed]
- Do, J.L.; Mottillo, C.; Tan, D.; Štrukil, V.; Friščić, T. Mechanochemical Ruthenium-Catalyzed Olefin Metathesis. J. Am. Chem. Soc. 2015, 137, 2476–2479. [Google Scholar] [CrossRef] [PubMed]
- Do, J.L.; Friščić, T. Mechanochemistry: A Force of Synthesis. ACS Cent. Sci. J. 2017, 3, 13–19. [Google Scholar] [CrossRef]
- Xu, C.; De, S.; Balu, A.M.; Ojeda, M.; Luque, R. Mechanochemical Synthesis of Advanced Nanomaterials for Catalytic Applications. Chem. Commun. 2015, 51, 6698–6713. [Google Scholar] [CrossRef] [PubMed]
- Kalinkin, A.M.; Gurevich, B.I.; Myshenkov, M.S.; Chislov, M.V.; Kalinkina, E.V.; Zvereva, I.A.; Cherkezova-Zheleva, Z.; Paneva, D.; Petkova, V. Synthesis of Fly Ash-Based Geopolymers: Effect of Calcite Addition and Mechanical Activation. Minerals 2020, 10, 827. [Google Scholar] [CrossRef]
- Web of Science. Available online: https://www.webofscience.com/wos/woscc/summary/af64e11b-2477-4067-bf19-d1e8ecaa29a2-0165a1a177/relevance/1 (accessed on 5 June 2025).
- Zhang, J.; Zhang, P.; Shao, L.; Wang, R.; Ma, Y.; Szostak, M. Mechanochemical Solvent-Free Suzuki–Miyaura Cross-Coupling of Amides via Highly Chemoselective N−C Cleavage. Angew. Chem. Int. Ed. 2022, 61, e202114146. [Google Scholar] [CrossRef]
- Thiery, E.; Delaye, P.O.; Thibonnet, J.; Boudesocque-Delaye, L. Mechanochemical Suzuki-Miyaura Cross-Coupling with Natural Deep Eutectic Solvent as Liquid-Assisted Grinding Additive: Merging Two Fields for a Greener Strategy. Eur. J. Org. Chem. 2023, 26, e202300727. [Google Scholar] [CrossRef]
- Das, D.; Bhosle, A.A.; Panjikar, P.C.; Chatterjee, A.; Banerjee, M. Mn(I)-Catalyzed Mechanochemical C-H Bond Activation: C-2 Selective Alkenylation of Indoles. ACS Sustain. Chem. Eng. 2020, 8, 19105–19116. [Google Scholar] [CrossRef]
- Beamish-Cook, J.; Shankland, K.; Murray, C.A.; Vaqueiro, P. Insights into the Mechanochemical Synthesis of MOF-74. Cryst. Growth Des. 2021, 21, 3047–3055. [Google Scholar] [CrossRef]
- Stolar, T.; Prašnikar, A.; Martinez, V.; Karadeniz, B.; Bjelić, A.; Mali, G.; Friščić, T.; Likozar, B.; Užarević, K. Scalable Mechanochemical Amorphization of Bimetallic Cu-Zn MOF-74 Catalyst for Selective CO2 reduction Reaction to Methanol. ACS Appl. Mater. Interfaces 2021, 13, 3070–3077. [Google Scholar] [CrossRef]
- Vasconcelos, A.A.; Len, T.; Oliveira, A.N.; Costa, A.A.F.; Souza, A.R.S.; Costa, C.E.F.; Luque, R.; Rocha Filho, G.N.; Noronha, R.C.R.; Nascimento, L.A.S. Zeolites: A Theoretical and Practical Approach with Uses in (Bio)Chemical Processes. Appl. Sci. 2023, 13, 1897. [Google Scholar] [CrossRef]
- Rincon, E.; Garcia, A.; Romero, A.A.; Serrano, L.; Luque, R.; Balu, A.M. Mechanochemical Preparation of Novel Polysaccharide-Supported Nb2O5 Catalysts. Catalysts 2019, 9, 38. [Google Scholar] [CrossRef]
- Marjanović, N.; Komljenović, M.; Baščarević, Z.; Nikolić, V. Improving Reactivity of Fly Ash and Properties of Ensuing Geopolymers through Mechanical Activation. Constr. Build. Mater. 2014, 57, 151–162. [Google Scholar] [CrossRef]
- Chen, Z.; Lu, S.; Mao, Q.; Buekens, A.; Chang, W.; Wang, X.; Yan, J. Suppressing Heavy Metal Leaching through Ball Milling of Fly Ash. Energies 2016, 9, 524. [Google Scholar] [CrossRef]
- Lukić, I.; Kesić, Ž.; Zdujić, M.; Skala, D. Calcium Diglyceroxide Synthesized by Mechanochemical Treatment, Its Characterization and Application as Catalyst for Fatty Acid Methyl Esters Production. Fuel 2016, 165, 159–165. [Google Scholar] [CrossRef]
- Chumpiboon, A.; Thongsubsai, K.; Pongsiri, T.; Knijnenburg, J.T.N.; Ngernyen, Y. Removal of Cationic Dye from Textile Wastewater Using Treated Bagasse Fly Ash: An Industrial Waste. Eng. Appl. Sci. Res. 2022, 49, 381–394. [Google Scholar] [CrossRef]
- Kumar, S.; Mucsi, G.; Kristály, F.; Pekker, P. Mechanical Activation of Fly Ash and Its Influence on Micro and Nano-Structural Behaviour of Resulting Geopolymers. Adv. Powder Technol. 2017, 28, 805–813. [Google Scholar] [CrossRef]
- Oyun-Erdene, G.; Temuujin, J. Effect of Mechanical Activation of Fluidized Bed Fly Ash on Geopolymer Properties. Solid State Phenom. 2019, 288, 51–58. [Google Scholar] [CrossRef]
- Hajiali, F.; Jin, T.; Yang, G.; Santos, M.; Lam, E.; Moores, A. Mechanochemical Transformations of Biomass into Functional Materials. ChemSusChem 2022, 15, e202102535. [Google Scholar] [CrossRef]
- Scimmi, C.; Sancineto, L.; Drabowicz, J.; Santi, C. New Insights into Green Protocols for Oxidative Depolymerization of Lignin and Lignin Model Compounds. Int. J. Mol. Sci. 2022, 23, 4378. [Google Scholar] [CrossRef]
- Zheng, L.; Sun, C.; Xu, W.; Dushkin, A.V.; Polyakov, N.; Su, W.; Yu, J. Mechanically Induced Solvent-Free Esterification Method at Room Temperature. RSC Adv. 2021, 11, 5080–5085. [Google Scholar] [CrossRef]
- Hajiali, F.; Vidal, J.; Jin, T.; De La Garza, L.C.; Santos, M.; Yang, G.; Moores, A. Extraction of Chitin from Green Crab Shells by Mechanochemistry and Aging. ACS Sustain. Chem. Eng. 2022, 10, 11348–11357. [Google Scholar] [CrossRef]
- Kaabel, S.; Arciszewski, J.; Borchers, T.H.; Therien, J.P.D.; Friščić, T.; Auclair, K. Solid-State Enzymatic Hydrolysis of Mixed PET/Cotton Textiles**. ChemSusChem 2023, 16, e202201613. [Google Scholar] [CrossRef]
- Zhao, Z.; Abdo, S.M.A.; Wang, X.; Li, H.; Li, X.; Gao, X. Process Intensification on Co-Pyrolysis of Polyethylene Terephthalate Wastes and Biomass via Microwave Energy: Synergetic Effect and Roles of Microwave Susceptor. J. Anal. Appl. Pyrolysis 2021, 158, 105239. [Google Scholar] [CrossRef]
- Al-Ithawi, W.K.A.; Khasanov, A.F.; Kovalev, I.S.; Nikonov, I.L.; Platonov, V.A.; Kopchuk, D.S.; Santra, S.; Zyryanov, G.V.; Ranu, B.C. TM-Free and TM-Catalyzed Mechanosynthesis of Functional Polymers. Polymers 2023, 15, 1853. [Google Scholar] [CrossRef]
- Yang, S.; Bai, S.; Duan, W.; Wang, Q. Preparation of Composites Based on Recycled Polypropylene and Automotive Shredder Residue. Polym. Int. 2018, 67, 936–945. [Google Scholar] [CrossRef]
- Arciszewski, J.; Auclair, K. Mechanoenzymatic Reactions Involving Polymeric Substrates or Products. ChemSusChem 2022, 15, e202102084. [Google Scholar] [CrossRef] [PubMed]
- Skórczewska, K.; Lewandowski, K.; Szewczykowski, P.; Wilczewski, S.; Szulc, J.; Stopa, P.; Nowakowska, P. Waste Eggshells as a Natural Filler for the Poly(Vinyl Chloride) Composites. Polymers 2022, 14, 4372. [Google Scholar] [CrossRef]
- Iber, B.T.; Kasan, N.A.; Torsabo, D.; Omuwa, J.W. A Review of Various Sources of Chitin and Chitosan in Nature. J. Renew. Mater. 2022, 10, 1097–1123. [Google Scholar] [CrossRef]
- Elamri, A.; Zdiri, K.; Hamdaoui, M.; Harzallah, O. Chitosan: A Biopolymer for Textile Processes and Products. Text. Res. J. 2023, 93, 1456–1484. [Google Scholar] [CrossRef]
- Margoutidis, G.; Parsons, V.H.; Bottaro, C.S.; Yan, N.; Kerton, F.M. Mechanochemical Amorphization of α-Chitin and Conversion into Oligomers of N-Acetyl-D-Glucosamine. ACS Sustain. Chem. Eng. 2018, 6, 1662–1669. [Google Scholar] [CrossRef]
- Therien, J.P.D.; Hammerer, F.; Friščić, T.; Auclair, K. Mechanoenzymatic Breakdown of Chitinous Material to N-Acetylglucosamine: The Benefits of a Solventless Environment. ChemSusChem 2019, 12, 3481–3490. [Google Scholar] [CrossRef]
- Zhou, D.; Shen, D.; Lu, W.; Song, T.; Wang, M.; Feng, H.; Shentu, J.; Long, Y. Production of 5-Hydroxymethylfurfural from Chitin Biomass: A Review. Molecules 2020, 25, 541. [Google Scholar] [CrossRef] [PubMed]
- Bychkov, A.; Podgorbunskikh, E.; Bychkova, E.; Lomovsky, O. Current Achievements in the Mechanically Pretreated Conversion of Plant Biomass. Biotechnol. Bioeng. 2019, 116, 1231–1244. [Google Scholar] [CrossRef]
- Baláž, M. Ball Milling of Eggshell Waste as a Green and Sustainable Approach: A Review. Adv. Colloid Interface Sci. 2018, 256, 256–275. [Google Scholar] [CrossRef] [PubMed]
- Piras, C.C.; Fernández-Prieto, S.; De Borggraeve, W.M. Ball Milling: A Green Technology for the Preparation and Functionalisation of Nanocellulose Derivatives. Nanoscale Adv. 2019, 1, 937–947. [Google Scholar] [CrossRef] [PubMed]
- Grabias-Blicharz, E.; Franus, W. A Critical Review on Mechanochemical Processing of Fly Ash and Fly Ash-Derived Materials. Sci. Total Environ. 2023, 860, 160529. [Google Scholar] [CrossRef]
- Guo, X.; Xiang, D.; Duan, G.; Mou, P. A Review of Mechanochemistry Applications in Waste Management. Waste Manag. 2010, 30, 4–10. [Google Scholar] [CrossRef]
- Chu, Y.S.; Davaabal, B.; Kim, D.S.; Seo, S.K.; Kim, Y.; Ruescher, C.; Temuujin, J. Reactivity of Fly Ashes Milled in Different Milling Devices. Rev. Adv. Mater. Sci. 2019, 58, 179–188. [Google Scholar] [CrossRef]
- Yin, S.; Tuladhar, R.; Shi, F.; Shanks, R.A.; Combe, M.; Collister, T. Mechanical Reprocessing of Polyolefin Waste: A Review. Polym. Eng. Sci. 2015, 55, 2899–2909. [Google Scholar] [CrossRef]
- Len, C.; Duhan, V.; Ouyang, W.; Nguyen, R.; Lochab, B. Mechanochemistry and Oleochemistry: A Green Combination for the Production of High-Value Small Chemicals. Front. Chem. 2023, 11, 1306182. [Google Scholar] [CrossRef]
- Cagnetta, G.; Robertson, J.; Huang, J.; Zhang, K.; Yu, G. Mechanochemical Destruction of Halogenated Organic Pollutants: A Critical Review. J. Hazard. Mater. 2016, 313, 85–102. [Google Scholar] [CrossRef]
- Page, M.J.; Moher, D.; Bossuyt, P.M.; Boutron, I.; Hoffmann, T.C.; Mulrow, C.D.; Shamseer, L.; Tetzlaff, J.M.; Akl, E.A.; Brennan, S.E.; et al. PRISMA 2020 Explanation and Elaboration: Updated Guidance and Exemplars for Reporting Systematic Reviews. BMJ 2021, 372, n160. [Google Scholar] [CrossRef]
- Ouzzani, M.; Hammady, H.; Fedorowicz, Z.; Elmagarmid, A. Rayyan-a Web and Mobile App for Systematic Reviews. Syst. Rev. 2016, 5, 210. [Google Scholar] [CrossRef] [PubMed]
- Pena, S.B.; Guimarães, H.C.Q.C.; Lopes, J.L.; Guandalini, L.S.; Taminato, M.; Barbosa, D.A.; Barros, A.L.B.L. Revisão Sistemática Med o de Cair e o Risco de Queda: Revisão Sistemática e Metanálise. Acta Paul. Enferm. 2019, 32, 456–463. [Google Scholar] [CrossRef]
- Stellacci, P.; Liberti, L.; Notarnicola, M.; Bishop, P.L. Valorization of Coal Fly Ash by Mechano-Chemical Activation. Part I. Enhancing Adsorption Capacity. Chem. Eng. J. 2009, 149, 11–18. [Google Scholar] [CrossRef]
- Geng, X.; Duan, Y.; Zhao, S.; Hu, J.; Zhao, W. Mechanism Study of Mechanochemical Bromination on Fly Ash Mercury Removal Adsorbent. Chemosphere 2021, 274, 129637. [Google Scholar] [CrossRef] [PubMed]
- Xu, H.; Van Deventer, J.S.J. The Geopolymerisation of Alumino-Silicate Minerals. Int. J. Miner. Process. 2000, 59, 247–266. [Google Scholar] [CrossRef]
- Mucsi, G.; Kumar, S.; Csőke, B.; Kumar, R.; Molnár, Z.; Rácz, Á.; Mádai, F.; Debreczeni, Á. Control of Geopolymer Properties by Grinding of Land Filled Fly Ash. Int. J. Miner. Process. 2015, 143, 50–58. [Google Scholar] [CrossRef]
- Nath, S.K.; Kumar, S. Role of Particle Fineness on Engineering Properties and Microstructure of Fly Ash Derived Geopolymer. Constr. Build. Mater. 2020, 233, 117294. [Google Scholar] [CrossRef]
- Matsuoka, M.; Yokoyama, K.; Okura, K.; Murayama, N.; Ueda, M.; Naito, M. Synthesis of Geopolymers from Mechanically Activated Coal Fly Ash and Improvement of Their Mechanical Properties. Minerals 2019, 9, 791. [Google Scholar] [CrossRef]
- Nikolić, V.; Komljenović, M.; Marjanović, N.; Baščarević, Z.; Petrović, R. Lead Immobilization by Geopolymers Based on Mechanically Activated Fly Ash. Ceram. Int. 2014, 40, 8479–8488. [Google Scholar] [CrossRef]
- Li, M.G.; Sun, C.J.; Gau, S.H.; Chuang, C.J. Effects of Wet Ball Milling on Lead Stabilization and Particle Size Variation in Municipal Solid Waste Incinerator Fly Ash. J. Hazard. Mater. 2010, 174, 586–591. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M. Prevention of Lead Leaching from Fly Ashes by Mechanochemical Treatment. Waste Manag. 2010, 30, 1290–1295. [Google Scholar] [CrossRef]
- Li, W.; Wang, W.; Wu, D.; Yang, S.; Fang, H.; Sun, S. Mechanochemical Treatment with Red Mud Added for Heavy Metals Solidification in Municipal Solid Waste Incineration Fly Ash. J. Clean. Prod. 2023, 398, 136642. [Google Scholar] [CrossRef]
- Li, H.; Dai, M.; Dai, S.; Dong, X.; Li, F. Methylene Blue Adsorption Properties of Mechanochemistry Modified Coal Fly Ash. Hum. Ecol. Risk Assess. 2018, 24, 2133–2141. [Google Scholar] [CrossRef]
- Sundum, T.; Szécsényi, K.M.; Kaewtatip, K. Preparation and Characterization of Thermoplastic Starch Composites with Fly Ash Modified by Planetary Ball Milling. Carbohydr. Polym. 2018, 191, 198–204. [Google Scholar] [CrossRef]
- Cristelo, N.; Tavares, P.; Lucas, E.; Miranda, T.; Oliveira, D. Quantitative and Qualitative Assessment of the Amorphous Phase of a Class F Fly Ash Dissolved during Alkali Activation Reactions—Effect of Mechanical Activation, Solution Concentration and Temperature. Compos. Part B 2016, 103, 1–14. [Google Scholar] [CrossRef]
- Kumar, S.; Kumar, R. Mechanical Activation of Fly Ash: Effect on Reaction, Structure and Properties of Resulting Geopolymer. Ceram. Int. 2011, 37, 533–541. [Google Scholar] [CrossRef]
- Somna, K.; Jaturapitakkul, C.; Kajitvichyanukul, P.; Chindaprasirt, P. NaOH-Activated Ground Fly Ash Geopolymer Cured at Ambient Temperature. Fuel 2011, 90, 2118–2124. [Google Scholar] [CrossRef]
- Temuujin, J.; Williams, R.P.; van Riessen, A. Effect of Mechanical Activation of Fly Ash on the Properties of Geopolymer Cured at Ambient Temperature. J. Mater. Process. Technol. 2009, 209, 5276–5280. [Google Scholar] [CrossRef]
- Rak, M.J.; Friščić, T.; Moores, A. Mechanochemical Synthesis of Au, Pd, Ru and Re Nanoparticles with Lignin as a Bio-Based Reducing Agent and Stabilizing Matrix. Faraday Discuss. 2014, 170, 155–167. [Google Scholar] [CrossRef]
- Kleine, T.; Buendia, J.; Bolm, C. Mechanochemical Degradation of Lignin and Wood by Solvent-Free Grinding in a Reactive Medium. Green Chem. 2013, 15, 160–166. [Google Scholar] [CrossRef]
- Kobayashi, H.; Yabushita, M.; Komanoya, T.; Hara, K.; Fujita, I.; Fukuoka, A. High-Yielding One-Pot Synthesis of Glucose from Cellulose Using Simple Activated Carbons and Trace Hydrochloric Acid. ACS Catal. 2013, 3, 581–587. [Google Scholar] [CrossRef]
- Jiang, L.-q.; Zheng, A.-q.; Meng, J.-g.; Wang, X.-b.; Zhao, Z.-l.; Li, H.-b. A Comparative Investigation of Fast Pyrolysis with Enzymatic Hydrolysis for Fermentable Sugars Production from Cellulose. Bioresour. Technol. 2019, 274, 281–286. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Wang, X.; Liu, C.; Ren, J.; Zhao, X.; Sun, R.; Wu, A. An Efficient Pretreatment for the Selectively Hydrothermal Conversion of Corncob into Furfural: The Combined Mixed Ball Milling and Ultrasonic Pretreatments. Ind. Crops Prod. 2016, 94, 721–728. [Google Scholar] [CrossRef]
- Dabral, S.; Wotruba, H.; Hernández, J.G.; Bolm, C. Mechanochemical Oxidation and Cleavage of Lignin β-O-4 Model Compounds and Lignin. ACS Sustain. Chem. Eng. 2018, 6, 3242–3254. [Google Scholar] [CrossRef]
- Sun, C.; Zheng, L.; Xu, W.; Dushkin, A.V.; Su, W. Mechanochemical Cleavage of Lignin Models and Ligninviaoxidation and a Subsequent Base-Catalyzed Strategy. Green Chem. 2020, 22, 3489–3494. [Google Scholar] [CrossRef]
- Zakaria, M.R.; Fujimoto, S.; Hirata, S.; Hassan, M.A. Ball Milling Pretreatment of Oil Palm Biomass for Enhancing Enzymatic Hydrolysis. Appl. Biochem. Biotechnol. 2014, 173, 1778–1789. [Google Scholar] [CrossRef]
- Pang, J.; Zheng, M.; Li, X.; Sebastian, J.; Jiang, Y.; Zhao, Y.; Wang, A.; Zhang, T. Unlock the Compact Structure of Lignocellulosic Biomass by Mild Ball Milling for Ethylene Glycol Production. ACS Sustain. Chem. Eng. 2019, 7, 679–687. [Google Scholar] [CrossRef]
- Schneider, L.; Haverinen, J.; Jaakkola, M.; Lassi, U. Solid Acid-Catalyzed Depolymerization of Barley Straw Driven by Ball Milling. Bioresour Technol 2016, 206, 204–210. [Google Scholar] [CrossRef]
- Zhang, H.; Zhang, P.; Ye, J.; Wu, Y.; Liu, J.; Fang, W.; Xu, D.; Wang, B.; Yan, L.; Zeng, G. Comparison of Various Pretreatments for Ethanol Production Enhancement from Solid Residue after Rumen Fluid Digestion of Rice Straw. Bioresour. Technol. 2018, 247, 147–156. [Google Scholar] [CrossRef]
- Kim, H.J.; Lee, S.; Kim, J.; Mitchell, R.J.; Lee, J.H. Environmentally Friendly Pretreatment of Plant Biomass by Planetary and Attrition Milling. Bioresour. Technol. 2013, 144, 50–56. [Google Scholar] [CrossRef]
- Shen, F.; Smith, R.L.; Li, L.; Yan, L.; Qi, X. Eco-Friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst. ACS Sustain. Chem. Eng. 2017, 5, 2421–2427. [Google Scholar] [CrossRef]
- Su, J.; Qiu, M.; Shen, F.; Qi, X. Efficient Hydrolysis of Cellulose to Glucose in Water by Agricultural Residue-Derived Solid Acid Catalyst. Cellulose 2018, 25, 17–22. [Google Scholar] [CrossRef]
- Qiu, M.; Bai, C.; Yan, L.; Shen, F.; Qi, X. Efficient Mechanochemical-Assisted Production of Glucose from Cellulose in Aqueous Solutions by Carbonaceous Solid Acid Catalysts. ACS Sustain. Chem. Eng. 2018, 6, 13826–13833. [Google Scholar] [CrossRef]
- Qi, X.; Yan, L.; Shen, F.; Qiu, M. Mechanochemical-Assisted Hydrolysis of Pretreated Rice Straw into Glucose and Xylose in Water by Weakly Acidic Solid Catalyst. Bioresour. Technol. 2019, 273, 687–691. [Google Scholar] [CrossRef] [PubMed]
- Oh, C.; Choi, E.H.; Choi, E.J.; Premkumar, T.; Song, C. Facile Solid-State Mechanochemical Synthesis of Eco-Friendly Thermoplastic Polyurethanes and Copolymers Using a Biomass-Derived Furan Diol. ACS Sustain. Chem. Eng. 2020, 8, 4400–4406. [Google Scholar] [CrossRef]
- Da Silva, A.S.A.; Inoue, H.; Endo, T.; Yano, S.; Bon, E.P.S. Milling Pretreatment of Sugarcane Bagasse and Straw for Enzymatic Hydrolysis and Ethanol Fermentation. Bioresour. Technol. 2010, 101, 7402–7409. [Google Scholar] [CrossRef] [PubMed]
- Hideno, A.; Inoue, H.; Tsukahara, K.; Fujimoto, S.; Minowa, T.; Inoue, S.; Endo, T.; Sawayama, S. Wet Disk Milling Pretreatment without Sulfuric Acid for Enzymatic Hydrolysis of Rice Straw. Bioresour. Technol. 2009, 100, 2706–2711. [Google Scholar] [CrossRef]
- Hilgert, J.; Meine, N.; Rinaldi, R.; Schüth, F. Mechanocatalytic Depolymerization of Cellulose Combined with Hydrogenolysis as a Highly Efficient Pathway to Sugar Alcohols. Energy Environ. Sci. 2013, 6, 92–96. [Google Scholar] [CrossRef]
- Ribeiro, L.S.; Órfão, J.J.M.; Pereira, M.F.R. Enhanced Direct Production of Sorbitol by Cellulose Ball-Milling. Green Chem. 2015, 17, 2973–2980. [Google Scholar] [CrossRef]
- Su, T.C.; Fang, Z.; Zhang, F.; Luo, J.; Li, X.K. Hydrolysis of Selected Tropical Plant Wastes Catalyzed by a Magnetic Carbonaceous Acid with Microwave. Sci. Rep. 2015, 5, 17538. [Google Scholar] [CrossRef]
- Inoue, H.; Yano, S.; Endo, T.; Sakaki, T.; Sawayama, S. Combining Hot-Compressed Water and Ball Milling Pretreatments to Improve the Efficiency of the Enzymatic Hydrolysis of Eucalyptus. Biotechnol. Biofuels 2008, 1, 2. [Google Scholar] [CrossRef]
- Gu, B.J.; Wang, J.; Wolcott, M.P.; Ganjyal, G.M. Increased Sugar Yield from Pre-Milled Douglas-Fir Forest Residuals with Lower Energy Consumption by Using Planetary Ball Milling. Bioresour. Technol. 2018, 251, 93–98. [Google Scholar] [CrossRef] [PubMed]
- Ribeiro, L.S.; Órfão, J.J.M.; Pereira, M.F.R. Direct Catalytic Production of Sorbitol from Waste Cellulosic Materials. Bioresour. Technol. 2017, 232, 152–158. [Google Scholar] [CrossRef] [PubMed]
- Chacón-Huete, F.; Messina, C.; Chen, F.; Cuccia, L.; Ottenwaelder, X.; Forgione, P. Solvent-Free Mechanochemical Oxidation and Reduction of Biomass-Derived 5-Hydroxymethyl Furfural. Green Chem. 2018, 20, 5261–5265. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, Y.X.; Hou, T.; Chen, X.; Gao, C.; Han, L.; Xiao, W. Mechanical Deconstruction of Corn Stover as an Entry Process to Facilitate the Microwave-Assisted Production of Ethyl Levulinate. Fuel Process. Technol. 2018, 174, 53–60. [Google Scholar] [CrossRef]
- Shen, F.; Sun, S.; Zhang, X.; Yang, J.; Qiu, M.; Qi, X. Mechanochemical-Assisted Production of 5-Hydroxymethylfurfural from High Concentration of Cellulose. Cellulose 2020, 27, 3013–3023. [Google Scholar] [CrossRef]
- He, P.; Lu, H.; Ruan, H.; Wang, C.; Zhang, Q.; Huang, Z.; Liu, J. Mechanochemistry: An Efficient Way to Recycle Thermoset Polyurethanes. Polymers 2022, 14, 3277. [Google Scholar] [CrossRef]
- Roy, P.S.; Garnier, G.; Allais, F.; Saito, K. Strategic Approach Towards Plastic Waste Valorization: Challenges and Promising Chemical Upcycling Possibilities. ChemSusChem 2021, 14, 4007–4027. [Google Scholar] [CrossRef]
- Bandegi, A.; Montemayor, M.; Manas-Zloczower, I. Vitrimerization of Rigid Thermoset Polyurethane Foams: A Mechanochemical Method to Recycle and Reprocess Thermosets. Polym. Adv. Technol. 2022, 33, 3750–3758. [Google Scholar] [CrossRef]
- Capuano, R.; Bonadies, I.; Castaldo, R.; Cocca, M.; Gentile, G.; Protopapa, A.; Avolio, R.; Errico, M.E. Valorization and Mechanical Recycling of Heterogeneous Post-Consumer Polymer Waste through a Mechano-Chemical Process. Polymers 2021, 13, 2783. [Google Scholar] [CrossRef]
- Dwivedi, C.; Manjare, S.; Rajan, S.K. Recycling of Waste Tire by Pyrolysis to Recover Carbon Black: Alternative & Environment-Friendly Reinforcing Filler for Natural Rubber Compounds. Compos. B Eng. 2020, 200, 108346. [Google Scholar] [CrossRef]
- Hamed, O.; Lail, B.A.; Deghles, A.; Qasem, B.; Azzaoui, K.; Obied, A.A.; Algarra, M.; Jodeh, S. Synthesis of a Cross-Linked Cellulose-Based Amine Polymer and Its Application in Wastewater Purification. Environ. Sci. Pollut. Res. 2019, 26, 28080–28091. [Google Scholar] [CrossRef]
- Brenner, M.; Weichold, O. Poultry Feather Waste as Bio-Based Cross-Linking Additive for Ethylene Propylene Diene Rubber. Polymers 2021, 13, 3908. [Google Scholar] [CrossRef] [PubMed]
- Hoque, B.; Kolev, S.D.; Cattrall, R.W.; Gopakumar, T.G.; Almeida, M.I.G.S. A Cross-Linked Polymer Inclusion Membrane for Enhanced Gold Recovery from Electronic Waste. Waste Manag. 2021, 124, 54–62. [Google Scholar] [CrossRef]
- Liu, H.L.; Wang, X.P.; Jia, D.M. Recycling of Waste Rubber Powder by Mechano-Chemical Modification. J. Clean. Prod. 2020, 245, 118716. [Google Scholar] [CrossRef]
- Hajian, M.; Sadrmohaghegh, C.; Scott, G. Solid Phase Dispersants Synthesised by a Mechanochemical Procedure. Eur. Polym. J. 1984, 20, 135–138. [Google Scholar] [CrossRef]
- Hong, S.-J.; Jeong, H.; Yuk, J.S.; Park, M.; Kim, G.; Kim, Y.-W.; Shin, J. Semicrystalline-Glassy Multiblock Copolymers via Mechanochemical Synthesis toward Tough Poly(Lactide). ACS Sustain. Chem. Eng. 2022, 10, 14523–14538. [Google Scholar] [CrossRef]
- Xu, J.; Duan, X.; Zhang, P.; Niu, Q.; Dai, S. Processing Poly (Ethylene Terephthalate) Waste into Functional Carbon Materials by Mechanochemical Extrusion. ChemSusChem 2022, 15, e202201576. [Google Scholar] [CrossRef]
- Schneidermann, C.; Otto, P.; Leistenschneider, D.; Grätz, S.; Eßbach, C.; Borchardt, L. Upcycling of Polyurethane Waste by Mechanochemistry: Synthesis of N-Doped Porous Carbon Materials for Supercapacitor Applications. Beilstein J. Nanotechnol. 2019, 10, 1618–1627. [Google Scholar] [CrossRef]
- Cagnetta, G.; Zhang, K.; Zhang, Q.; Huang, J.; Yu, G. Mechanochemical Pre-Treatment for Viable Recycling of Plastic Waste Containing Haloorganics. Waste Manag. 2018, 75, 181–186. [Google Scholar] [CrossRef] [PubMed]
- Balema, V.P.; Hlova, I.Z.; Carnahan, S.L.; Seyedi, M.; Dolotko, O.; Rossini, A.J.; Luzinov, I. Depolymerization of Polystyrene under Ambient Conditions. New J. Chem. 2021, 45, 2935–2938. [Google Scholar] [CrossRef]
- Nzioka, A.M.; Yan, C.Z.; Kim, M.-G.; Sim, Y.-J.; Lee, C.-S.; Kim, Y.-J. Improvement of the Chemical Recycling Process of Waste Carbon Fibre Reinforced Plastics Using a Mechanochemical Process: Influence of Process Parameters. Waste Manag. Res. J. Sustain. Circ. Econ. 2018, 36, 952–964. [Google Scholar] [CrossRef]
- Lu, S.; Guo, X.; He, H.; Peng, Y.; Ding, J.; Ding, J.; Zhu, H.; Muhammad, Q.; Rytöluoto, I.; Tenhunen, A. Mechanochemical Dehalogenation of Brominated Flame Retardants and Preliminary Application for Recycling BFR-Containing Plastic Waste. J. Environ. Chem. Eng. 2023, 11, 109916. [Google Scholar] [CrossRef]
- Grause, G.; Fonseca, J.D.; Tanaka, H.; Bhaskar, T.; Kameda, T.; Yoshioka, T. A Novel Process for the Removal of Bromine from Styrene Polymers Containing Brominated Flame Retardant. Polym. Degrad. Stab. 2015, 112, 86–93. [Google Scholar] [CrossRef]
- Wang, R.; Zhu, Z.; Tan, S.; Guo, J.; Xu, Z. Mechanochemical Degradation of Brominated Flame Retardants in Waste Printed Circuit Boards by Ball Milling. J. Hazard. Mater. 2020, 385, 121509. [Google Scholar] [CrossRef] [PubMed]
- Kang, P.; Yang, S.; Bai, S.; Wang, Q. Novel Application of Mechanochemistry in Waste Epoxy Recycling via Solid-State Shear Milling. ACS Sustain. Chem. Eng. 2021, 9, 11778–11789. [Google Scholar] [CrossRef]
- Zhang, Q.; Kano, J.; Saito, F. Mechanochemical Technology: Application to Material Synthesis and to the Separation and Processing of Recyclable Materials from Wastes. KONA Powder Part. J. 2001, 19, 7–15. [Google Scholar] [CrossRef]
- Song, L.; Lin, L.; Wei, W.; Zhang, S.; Wan, L.; Lou, Z.; Yu, J.; Xu, X. Zero-Valent Iron-Peroxydisulfate as Synergistic Co-Milling Agents for Enhanced Mechanochemical Destruction of 2,4-Dichlorophenol: Coupling Reduction with Oxidation. J. Environ. Manag. 2023, 345, 118571. [Google Scholar] [CrossRef]
- Lou, Z.; Song, L.; Liu, W.; Wu, S.; He, F.; Yu, J. Deciphering CaO-Induced Peroxydisulfate Activation for Destruction of Halogenated Organic Pollutants in a Low Energy Vibrational Mill. Chem. Eng. J. 2022, 431, 134090. [Google Scholar] [CrossRef]
- Hu, J.; Huang, Z.; Yu, J. Highly-Effective Mechanochemical Destruction of Hexachloroethane and Hexachlorobenzene with Fe/Fe3O4 Mixture as a Novel Additive. Sci. Total Environ. 2019, 659, 578–586. [Google Scholar] [CrossRef] [PubMed]
- Sui, H.; Rong, Y.; Song, J.; Zhang, D.; Li, H.; Wu, P.; Shen, Y.; Huang, Y. Mechanochemical Destruction of DDTs with Fe-Zn Bimetal in a High-Energy Planetary Ball Mill. J. Hazard. Mater. 2018, 342, 201–209. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.-h.; Li, X.-d.; Ni, M.-j.; Chen, T.; Yan, J.-h. Remediation of PCB-Contaminated Soil Using a Combination of Mechanochemical Method and Thermal Desorption. Environ. Sci. Pollut. Res. 2017, 24, 11800–11806. [Google Scholar] [CrossRef]
- Cagnetta, G.; Hassan, M.M.; Huang, J.; Yu, G.; Weber, R. Dioxins Reformation and Destruction in Secondary Copper Smelting Fly Ash under Ball Milling. Sci. Rep. 2016, 6, 22925. [Google Scholar] [CrossRef]
- Xu, Z.; Zhang, X.; Fei, Q. Dechlorination of Pentachlorophenol by Grinding at Low Rotation Speed in Short Time. Chin. J. Chem. Eng. 2015, 23, 578–582. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, H.; Jun, H.; Yu, M.; Wang, F.; Zhou, L.; Yu, G. Acceleration and Mechanistic Studies of the Mechanochemical Dechlorination of HCB with Iron Powder and Quartz Sand. Chem. Eng. J. 2014, 239, 185–191. [Google Scholar] [CrossRef]
- Wang, H.; Huang, J.; Zhang, K.; Yu, Y.; Liu, K.; Yu, G.; Deng, S.; Wang, B. Effects of Zero-Valent Metals Together with Quartz Sand on the Mechanochemical Destruction of Dechlorane plus Coground in a Planetary Ball Mill. J. Hazard. Mater. 2014, 264, 230–235. [Google Scholar] [CrossRef]
- Yu, Y.; Huang, J.; Zhang, W.; Zhang, K.; Deng, S.; Yu, G. Mechanochemical Destruction of Mirex Co-Ground with Iron and Quartz in a Planetary Ball Mill. Chemosphere 2013, 90, 1729–1735. [Google Scholar] [CrossRef]
- Nomura, Y.; Aono, S.; Arino, T.; Yamamoto, T.; Terada, A.; Noma, Y.; Hosomi, M. Degradation of Polychlorinated Naphthalene by Mechanochemical Treatment. Chemosphere 2013, 93, 2657–2661. [Google Scholar] [CrossRef]
- Di Leo, P.; Pizzigallo, M.D.R.; Ancona, V.; Di Benedetto, F.; Mesto, E.; Schingaro, E.; Ventruti, G. Mechanochemical Degradation of Pentachlorophenol onto Birnessite. J. Hazard. Mater. 2013, 244–245, 303–310. [Google Scholar] [CrossRef]
- Zhang, T.; Huang, J.; Zhang, W.; Yu, Y.; Deng, S.; Wang, B.; Yu, G. Coupling the Dechlorination of Aqueous 4-CP with the Mechanochemical Destruction of Solid PCNB Using Fe-Ni-SiO2. J. Hazard. Mater. 2013, 250–251, 175–180. [Google Scholar] [CrossRef] [PubMed]
- Nomura, Y.; Fujiwara, K.; Terada, A.; Nakai, S.; Hosomi, M. Mechanochemical Degradation of γ-Hexachlorocyclohexane by a Planetary Ball Mill in the Presence of CaO. Chemosphere 2012, 86, 228–234. [Google Scholar] [CrossRef] [PubMed]
- Lu, S.; Huang, J.; Peng, Z.; Li, X.; Yan, J. Ball Milling 2,4,6-Trichlorophenol with Calcium Oxide: Dechlorination Experiment and Mechanism Considerations. Chem. Eng. J. 2012, 195–196, 62–68. [Google Scholar] [CrossRef]
- Pizzigallo, M.D.R.; Leo, P.D.; Ancona, V.; Spagnuolo, M.; Schingaro, E. Effect of Aging on Catalytic Properties in Mechanochemical Degradation of Pentachlorophenol by Birnessite. Chemosphere 2011, 82, 627–634. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Xu, F.; Deng, S.; Zhu, W.; Yu, G. Mechanochemical Destruction of Pentachloronitrobenzene with Reactive Iron Powder. J. Hazard. Mater. 2011, 198, 275–281. [Google Scholar] [CrossRef]
- Mitoma, Y.; Miyata, H.; Egashira, N.; Simion, A.M.; Kakeda, M.; Simion, C. Mechanochemical Degradation of Chlorinated Contaminants in Fly Ash with a Calcium-Based Degradation Reagent. Chemosphere 2011, 83, 1326–1330. [Google Scholar] [CrossRef]
- Zhang, W.; Huang, J.; Yu, G.; Deng, S.; Zhu, W. Mechanochemical Destruction of Dechlorane Plus with Calcium Oxide. Chemosphere 2010, 81, 345–350. [Google Scholar] [CrossRef]
- Wei, Y.; Yan, J.; Lu, S.; Li, X. Decomposition of PCDD/Fs by Mechanochemical Means with Calcium-Based Additives. J. Zhejiang Univ. Eng. Sci. 2010, 44, 991–997. [Google Scholar]
- Peng, Z.; Ding, Q.; Sun, Y.; Jiang, C.; Gao, X.; Yan, J. Characterization of Mechanochemical Treated Fly Ash from a Medical Waste Incinerator. J. Environ. Sci. 2010, 22, 1643–1648. [Google Scholar] [CrossRef]
- Wei, Y.; Yan, J.; Lu, S.; Li, X. Mechanochemical Decomposition of Pentachlorophenol by Ball Milling. J. Environ. Sci. 2009, 21, 1761–1768. [Google Scholar] [CrossRef]
- Nah, I.W.; Hwang, K.Y.; Shul, Y.G. Effect of Metal and Glycol on Mechanochemical Dechlorination of Polychlorinated Biphenyls (PCBs). Chemosphere 2008, 73, 138–141. [Google Scholar] [CrossRef]
- Cangialosi, F.; Intini, G.; Liberti, L.; Lupo, D.; Notarnicola, M.; Pastore, T. Mechanochemical Treatment of Contaminated Marine Sediments for PCB Degradation. Chem. Sustain. Dev. 2007, 15, 147–156. [Google Scholar]
- Yan, J.H.; Peng, Z.; Lu, S.Y.; Li, X.D.; Ni, M.J.; Cen, K.F.; Dai, H.F. Degradation of PCDD/Fs by Mechanochemical Treatment of Fly Ash from Medical Waste Incineration. J. Hazard. Mater. 2007, 147, 652–657. [Google Scholar] [CrossRef] [PubMed]
- Tanaka, Y.; Zhang, Q.; Saito, F.; Ikoma, T.; Tero-Kubota, S. Dependence of Mechanochemically Induced Decomposition of Mono-Chlorobiphenyl on the Occurrence of Radicals. Chemosphere 2005, 60, 939–943. [Google Scholar] [CrossRef]
- Nomura, Y.; Nakai, S.; Hosomi, M. Elucidation of Degradation Mechanism of Dioxins during Mechanochemical Treatment. Environ. Sci. Technol. 2005, 39, 3799–3804. [Google Scholar] [CrossRef] [PubMed]
- Birke, V.; Mattik, J.; Runne, D. Mechanochemical Reductive Dehalogenation of Hazardous Polyhalogenated Contaminants. J. Mater. Sci. 2004, 39, 5111–5116. [Google Scholar] [CrossRef]
- Aresta, M.; Dibenedetto, A.; Fragale, C.; Pastore, T. High-Energy Milling to Decontaminate Soils Polluted by Polychlorobiphenyls and Atrazine. Environ. Chem. Lett. 2004, 2, 1–4. [Google Scholar] [CrossRef]
- Aresta, M.; Caramuscio, P.; De Stefano, L.; Pastore, T. Solid State Dehalogenation of PCBs in Contaminated Soil Using NaBH4. Waste Manag. 2003, 23, 315–319. [Google Scholar] [CrossRef]
- Tanaka, Y.; Zhang, Q.; Saito, F. Mechanochemical Dechlorination of Trichlorobenzene on Oxide Surfaces. J. Phys. Chem. B 2003, 107, 11091–11097. [Google Scholar] [CrossRef]
- Ikoma, T.; Zhang, Q.; Saito, F.; Akiyama, K.; Tero-Kubota, S.; Kato, T. Radicals in the Mechanochemical Dechlorination of Hazardous Organochlorine Compounds Using CaO Nanoparticles. Bull. Chem. Soc. Jpn. 2001, 74, 2303–2309. [Google Scholar] [CrossRef]
- Zhang, Q.; Saito, F.; Ikoma, T.; Tero-Kubota, S.; Hatakeda, K. Effects of Quartz Addition on the Mechanochemical Dechlorination of Chlorobiphenyl by Using CaO. Environ. Sci. Technol. 2001, 35, 4933–4935. [Google Scholar] [CrossRef]
- Shintani, M.; Nomura, Y.; Nakashimada, Y.; Hosomi, M. Debromination of Decabromodiphenyl Ether by Mechanochemical Treatment. Organohalogen Compd. 2007, 69, 2677–2680. [Google Scholar]
- Zhang, Q.; Matsumoto, H.; Saito, F.; Baron, M. Debromination of Hexabromobenzene by Its Co-Grinding with CaO. Chemosphere 2002, 48, 787–793. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Wang, H.; Liu, K.; Yu, G.; Deng, S.; Wang, B. Mechanochemical Degradation of Hexabromocyclododecane and Approaches for the Remediation of Its Contaminated Soil. Chemosphere 2014, 116, 40–45. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Wang, H.; Yu, G.; Wang, B.; Deng, S.; Kano, J.; Zhang, Q. Mechanochemical Destruction of Decabromodiphenyl Ether into Visible Light Photocatalyst BiOBr. RSC Adv. 2014, 4, 14719–14724. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Zhang, W.; Yu, Y.; Deng, S.; Yu, G. Mechanochemical Degradation of Tetrabromobisphenol A: Performance, Products and Pathway. J. Hazard. Mater. 2012, 243, 278–285. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Zhang, X.; Zhang, K.; Qi, C. Sodium Persulfate-Assisted Mechanochemical Degradation of Tetrabromobisphenol A: Efficacy, Products and Pathway. Chemosphere 2016, 150, 551–558. [Google Scholar] [CrossRef] [PubMed]
- Shintani, M.; Naito, Y.; Yamada, S.; Nomura, Y.; Zhou, S.; Nakashimada, Y.; Hosomi, M. Degradation of Perfluorooctansulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Mechanochemical Treatment. Kagaku Kogaku Ronbun 2008, 34, 539–544. [Google Scholar] [CrossRef]
- Zhang, K.; Huang, J.; Yu, G.; Zhang, Q.; Deng, S.; Wang, B. Destruction of Perfluorooctane Sulfonate (PFOS) and Perfluorooctanoic Acid (PFOA) by Ball Milling. Environ. Sci. Technol. 2013, 47, 6471–6477. [Google Scholar] [CrossRef]
- Yan, X.; Liu, X.; Qi, C.; Wang, D.; Lin, C. Mechanochemical Destruction of a Chlorinated Polyfluorinated Ether Sulfonate (F-53B, a PFOS Alternative) Assisted by Sodium Persulfate. RSC Adv. 2015, 5, 85785–85790. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Yan, N. Shell Biorefinery: Dream or Reality? Chem. Eur. J. 2016, 22, 13402–13421. [Google Scholar] [CrossRef]
- Nimesh, S.; Thibault, M.M.; Lavertu, M.; Buschmann, M.D. Enhanced Gene Delivery Mediated by Low Molecular Weight Chitosan/DNA Complexes: Effect of pH and Serum. Mol. Biotechnol. 2010, 46, 182–196. [Google Scholar] [CrossRef]
- Amoozgar, Z.; Park, J.; Lin, Q.; Yeo, Y. Low Molecular-Weight Chitosan as a PH-Sensitive Stealth Coating for Tumor-Specific Drug Delivery. Mol. Pharm. 2012, 9, 1262–1270. [Google Scholar] [CrossRef] [PubMed]
- Huet, G.; Hadad, C.; González-Domínguez, J.M.; Courty, M.; Jamali, A.; Cailleu, D.; van Nhien, A.N. IL versus DES: Impact on Chitin Pretreatment to Afford High Quality and Highly Functionalizable Chitosan. Carbohydr. Polym. 2021, 269, 118332. [Google Scholar] [CrossRef]
- Nakagawa, Y.S.; Oyama, Y.; Kon, N.; Nikaido, M.; Tanno, K.; Kogawa, J.; Inomata, S.; Masui, A.; Yamamura, A.; Kawaguchi, M.; et al. Development of Innovative Technologies to Decrease the Environmental Burdens Associated with Using Chitin as a Biomass Resource: Mechanochemical Grinding and Enzymatic Degradation. Carbohydr. Polym. 2011, 83, 1843–1849. [Google Scholar] [CrossRef]
- Chen, X.; Yang, H.; Zhong, Z.; Yan, N. Base-Catalysed, One-Step Mechanochemical Conversion of Chitin and Shrimp Shells into Low Molecular Weight Chitosan. Green Chem. 2017, 19, 2783–2792. [Google Scholar] [CrossRef]
- Di Nardo, T.; Hadad, C.; Nguyen Van Nhien, A.; Moores, A. Synthesis of High Molecular Weight Chitosan from Chitin by Mechanochemistry and Aging. Green Chem. 2019, 21, 3276–3285. [Google Scholar] [CrossRef]
- Su, W.; Xu, W.; Polyakov, N.E.; Dushkin, A.V.; Qiao, P.; Su, W. Zero-Waste Utilization and Conversion of Shrimp Shell by Mechanochemical Method. J. Clean. Prod. 2023, 425, 139028. [Google Scholar] [CrossRef]
- Sutherland, D.L.; McCauley, J.; Labeeuw, L.; Ray, P.; Kuzhiumparambil, U.; Hall, C.; Doblin, M.; Nguyen, L.N.; Ralph, P.J. How Microalgal Biotechnology Can Assist with the UN Sustainable Development Goals for Natural Resource Management. Curr. Res. Environ. Sustain. 2021, 3, 100050. [Google Scholar] [CrossRef]
- Fatika, F.A.W.; Anwar, M.; Prasetyo, D.J.; Rizal, W.A.; Suryani, R.; Yuliyanto, P.; Hariyadi, S.; Suwanto, A.; Bahmid, N.A.; Wahono, S.K.; et al. Facile Fabrication of Chitosan Schiff Bases from Giant Tiger Prawn Shells (Penaeus Monodon) via Solvent-Free Mechanochemical Grafting. Int. J. Biol. Macromol. 2023, 247, 125759. [Google Scholar] [CrossRef] [PubMed]
- Mosaddegh, E.; Hassankhani, A. Preparation and Characterization of Nano-CaO Based on Eggshell Waste: Novel and Green Catalytic Approach to Highly Efficient Synthesis of Pyrano [4,3-b]Pyrans. Cuihua Xuebao/Chin. J. Catal. 2014, 35, 351–356. [Google Scholar] [CrossRef]
- Tongamp, W.; Kano, J.; Zhang, Q.; Saito, F. Simultaneous Treatment of PVC and Oyster-Shell Wastes by Mechanochemical Means. Waste Manag. 2008, 28, 484–488. [Google Scholar] [CrossRef]
- Baláž, M.; Baláž, P.; Bujňáková, Z.; Pap, Z.; Kupka, D.; Zorkovská, A. Mechanochemical Dechlorination of PVC by Utilizing Eggshell Waste. In Proceedings of the 8th International Conference on Mechanochemistry and Mechanical Alloying, INCOME 2014, Kraków, Poland, 22–26 June 2014; Volume 126, pp. 884–887. [Google Scholar] [CrossRef]
- Baláž, P.; Calka, A.; Zorkovská, A.; Baláž, M. Processing of Eggshell Biomaterial by Electrical Discharge Assisted Mechanical Milling (EDAMM) and High Energy Milling (HEM) Techniques. Mater. Manuf. Process. 2013, 28, 343–347. [Google Scholar] [CrossRef]
- Ferro, A.C.; Guedes, M. Mechanochemical Synthesis of Hydroxyapatite Using Cuttlefish Bone and Chicken Eggshell as Calcium Precursors. Mater. Sci. Eng. C 2019, 97, 124–140. [Google Scholar] [CrossRef]
- Faksawat, K.; Kaewwiset, W.; Limsuwan, P.; Naemchanthara, K. Comparison of Characteristics of Hydroxyapatite Powders Synthesized from Cuttlefish Bone via Precipitation and Ball Milling Techniques. J. Phys. Conf. Ser. 2017, 901, 012083. [Google Scholar] [CrossRef]
- Cestari, F.; Chemello, G.; Galotta, A.; Sglavo, V.M. Low-Temperature Synthesis of Nanometric Apatite from Biogenic Sources. Ceram. Int. 2020, 46, 23526–23533. [Google Scholar] [CrossRef]
- Shen, F.; Qiu, M.; Hua, Y.; Qi, X. Dual-Functional Templated Methodology for the Synthesis of Hierarchical Porous Carbon for Supercapacitor. ChemistrySelect 2018, 3, 586–591. [Google Scholar] [CrossRef]
- Seeharaj, P.; Sripako, K.; Promta, P.; Detsri, E.; Vittayakorn, N. Facile and Eco-friendly Fabrication of Hierarchical Superhydrophobic Coating from Eggshell Biowaste. Int. J. Appl. Ceram. Technol. 2019, 16, 1895–1903. [Google Scholar] [CrossRef]
- Baláž, M.; Bujňáková, Z.; Achimovičová, M.; Tešinský, M.; Baláž, P. Simultaneous Valorization of Polyvinyl Chloride and Eggshell Wastes by a Semi-Industrial Mechanochemical Approach. Environ. Res. 2019, 170, 332–336. [Google Scholar] [CrossRef] [PubMed]
- Onwubu, S.C.; Mdluli, P.S.; Singh, S. Evaluating the Buffering and Acid-Resistant Properties of Eggshell–Titanium Dioxide Composite against Erosive Acids. J. Appl. Biomater. Funct. Mater. 2019, 17, 2280800018809914. [Google Scholar] [CrossRef]
- Onwubu, S.C.; Mdluli, P.S.; Singh, S.; Madikizela, L.; Ngombane, Y. Characterization and in Vitro Evaluation of an Acid Resistant Nanosized Dental Eggshell-Titanium Dioxide Material. Adv. Powder Technol. 2019, 30, 766–773. [Google Scholar] [CrossRef]
- Cherdchom, S.; Rattanaphan, T.; Chanadee, T. Calcium Titanate from Food Waste: Combustion Synthesis, Sintering, Characterization, and Properties. Adv. Mater. Sci. Eng. 2019, 2019, 9639016. [Google Scholar] [CrossRef]
- Liu, X.; Shen, F.; Qi, X. Adsorption Recovery of Phosphate from Aqueous Solution by CaO-Biochar Composites Prepared from Eggshell and Rice Straw. Sci. Total Environ. 2019, 666, 694–702. [Google Scholar] [CrossRef]
- Sari, Y.W.; Listiani, E.; Putri, S.Y.; Abidin, Z. Prospective of Eggshell Nanocalcium in Improving Biogas Production from Palm Oil Mill Effluent. Waste Biomass Valorization 2020, 11, 4631–4638. [Google Scholar] [CrossRef]
- Rodríguez-Padrón, D.; Puente-Santiago, A.R.; Luna-Lama, F.; Caballero, Á.; Muñoz-Batista, M.J.; Luque, R. Versatile Protein-Templated TiO2 Nanocomposite for Energy Storage and Catalytic Applications. ACS Sustain. Chem. Eng. 2019, 7, 5329–5337. [Google Scholar] [CrossRef]
- Karuppiah, D.; Palanisamy, R.; Ponnaiah, A.; Liu, W.-R.; Huang, C.-H.; Rengapillai, S.; Marimuthu, S. Eggshell-Membrane-Derived Carbon Coated on Li2FeSiO4 Cathode Material for Li-Ion Batteries. Energies 2020, 13, 786. [Google Scholar] [CrossRef]
- Shen, F.; Xiong, X.; Fu, J.; Yang, J.; Qiu, M.; Qi, X.; Tsang, D.C.W. Recent Advances in Mechanochemical Production of Chemicals and Carbon Materials from Sustainable Biomass Resources. Renew. Sustain. Energy Rev. 2020, 130, 109944. [Google Scholar] [CrossRef]
- Ma, T.Y.; Liu, L.; Yuan, Z.Y. Direct Synthesis of Ordered Mesoporous Carbons. Chem. Soc. Rev. 2013, 42, 3977–4003. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, N.; Chen, D.; Yang, S.; Liu, X.; Wang, L.; Wu, P.; Phillip, N.; Yang, G.; Dai, S. Ultra-Stable and High-Cobalt-Loaded Cobalt@Ordered Mesoporous Carbon Catalysts: All-in-One Deoxygenation of Ketone into Alkylbenzene. ChemCatChem 2018, 10, 3299–3304. [Google Scholar] [CrossRef]
- Shan, D.; Deng, S.; Zhao, T.; Wang, B.; Wang, Y.; Huang, J.; Yu, G.; Winglee, J.; Wiesner, M.R. Preparation of Ultrafine Magnetic Biochar and Activated Carbon for Pharmaceutical Adsorption and Subsequent Degradation by Ball Milling. J. Hazard. Mater. 2016, 305, 156–163. [Google Scholar] [CrossRef]
- Xiang, W.; Wan, Y.; Zhang, X.; Tan, Z.; Xia, T.; Zheng, Y.; Gao, B. Adsorption of Tetracycline Hydrochloride onto Ball-Milled Biochar: Governing Factors and Mechanisms. Chemosphere 2020, 255, 127057. [Google Scholar] [CrossRef] [PubMed]
- Lyu, H.; Gao, B.; He, F.; Zimmerman, A.R.; Ding, C.; Tang, J.; Crittenden, J.C. Experimental and Modeling Investigations of Ball-Milled Biochar for the Removal of Aqueous Methylene Blue. Chem. Eng. J. 2018, 335, 110–119. [Google Scholar] [CrossRef]
- Zheng, Y.; Wan, Y.; Chen, J.; Chen, H.; Gao, B. MgO Modified Biochar Produced through Ball Milling: A Dual-Functional Adsorbent for Removal of Different Contaminants. Chemosphere 2020, 243, 125344. [Google Scholar] [CrossRef]
- Costa, A.A.F.; Oliveira, A.N.; Esposito, R.; Auvigne, A.; Len, C.; Luque, R.; Noronha, R.C.R.; Nascimento, L.A.S. Glycerol and Microwave-Assisted Catalysis: Recent Progress in Batch and Flow Devices. Sustain. Energy Fuels 2023, 7, 1768–1792. [Google Scholar] [CrossRef]
- Costa, A.A.F.; Oliveira, A.N.; Esposito, R.; Len, C.; Luque, R.; Noronha, R.C.R.; Rocha Filho, G.N.; Nascimento, L.A.S. Glycerol and Catalysis by Waste/Low-Cost Materials—A Review. Catalysts 2022, 12, 570. [Google Scholar] [CrossRef]
- Hambali, E.; Fitria, R.; Sari, V.I. Glycerol and Derivatives. In Biorefinery of Oil Producing Plants for Value-Added Products; Wiley: Weinheim, Germany, 2022; pp. 469–491. [Google Scholar]
- Oliveira, A.N.; Melchiorre, M.; Costa, A.A.F.; Silva, L.S.; Paiva, R.J.; Auvigne, A.; Ouyang, W.; Luque, R.; Rocha Filho, G.N.; Noronha, R.C.R.; et al. Glycerol: A Green Solvent for Synthetic Chemistry. Sustain. Chem. Pharm. 2024, 41, 101656. [Google Scholar] [CrossRef]
- Lenardão, E.J.; Barcellos, A.M.; Penteado, F.; Alves, D.; Perin, G. Glycerol as a Solvent in Organic Synthesis. Rev. Virtual Quim. 2017, 9, 192–237. [Google Scholar] [CrossRef]
- Malpartida, I.; Maireles-Torres, P.; Lair, V.; Halloumi, S.; Thiel, J.; Lacoste, F. New High-Throughput Reactor for Biomass Valorization. Chem. Proc. 2020, 2, 31. [Google Scholar] [CrossRef]
- Malpartida, I.; Maireles-Torres, P.; Vereda, C.; Rodríguez-Maroto, J.M.; Halloumi, S.; Lair, V.; Thiel, J.; Lacoste, F. Semi-Continuous Mechanochemical Process for Biodiesel Production under Heterogeneous Catalysis Using Calcium Diglyceroxide. Renew. Energy 2020, 159, 117–126. [Google Scholar] [CrossRef]
- Li, A.; Song, H.; Xu, X.; Meng, H.; Lu, Y.; Li, C. Greener Production Process of Acetylene and Calcium Diglyceroxide via Mechanochemical Reaction of CaC2 and Glycerol. ACS Sustain. Chem. Eng. 2018, 6, 9560–9565. [Google Scholar] [CrossRef]
- Filiciotto, L.; Balu, A.M.; Romero, A.A.; Rodríguez-Castellón, E.; Van Der Waal, J.C.; Luque, R. Benign-by-Design Preparation of Humin-Based Iron Oxide Catalytic Nanocomposites. Green Chem. 2017, 19, 4423–4434. [Google Scholar] [CrossRef]
- Senthil, C.; Vediappan, K.; Nanthagopal, M.; Seop Kang, H.; Santhoshkumar, P.; Gnanamuthu, R.; Lee, C.W. Thermochemical Conversion of Eggshell as Biological Waste and Its Application as a Functional Material for Lithium-Ion Batteries. Chem. Eng. J. 2019, 372, 765–773. [Google Scholar] [CrossRef]
- Naghdi, M.; Taheran, M.; Brar, S.K.; Rouissi, T.; Verma, M.; Surampalli, R.Y.; Valero, J.R. A Green Method for Production of Nanobiochar by Ball Milling—Optimization and Characterization. J. Clean. Prod. 2017, 164, 1394–1405. [Google Scholar] [CrossRef]
- Xu, X.; Zheng, Y.; Gao, B.; Cao, X. N-Doped Biochar Synthesized by a Facile Ball-Milling Method for Enhanced Sorption of CO2 and Reactive Red. Chem. Eng. J. 2019, 368, 564–572. [Google Scholar] [CrossRef]
- Rak, M.J.; Friščić, T.; Moores, A. One-Step, Solvent-Free Mechanosynthesis of Silver Nanoparticle-Infused Lignin Composites for Use as Highly Active Multidrug Resistant Antibacterial Filters. RSC Adv. 2016, 6, 58365–58370. [Google Scholar] [CrossRef]
- Cao, Y.; Chen, S.S.; Tsang, D.C.W.; Clark, J.H.; Budarin, V.L.; Hu, C.; Wu, K.C.W.; Zhang, S. Microwave-Assisted Depolymerization of Various Types of Waste Lignins over Two-Dimensional CuO/BCN Catalysts. Green Chem. 2020, 22, 725–736. [Google Scholar] [CrossRef]
- Torres-Pastor, M.Á.; Espro, C.; Selva, M.; Perosa, A.; Reyes, A.A.R.; Osman, S.M.; Luque, R.; Rodríguez-Padrón, D. Glycerol Valorization towards a Benzoxazine Derivative through a Milling and Microwave Sequential Strategy. Molecules 2022, 27, 632. [Google Scholar] [CrossRef]
- Liang, Z.; Peng, G.; Hu, J.; Hou, H.; Cai, C.; Yang, X.; Chen, S.; Liu, L.; Liang, S.; Xiao, K.; et al. Mechanochemically Assisted Persulfate Activation for the Facile Recovery of Metals from Spent Lithium Ion Batteries. Waste Manag. 2022, 150, 290–300. [Google Scholar] [CrossRef]
- Liu, W.; Liu, W.; Li, X.; Liu, Y.; Ogunmoroti, A.E.; Li, M.; Bi, M.; Cui, Z. Dynamic Material Flow Analysis of Critical Metals for Lithium-Ion Battery System in China from 2000–2018. Resour. Conserv. Recycl. 2021, 164, 105122. [Google Scholar] [CrossRef]
- Winslow, K.M.; Laux, S.J.; Townsend, T.G. A Review on the Growing Concern and Potential Management Strategies of Waste Lithium-Ion Batteries. Resour. Conserv. Recycl. 2018, 129, 263–277. [Google Scholar] [CrossRef]
- Fan, M.-C.; Zhao, Y.; Kang, Y.-Q.; Wozny, J.; Liang, Z.; Wang, J.-X.; Zhou, G.-M.; Li, B.-H.; Tavajohi, N.; Kang, F.-Y. Room-Temperature Extraction of Individual Elements from Charged Spent LiFePO4 Batteries. Rare Met. 2022, 41, 1595–1604. [Google Scholar] [CrossRef]
- Geiß, D.; Dolotko, O.; Indris, S.; Neemann, C.; Bologa, A.; Bergfeldt, T.; Knapp, M.; Ehrenberg, H. Revealing the Mechanism of Reductive, Mechanochemical Li Recycling from LiFePO4. RSC Mechanochem. 2024, 1, 349–360. [Google Scholar] [CrossRef]
- Jiang, F.; Chen, Y.; Ju, S.; Zhu, Q.; Zhang, L.; Peng, J.; Wang, X.; Miller, J.D. Ultrasound-Assisted Leaching of Cobalt and Lithium from Spent Lithium-Ion Batteries. Ultrason. Sonochem. 2018, 48, 88–95. [Google Scholar] [CrossRef]
- Diaz, F.; Wang, Y.; Moorthy, T.; Friedrich, B. Degradation Mechanism of Nickel-Cobalt-Aluminum (NCA) Cathode Material from Spent Lithium-Ion Batteries in Microwave-Assisted Pyrolysis. Metals 2018, 8, 565. [Google Scholar] [CrossRef]
- Saeki, S.; Lee, J.; Zhang, Q.; Saito, F. Co-Grinding LiCoO2 with PVC and Water Leaching of Metal Chlorides Formed in Ground Product. Int. J. Miner. Process. 2004, 74, S373–S378. [Google Scholar] [CrossRef]
- Zhang, Q.; Saeki, S.; Tanaka, Y.; Kano, J.; Saito, F. A Soft-Solution Process for Recovering Rare Metals from Metal/Alloy-Wastes by Grinding and Washing with Water. J. Hazard. Mater. 2007, 139, 438–442. [Google Scholar] [CrossRef]
- Wang, M.-M.; Zhang, C.-C.; Zhang, F.-S. Recycling of Spent Lithium-Ion Battery with Polyvinyl Chloride by Mechanochemical Process. Waste Manag. 2017, 67, 232–239. [Google Scholar] [CrossRef]
- Guan, J.; Li, Y.; Guo, Y.; Su, R.; Gao, G.; Song, H.; Yuan, H.; Liang, B.; Guo, Z. Mechanochemical Process Enhanced Cobalt and Lithium Recycling from Wasted Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2017, 5, 1026–1032. [Google Scholar] [CrossRef]
- Liu, K.; Tan, Q.; Liu, L.; Li, J. Acid-Free and Selective Extraction of Lithium from Spent Lithium Iron Phosphate Batteries via a Mechanochemically Induced Isomorphic Substitution. Environ. Sci. Technol. 2019, 53, 9781–9788. [Google Scholar] [CrossRef]
- Dolotko, O.; Hlova, I.Z.; Mudryk, Y.; Gupta, S.; Balema, V.P. Mechanochemical Recovery of Co and Li from LCO Cathode of Lithium-Ion Battery. J. Alloys Compd. 2020, 824, 153876. [Google Scholar] [CrossRef]
- Dolotko, O.; Gehrke, N.; Malliaridou, T.; Sieweck, R.; Herrmann, L.; Hunzinger, B.; Knapp, M.; Ehrenberg, H. Universal and Efficient Extraction of Lithium for Lithium-Ion Battery Recycling Using Mechanochemistry. Commun. Chem. 2023, 6, 49. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. A Mechanochemical Method for One-Step Leaching of Metals from Spent LIBs. Waste Manag. 2023, 161, 245–253. [Google Scholar] [CrossRef]
- Qiao, Q.; Li, X.; Li, Y.; Wang, K.; Yu, H.; Xing, W.; Li, N.; Sun, Y.; Wang, B. Mechanochemically-Aided Leaching of Cobalt from the Cathode of Spent Lithium-Ion Batteries. Braz. J. Chem. Eng. 2024, 41, 461–473. [Google Scholar] [CrossRef]
- Liu, Z.; Liu, G.; Cheng, L.; Gu, J.; Yang, J.; Yuan, H.; Chen, Y.; Wu, Y. Ultra-Fast Mechanochemistry Reaction Process: An Environmentally Friendly Instant Recycling Method for Spent LiFePO4 Batteries. Sep. Purif. Technol. 2024, 335, 126174. [Google Scholar] [CrossRef]
- Yuan, W.; Li, J.; Zhang, Q.; Saito, F. Innovated Application of Mechanical Activation To Separate Lead from Scrap Cathode Ray Tube Funnel Glass. Environ. Sci. Technol. 2012, 46, 4109–4114. [Google Scholar] [CrossRef]
- Wang, M.-M.; Zhang, C.-C.; Zhang, F.-S. An Environmental Benign Process for Cobalt and Lithium Recovery from Spent Lithium-Ion Batteries by Mechanochemical Approach. Waste Manag. 2016, 51, 239–244. [Google Scholar] [CrossRef] [PubMed]
- Yang, Y.; Zheng, X.; Cao, H.; Zhao, C.; Lin, X.; Ning, P.; Zhang, Y.; Jin, W.; Sun, Z. A Closed-Loop Process for Selective Metal Recovery from Spent Lithium Iron Phosphate Batteries through Mechanochemical Activation. ACS Sustain. Chem. Eng. 2017, 5, 9972–9980. [Google Scholar] [CrossRef]
- Guo, Y.; Li, Y.; Lou, X.; Guan, J.; Li, Y.; Mai, X.; Liu, H.; Zhao, C.X.; Wang, N.; Yan, C.; et al. Improved Extraction of Cobalt and Lithium by Reductive Acid from Spent Lithium-Ion Batteries via Mechanical Activation Process. J. Mater. Sci. 2018, 53, 13790–13800. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Li, J. Unveiling the Role and Mechanism of Mechanochemical Activation on Lithium Cobalt Oxide Powders from Spent Lithium-Ion Batteries. Environ. Sci. Technol. 2018, 52, 13136–13143. [Google Scholar] [CrossRef]
- Fan, E.; Li, L.; Zhang, X.; Bian, Y.; Xue, Q.; Wu, J.; Wu, F.; Chen, R. Selective Recovery of Li and Fe from Spent Lithium-Ion Batteries by an Environmentally Friendly Mechanochemical Approach. ACS Sustain. Chem. Eng. 2018, 6, 11029–11035. [Google Scholar] [CrossRef]
- Liu, K.; Yang, J.; Hou, H.; Liang, S.; Chen, Y.; Wang, J.; Liu, B.; Xiao, K.; Hu, J.; Deng, H. Facile and Cost-Effective Approach for Copper Recovery from Waste Printed Circuit Boards via a Sequential Mechanochemical/Leaching/Recrystallization Process. Environ. Sci. Technol. 2019, 53, 2748–2757. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Huang, Q.; Liu, L.; Chiang, J.F.; Li, J. Converting Spent Lithium Cobalt Oxide Battery Cathode Materials into High-Value Products via a Mechanochemical Extraction and Thermal Reduction Route. J. Hazard. Mater. 2021, 413, 125222. [Google Scholar] [CrossRef]
- Wang, M.; Tan, Q.; Liu, L.; Li, J. Selective Regeneration of Lithium from Spent Lithium-Ion Batteries Using Ionic Substitution Stimulated by Mechanochemistry. J. Clean. Prod. 2021, 279, 123612. [Google Scholar] [CrossRef]
- Xie, J.; Huang, K.; Nie, Z.; Yuan, W.; Wang, X.; Song, Q.; Zhang, X.; Zhang, C.; Wang, J.; Crittenden, J.C. An Effective Process for the Recovery of Valuable Metals from Cathode Material of Lithium-Ion Batteries by Mechanochemical Reduction. Resour. Conserv. Recycl. 2021, 168, 105261. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, C.; Zhang, X.; Ma, E. Recovery of Li and Co from Spent Li-Ion Batteries by Mechanochemical Integration with NH4Cl. ACS Sustain. Chem. Eng. 2022, 10, 5611–5620. [Google Scholar] [CrossRef]
- Cai, L.; Lin, J.; Fan, E.; Wu, F.; Chen, R.; Li, L. Eco-Friendly Organic Acid-Assisted Mechanochemical Process for Metal Extraction from Spent Lithium-Ion Batteries. ACS Sustain. Chem. Eng. 2022, 10, 10649–10657. [Google Scholar] [CrossRef]
- Gao, G.; Luo, X.; Liu, N.; Yang, T.; Zhang, X.; Guan, J.; Chen, S.; Zhang, R.-Q.; Guo, Y. Exploration of Sequential Mechanochemical Activation and Complexation Leaching for Enhanced Recovery of Valuable Metals from Spent Lithium-Ion Batteries. Ionics 2023, 29, 3585–3596. [Google Scholar] [CrossRef]
- Vauloup, J.; Bouilhac, C.; Coppey, N.; Lacroix-Desmazes, P.; Stievano, L.; Monconduit, L.; Sougrati, M.T. Towards a More Sustainable Leaching Process for Li-Ion Battery Cathode Material Recycling: Mechanochemical Leaching of LiCoO2 Using Citric Acid. ACS Sustain. Resour. Manag. 2024, 1, 2032–2040. [Google Scholar] [CrossRef]
- Wang, W.; Hu, G.; Peng, Z.; Du, K.; Cao, Y.; Duan, J. Nano-Sized over-Lithiated Oxide by a Mechano-Chemical Activation-Assisted Microwave Technique as Cathode Material for Lithium Ion Batteries and Its Electrochemical Performance. Ceram. Int. 2018, 44, 1425–1431. [Google Scholar] [CrossRef]
- Meng, Q.; Duan, J.; Zhang, Y.; Dong, P. Novel Efficient and Environmentally Friendly Recovering of High Performance Nano-LiMnPO4/C Cathode Powders from Spent LiMn2O4 Batteries. J. Ind. Eng. Chem. 2019, 80, 633–639. [Google Scholar] [CrossRef]
- Meng, X.; Hao, J.; Cao, H.; Lin, X.; Ning, P.; Zheng, X.; Chang, J.; Zhang, X.; Wang, B.; Sun, Z. Recycling of LiNi1/3Co1/3Mn1/3O2 Cathode Materials from Spent Lithium-Ion Batteries Using Mechanochemical Activation and Solid-State Sintering. Waste Manag. 2019, 84, 54–63. [Google Scholar] [CrossRef]
- Song, L.; Qi, C.; Wang, S.; Zhu, X.; Zhang, T.; Jin, Y.; Zhang, M. Direct Regeneration of Waste LiFePO4 Cathode Materials with a Solid-Phase Method Promoted by Activated CNTs. Waste Manag. 2023, 157, 141–148. [Google Scholar] [CrossRef] [PubMed]
- Liu, P.; Zhang, Y.; Dong, P.; Zhang, Y.; Meng, Q.; Zhou, S.; Yang, X.; Zhang, M.; Yang, X. Direct Regeneration of Spent LiFePO4 Cathode Materials with Pre-Oxidation and V-Doping. J. Alloys Compd. 2021, 860, 157909. [Google Scholar] [CrossRef]
- Gou, Y.; Qi, C.; Li, R.; Liu, X.; Zhou, Z.; Zhang, M.; Sun, Q.; Song, L.; Jin, Y. Direct Regeneration of High-Value LiFePO4 Cathode Materials with Nitrogen Doped Carbon Coating. Electrochim. Acta 2024, 488, 144180. [Google Scholar] [CrossRef]
- Han, Y.; Fang, Y.; Yan, M.; Qiu, H.; Han, Y.; Chen, Y.; Lin, L.; Qian, J.; Mei, T.; Wang, X. Direct Regeneration of Fluorine-Doped Carbon-Coated LiFePO4 Cathode Materials from Spent Lithium-Ion Batteries. Green Chem. 2024, 26, 9791–9801. [Google Scholar] [CrossRef]
- Falah, E.N.; Widyastuti; Noerochim, L.; Asih, R.; Ananda, M.B.; Wibisono, A.T.; Pradesar, Y.; Zulfa, L.L.; Yulamda, I. A Study of the Addition of G-C3N4 in Direct Regeneration of Spent LiFePO4 Battery Cathodes on the Electrochemical Performance of Lithium-Ion Batteries (LIB). Mater. Res. Bull. 2025, 187, 113378. [Google Scholar] [CrossRef]
- Ardila-Fierro, K.J.; Hernández, J.G. Sustainability Assessment of Mechanochemistry by Using the Twelve Principles of Green Chemistry. ChemSusChem 2021, 14, 2145–2162. [Google Scholar] [CrossRef]
- Pagola, S. Outstanding Advantages, Current Drawbacks, and Significant Recent Developments in Mechanochemistry: A Perspective View. Crystals 2023, 13, 124. [Google Scholar] [CrossRef]
- Cindro, N.; Tireli, M.; Karadeniz, B.; Mrla, T.; Užarević, K. Investigations of Thermally Controlled Mechanochemical Milling Reactions. ACS Sustain. Chem. Eng. 2019, 7, 16301–16309. [Google Scholar] [CrossRef]
- Achar, T.K.; Bose, A.; Mal, P. Mechanochemical Synthesis of Small Organic Molecules. Beilstein J. Org. Chem. 2017, 13, 1907–1931. [Google Scholar] [CrossRef] [PubMed]
Raw Material | Milling Pretreatment Conditions | Final Product Properties | Applications | Results Without Pretreatment | Results with Pretreatment | Ref. |
---|---|---|---|---|---|---|
Fly ash | Ball mill—filling rate of 1.1, material filling rate of 30, speed (e) 80%, | Increased specific surface area (>3000 cm2/g), decrease in average particle size (10.6 μm), FA amorphization | Geopolymer (curing at 150 °C for 4 h) | 2.01 MPa (Compressive strength) | 15 MPa (Compressive strength) | [60] |
Fly ash | Vibratory mill—filling rate of 1.1, material filling rate of 70, speed (e) 80%, | Increased specific surface area (>3000 cm2/g), decrease in average particle size (9.7 μm), FA amorphization | Geopolymer (curing at 150 °C for 4 h) | 2.01 MPa (Compressive strength) | 16 MPa (Compressive strength) | [60] |
Fly ash | Stirred ball mill—filling rate of 1.1, material filling rate of 70, speed of 5 m/s. | Increased specific surface area (>10,000 cm2/g), decrease in average particle size (5.2 μm), FA amorphization | Geopolymer (curing at 150 °C for 4 h) | 2.01 MPa (Compressive strength) | 22 MPa (Compressive strength) | [60] |
Fly ash | Sample of 75 g, 300 rpm. 60 min, dry | Decrease in average particle size, increased structural disorder, FA amorphization | Geopolymer (cured at 20 °C for 90 days) | >8.1 MPa (Uniaxial compressive strength) | >10.2 MPa (Compressive strength) | [69] |
Fly ash | FA to ball mass ratio was 1:35, milling time 60; dry | Increased specific surface area, decrease in average particle size (5–7 μm), FA amorphization | Geopolymer (cured at 27 °C for 28 days) | <10 MPa (Compressive strength) | 40 MPa (Compressive strength) | [70] |
Fly ash | FA to ball mass ratio was 1:35, milling time 45; dry | Increased specific surface area, decrease in average particle size (5–7 μm), FA amorphization | Geopolymer (cured at 27 °C for 24 h followed by curing at 60 °C for 4 h) | >10 MPa (Compressive strength) | >60 MPa (Compressive strength) | [70] |
Fly ash | Sample of 40 g, 180 s, dry | Increased specific surface area, decrease in average particle size, FA amorphization | Geopolymer (curing at 22 °C for 7 days) | - | <20 MPa (Compressive strength) | [15] |
Fly ash | Sample of 40 g, 180 s, dry | Increased specific surface area, decrease in average particle size, FA amorphization | Geopolymer (curing at 22 °C for 28 days) | - | >20 MPa (Compressive strength) | [15] |
Fly ash | FA to ball mass ratio was 1:20, 380 rpm; milling time 15; dry | Increased specific surface area, decrease in average particle size, FA amorphization | Geopolymer (curing at 95 °C for 4 h) | <5.24 N/mm2 (Compressive strength) | >50 N/mm2 (Compressive strength) | [24] |
Fly ash | FA to ball mass ratio was 1:20, 380 rpm; milling time 15 min; dry | Increased specific surface area (67.7 m2/g), decrease in average particle size (6.9 nm), FA amorphization | Geopolymer/reduced lead leaching (curing at 90 °C for 28 days) | 10.66 N/mm2 (Compressive strength) | 60.69 N/mm2 (Compressive strength) | [63] |
Fly ash | Ball mill—until the particles retained on a sieve no. 325 were <2% of the original weight.; dry | Decrease in average particle size (10.5 μm), FA amorphization | Geopolymer (cured in a controlled chamber at 25–28 °C for 28 days) | 14 MPa (Compressive strength) | 25.5 MPa (Compressive strength) | [71] |
Fly ash | FA to ball mass ratio was 1:10, milling time 60 min; dry | Decrease in average particle size (6.8 μm), FA amorphization | Geopolymer (cured at ambient temperature for 28 days) | 25 MPa (Compressive strength) | 45 MPa (Compressive strength) | [72] |
Fly ash | Sample of 10 g, 400 rpm, 1 h, dry | Increased specific surface area (4.44 m2/g), decrease in average particle size (13.17 μm); FA amorphization | Preparation of thermoplastic starch composites | 3.27 MPa (Tensile strength) | 7.78 MPa (Tensile strength) | [68] |
High calcium fly ash | Attrition mill—steel balls and steel container; milling time 1 h, dry | Increased specific surface area (20.47 m2/g), decrease in average particle size (6.25 μm); FA amorphization | Geopolymer (curing at 70 °C for 24 h) | 21.3 MPa (Compressive strength) | 61 MPa (Compressive strength) | [50] |
High calcium fly ash | Vibration mill—steel balls and steel container; 1750 rpm; milling time 1 h, dry | Increased specific surface area (17.8 m2/g), decrease in average particle size (7.25 μm); FA amorphization | Geopolymer (curing at 70 °C for 24 h) | 21.3 MPa (Compressive strength) | 49.53 MPa (Compressive strength) | [50] |
Fly ash | Attrition-type mill—4000 rpm, 20 min, dry | Increased specific surface area (2.2 m2/g), decrease in average particle size (4.7 μm); FA amorphization | Geopolymer (curing at 70 °C for 28 days) | 26.9 MPa (Compressive strength) | 45.2 MPa (Compressive strength) | [62] |
Municipal solid waste incinerator (MSWI) fly ash | Sample of 10 g, 93 rpm, 96 h, wet | Decrease in average particle size (2 μm); FA amorphization; | Lead stabilization | 5.2 mg/L | 0.20 mg/L (>96% Inhibition of Pb leaching) | [64] |
Fly ash | Sample of 10 g, 700 rpm, 8 h, dry | Decreased average particle size (39 μm); FA amorphization | Lead stabilization | 540 μg/g-fly ashes | 39 μg/g-fly ashes (92.8% Inhibition of Pb leaching) | [65] |
Substrate | Ball Milling Pretreatment | Catalyst | Product | Yield Without Pretreatment | Yield with BM Pretreatment | Ref. |
---|---|---|---|---|---|---|
Sugarcane bagasse | Sample of 1.0 g, 400 rpm, 90 min, room temperature. | Sulfuric acid | Glucose | 22% (80 mg/g) | 78.7% (338.6 mg/g) | [90] |
Rice straw | Sample of 50 g, 1700 rpm, 60 min, room temperature | Sulfuric acid | Glucose | 23.4% | 89.4% | [91] |
Cellulose | Sample of 0.50 g, 2 h | Sulfuric acid | Hexitols | 44.7% | 87.6% | [92] |
Cellulose | Sample of 10 g, 60 rpm, 24 h | Activated carbon | Glucose | 36% | 57% | [75] |
Oil palm empty fruit bunch | Sample of 20 g, 250 rpm, 120 min, room temperature | Enzyme | Xylose | 5.4% | 80.1% | [80] |
Oil palm empty fruit bunch | Sample of 20 g, 250 rpm, 120 min, room temperature | Enzyme | Glucose | 15.9% | 67.5% | [80] |
Oil palm frond fiber | Sample of 20 g, 250 rpm, 60 min, room temperature | Enzyme | Xylose | 17.7% | 78.6% | [80] |
Oil palm frond fiber | Sample of 20 g, 250 rpm, 60 min, room temperature | Enzyme | Glucose | 23.2% | 80.3% | [80] |
Cellulose | Sample of 1.5 g, 20 Hz, 4 h, room temperature | Ru/AC | Sorbitol | 49.4% | 68.0% | [93] |
Jatropha hulls | 24 h | C-SO3H/Fe3O4 | Total reducing sugar (TRS) | 29.5% | 35.4% | [94] |
Bagasse | 24 h | C-SO3H/Fe3O4 | TRS | 57% | 68.4% | [94] |
Plukenetia hulls | 24 h | C-SO3H/Fe3O4 | TRS | 34% | 40.8 | [94] |
Eucalyptus wood chips | Sample of 1.0 g, 400 rpm, 2 h, room temperature | Enzyme | Glucose | - | 89.7% | [95] |
Cellulose | Sample of 1.0 g, 400 rpm, 4 h, room temperature | Biochar | Glucose | 28.9% | 52.8% | [85] |
Douglas-fir forest residuals | Sample of 250.0 g, 270 rpm, 30 min, room temperature | Enzyme | Glucose | 14% | 60% | [96] |
Cotton textile | Sample of 1.5 g, 20 Hz, 4 h, room temperature | Ru/CNT | Sorbitol | 64 mg/g | 212 mg/g | [97] |
Cotton wool | Sample of 1.5 g, 20 Hz, 4 h, room temperature | Ru/CNT | Sorbitol | 66 mg/g | 183 mg/g | [97] |
Tissue paper | Sample of 1.5 g, 20 Hz, 4 h, room temperature | Ru/CNT | Sorbitol | 83 mg/g | 338 mg/g | [97] |
Cellulose | 4 h | SA-SO3H | Levulinic acid | 46% | 52.2% | [84] |
Hydroxymethylfurfural | 60 Hz, 5 min | NaOH | 2,5-dihydroxy- methylfuran | 67% (24 h) | 64% (5 min) | [98] |
Miscanthu | Sample of 6.0 g, 450 rpm, 4 h, 40 °C | 5%Ru/AC t | Ethylene glycol | 22.5% | 52.4% | [81] |
Corn stover | 120 min, <30 °C | Sulfuric acid | Ethyl levulinate | 15.59% | 20.46% | [99] |
Digested residue of rice straw | Sample of 24 g, 750 rpm, 2 h | Enzyme | Ethanol | 15.08% (30.8 mg/g) | 57.84% (116.65 mg/g) | [82] |
Cellulose | Sample of 1.5 g, 500 rpm, 4 h | Sulfonated carbon | Glucose | 35.6% | 52% | [87] |
Rice straw | Sample of 1.0 g, 500 rpm, 4 h | Biochar | Xylose | 41.1% | 61.5% | [88] |
Rice straw | Sample of 1.0 g, 500 rpm, 4 h | Biochar | Glucose | 3.7% | 19.4% | [88] |
Cellulose | Sample of 2.0 g, 300 rpm, 3 h, room temperature | Enzyme | Glucose | 20.9% | 84.5% | [76] |
Cellulose | Sample of 1.3 g, 350 rpm, 4 h, | Al2(SO4) | Hydroxymethylfurfural | 39.8% | 44.6% | [100] |
Contaminant | Ball Milling Conditions | Chemical Precursor | Reagent Ratio a | Charge Ratio b | Destruction Percentage (%) | Ref. |
---|---|---|---|---|---|---|
Chlorinated pollutants | ||||||
2,4-dichlorophenol (2,4-DCP) | Vibrational milling, sample of 14 g, 20.5 Hz, | zero-valent iron (ZVI) | ZVI-PDS = 13:1 | 30 | 86.8% | [122] |
2,4-dichlorophenol (2,4-DCP) | Vibrational milling, sample of 14 g, 20.5 Hz, | CaO, peroxydisulfate (PDS) | CaO-PDS:2,4-DCP = 13:1 | 30 | 99.8 | [123] |
Hexachloroethane (HCE) | Planetary ball mill, sample of 7.25 g, 600 rpm, 2 h | Fe/Fe3O4 | Fe/Fe3O4:HCE = 13.5:1 | 20 | 98.7 | [124] |
Hexachlorobenzene (HCB) | Planetary ball mill, sample of 7.25 g, 600 rpm, 4 h | Fe/Fe3O4 | Fe/Fe3O4:HCB = 13.5:1 | 20 | 98.3 | [124] |
1,1,1-trichoro-2,2-bis(p-chlorophenyl)-ethane, (D DT) | Planetary ball mill, sample of 10.2 g, 250 rpm, 4 h | Fe-Zn | 9 (wt) | 35 | 98 | [125] |
Polychlorinated biphenyls (PCBs) | Planetary ball mill, sample of 20 g, 400 rpm, 4 h | CaO | CaO:Soil = 1:1 (wt) | 10 | >99.9 | [126] |
Polychlorinated dibenzo-p-dioxins (PCDD)/Fs (fly ash) PCBs | Planetary ball mill, sample of 9.0 g, 275 rpm, 7 h | CaO + SiO2 | CaO:SiO2:fly ash = 4:1:5 (wt) | 90 | 84.8 | [127] |
Pentachlorophenol | Planetary ball mill, sample of 5.0 g, 300 rpm, 5 h | CaO + SiO2 | PCP:CaO:SiO2 (mol) = 1:60:60 | 40 c | 58.4 | [128] |
Hexachlorobenzene | Planetary ball mill, sample of 9.0 g, 275 rpm, 8 h | Fe + SiO2 | 15 (wt) | 36 | 99.9 | [129] |
Dechlorane plus | Planetary ball mill, sample of 9.0 g, 275 rpm, 2 h | Al + SiO2 | 11 (wt) | 30 | 99.9 | [130] |
Mirex | Planetary ball mill, sample of 9.0 g, 550 rpm, 2 h | Fe + SiO2 | 24 (wt) | 36 | 100 | [131] |
Polychlorinated naphthalene | Planetary ball mill, sample of 38 g, 700 rpm, 1 h | CaO | 57 c | 25 c | 99.9 | [132] |
Pentachlorophenol | Planetary ball mill, sample of 38 g, 700 rpm, 1 h | MnO2 (birnessite) | 20 (wt) | 6.6 c | >99.0 | [133] |
Pentachloronitrobenzene | Planetary ball mill, sample of 5.0 g, 275 rpm, 4 h | Fe | 24 (wt) | 36 | 94 | [134] |
Pentachloronitrobenzene | Planetary ball mill, sample of 5.0 g, 275 rpm, 4 h | Fe + SiO2 | 24 (wt) | 36 | 99.9 | [134] |
Pentachloronitrobenzene | Planetary ball mill, sample of 5.0 g, 275 rpm, 4 h | Fe + Ni | 24 (wt) | 36 | 99.9 | [134] |
Pentachloronitrobenzene | Planetary ball mill, sample of 5.0 g, 275 rpm, 3 h | Fe + Ni + SiO2 | 24 (wt) | 36 | 99.9 | [134] |
1,3,4,5,6-pentachlorocyclohexene (γ-PCCH) | Planetary ball mill, sample of 38.0 g, 700 rpm, 2 h | CaO | 60 (mol) | 98 | 100 | [135] |
2,4,6-trichlorophenol | Planetary ball mill, sample of (not reported), 400 rpm, 6 h | CaO + SiO2 | 5.329 (wt) | 22.24 c | 99.0 | [136] |
Pentachlorophenol | Planetary ball mill, sample of 38 g, 700 rpm, 1 h | MnO2 (birnessite) | 20 (wt) | 22 c | >99.0 | [137] |
Pentachlorophenol (soil) | Planetary ball mill, sample of 38 g, 700 rpm, 1 h | MnO2 (birnessite) | 40 (wt) | 7 c | 75.0 | [137] |
Pentachloronitrobenzene | Planetary ball mill, sample of 5.0 g, 275 rpm, 4 h | Nano-Fe | 15 (wt) | 36 | 100 | [138] |
PCDD/Fs | Planetary ball mill, sample of 10 g, 400 rpm, 20 h | CaO | 100 (wt) | 4 c | 44.2 | [139] |
PCDD/Fs | Planetary ball mill, sample of 10 g, 400 rpm, 20 h | Ca + CaO | 100 (wt) | 4 c | 82.7 | [139] |
PCDD/Fs | Planetary ball mill, sample of 10 g, 400 rpm, 20 h | Ca + CaO | 100 (wt) | 4 c | 100 | [139] |
Dechlorane plus | Planetary ball mill, sample of 5.0 g, 550 rpm, 4 h | CaO | 25 (wt) | 36 | 100 | [140] |
PCDD/Fs (fly ash) | Planetary ball mill, sample of 13 g, 400 rpm, 8 h | Eggshells | - | 60 c | >50 | [141] |
PCDD/Fs (fly ash) | Planetary ball mill, sample of 13 g, 400 rpm, 2 h | CaO | Ca:PCDD/F = 1.49 x 107 | - | 76.8 (PCDD) | [142] |
PCDD/Fs (fly ash) | Planetary ball mill, sample of 13 g, 400 rpm, 2 h | CaO | Ca:PCDD/F = 1.49 x 107 | - | 56.8 (PCDF) | [142] |
Pentachlorophenol | Planetary ball mill, sample of 13 g, 400 rpm, 1 h | CaO + SiO2 | Ca:Cl (mol) = 4 | 9 c | 98.4 | [143] |
PCBs | Planetary ball mill, sample of (not reported), 500 rpm, 3 h | Zn + KOH + PEG2000 | Glycol:KOH = 1.33 Glycol:PCBs oil = 0.6 Zn = 1.53 mol/kg oil | - | 100 | [144] |
PCBs (sediment) | Planetary ball mill, sample of 16 g, 480 rpm, 30 min | NaBH4 | H:Cl = 14 (mol) | 10 | <98 | [145] |
PCDD/Fs (fly ash) | Planetary ball mill, sample of 10 g, 350 rpm, 2 h | CaO | 0.6 (wt) | - | >60 | [146] |
3-chlorobiphenyl | Planetary ball mill, sample of 38 g, 700 rpm, 6 h | La2O3 | 0.05 (wt) | 14 c | 100 | [147] |
4-chlorobenzene | Planetary ball mill, sample of 38 g, 700 rpm, 2 h | CaO | 20 (wt) | - | 100 | [148] |
Octachlorodibenzo-p-dioxin | Planetary ball mill, sample of 38 g, 700 rpm, 2 h | CaO | 200 (wt) | - | 100 | [148] |
Octachlorodibenzofuran | Planetary ball mill, sample of 38 g, 700 rpm, 2 h | CaO | 200 (wt) | - | 100 | [148] |
PCBs (sand), dichlorobenzene, pentachlorophenol (sand) | Planetary ball mill, sample of 22 g, 530 rpm, 5 h | Mg | 0.04 (wt) | 9 c | 100 | [149] |
Atrazine (soil) | Attritor (ring mill), sample (not reported), 750–1000 rpm, 2 h | LiAlH4 | 0.05 (wt) | 36 | 100 | [150] |
PCBs (soil) | Attritor (ring mill), sample (not reported), 750–1000 rpm, 2 h | LiAlH4 | 0.05 (wt) | 36 | 99.9 | [150] |
PCBs (soil) | Attritor (ring mill), sample (not reported), 750–1000 rpm, 18 h | LiAlH4 | 0.05 (wt) | 36 | 99.9 | [151] |
1,2,3-trichlorobenzene | Planetary ball mill, sample of 38 g, 700 rpm, 6 h | CaO | 3.71 (wt) | 35 c | >99.9 | [152] |
3-chlorobiphenyl | Planetary ball mill, sample of 38 g, 700 rpm, 6 h | CaO | 2.33 (wt) | - | >99.0 | [153] |
3-chlorobiphenyl | Planetary ball mill, sample of 38 g, 700 rpm, 6 h | CaO + SiO2 | 0.05 (wt) | 42 c’ | 99.5 | [154] |
Brominated pollutants | ||||||
Decabromodiphenyl ether | Planetary ball mill, sample of 38.0 g, 700 rpm, 1 h | CaO | 20 (wt) | 23 c | 99.0 | [155] |
Hexabromobenzene | Planetary ball mill, sample of 38.0 g, 700 rpm, 3 h | CaO | Ca: Br (mol) = 2 | 35 c | 100 | [156] |
Hexabromocyclododecane | Planetary ball mill, sample of 9.0 g, 275 rpm, 1.5 h | CaO | 11 (wt) | 27 | 98.0 | [157] |
Hexabromocyclododecane | Planetary ball mill, sample of 9.0 g, 275 rpm, 1.5 h | Fe + Quartz | 11 (wt) | 27 | <98.0 | [157] |
Hexabromocyclododecane | Planetary ball mill, sample of 9.0 g, 275 rpm, 3 h | CaO | 11 (wt) | 27 | 98.0 | [157] |
Hexabromocyclododecane | Planetary ball mill, sample of 9.0 g, 275 rpm, 2 h | Fe + Quartz | 11 (wt) | 27 | 100 | [157] |
Decabromodiphenyl ether | Planetary ball mill, sample of 38.0 g, 700 rpm, 1 h | Bi2O3 | 2.43 (wt) | 27 | 100 | [158] |
Decabromodiphenyl ether | Planetary ball mill, sample of 38.0 g, 700 rpm, 2 h | CaO | 2.43 (wt) | 27 | 85 | [158] |
Tetrabromobisphenol A | Planetary ball mill, sample of 6.0 g, 550 rpm, 4 h | Fe + SiO2 | 11 (wt) | 30 | 99.6 | [159] |
Tetrabromobisphenol A | Planetary ball mill, sample of 6.0 g, 550 rpm, 2 h | CaO+ Na2S2O8 | Na2S2O8:CaO:TBBPA = 13:52:1 (mol) | 30 | 100 | [160] |
Fluorinated pollutants | ||||||
Perfluorooctane sulfonate, Perfluorooctanoic acid | Planetary ball mill, sample of 380 g, 700 rpm, 6 h | CaO | 4 (wt) | 20 c | 99.0 | [161] |
Perfluorooctane sulfonate, Perfluorooctanoic acid | Planetary ball mill, sample of 380 g, 700 rpm, 18 h | CaO | 4 (wt) | 20 c | 98.4 | [161] |
Perfluorooctane sulfonate, Perfluorooctanoic acid | Planetary ball mill, sample of 9.0 g, 275 rpm, 6 h | KOH | 23 (wt) c | 19 c | 99.8 | [162] |
Chlorinated polyfuorinated ether sulfonate (F-53B) | Planetary ball mill, sample of 9.0 g, 275 rpm, 8 h | Na2S2O8 +NaOH | Na2S2O8:NaOH:F-53B = 83:40:1 (wt) c | 10 c | 88.0 | [163] |
Process | Agent | Deproteinization | Demineralization | Decoloration |
---|---|---|---|---|
Traditional solution method | Chemicals | NaOH: 500 kg | HCl: 540 kg | H2O2: 296 kg |
Electricity consumption | 1.02 × 106 kW h | 1.53 × 106 kW h | 1.02 × 106 kW h | |
Water | 19.5 × 103 L; | 14.4 × 103 L | 12.7 × 103 L | |
Component loss | Loss of protein | Loss of minerals | Loss of astaxanthin | |
Products | _ | – | Chitin: 184 kg | |
Mechanochemical solution method | Electricity consumption | 1.02 × 106 kW h | 1.53 × 106 kW h | 1.02 × 106 kW h |
Water | 19.5 × 103 L; | 14.4 × 103 L | 12.7 × 103 L | |
Component loss | Loss of protein | Loss of minerals | Loss of astaxanthin | |
Products | _ | – | Chitin: 184 kg | |
Electricity consumption | 1.02 × 106 kW h | 1.53 × 106 kW h | 1.02 × 106 kW h |
Precursor | Chemical Precursor | Ball Milling Conditions | Composites | Application | Activity | Reuse Cycles | Activity | Ref. |
---|---|---|---|---|---|---|---|---|
Humins | FeCl2 or Fe (NO3)3 | 350 rpm, 45 min | Catalyst, H-TD-W | Oxidation of isoeugenol to vanillin | Conversion >87% | Four | Conversions >87% | [206] |
Mimosa tannin | Co(OAc)2 | 30 min | Catalyst, Co@P1230.8 | Hydrogenation of acetophenone to alkylbenzene | Conversion (>99%) and Selectivity (94%) | Ten | No significant loss in catalytic performance | [193] |
Avian eggshell | NCM811 | 600 rpm for approximately 6 h | Electrode, CaO-NCM811 | Energy storage | Discharge capacity (177 mA h/g) | Fifty | Maintained a retention capacity of 92.6% | [207] |
Chicken eggshells | - | Ground in a planetary ball mill for 2 h and then calcined at 900 °C for 1 h | Catalyst, nano-CaO | Suzuki reaction pyrano[4,3-b]pyrans | yields (93–98%) | Seven | no loss of catalytic activity | [174] |
Polysaccharide | Ammonium niobate (V) oxalate | 350 rpm, 30 min | Catalyst, S13-Nb2O5 | Oxidation of isoeugenol to vanillin | Conversion (70%) and Selectivity (65%) | Not reported | Not reported | [23] |
Rice straw and Eggshell | - | 30 min | Adsorbent, CaO-biochar (E-C 1:1) | Adsorption of phosphate | 231 mg/g | Not reported | Not reported | [187] |
Lignin | HAuCl4, PdCl2RuCl3, Re(CO)5Br | 29.5 Hz, 90 min | MNPs where M = Au, Pd, Ru, Re. | Not reported | Not reported | Not reported | Not reported | [73] |
Glycerol | CaO | 550 rpm for 5 h | Catalyst, CaDG | Methanolysis of sunflower oil | Conversion ~100% | Not reported | Not reported | [26] |
Coconut, pinenut and walnut shells | Fe3O4 | 550 rpm for 6 h | Adsorbent, biochar/Fe3O4 | Carbamazepine (CBZ) removal | 62.7 mg/g | Not reported | Not reported | [194] |
Coconut, pinenut and walnut shells | Fe3O4 | 550 rpm for 6 h | Adsorbent, biochar/Fe3O4 | Tetracycline (TC) removal | 94.2 mg/g | Not reported | Not reported | [194] |
Wheat stalk | - | 300 rpm for 12 h | Adsorbent, BM-biochar | TC removal | 84.54 mg/g | Not reported | Not reported | [195] |
Glycerol | CaC2 | 450 rpm, 1 h | Catalyst, Ca-DG | Synthesis of acetylene | 96% (Conversion) | Not reported | Not reported | [205] |
Glycerol | CaO | Mixture was pumped into the MCR (V = 0.5 L) at a flow rate of 4 and 150 L/h | Catalyst, CaDG | Transesterification of vegetable oil | >90% (Yield) | Not reported | Not reported | [204] |
Sugarcane bagasse | - | 300 rpm for 12 h | Adsorbent, BMBG450 | MB removal | 354 mg/g | Not reported | Not reported | [196] |
Pine wood | - | 575 rpm for 16 h | Adsorbent, nanobiochar | CBZ of removal | 95% | Not reported | Not reported | [208] |
Bagasse | NH4OH | 300 rpm for 12 h | Adsorbent, BMBG600-N | Sorption of CO2 | 48.2 mg/g | Not reported | Not reported | [209] |
Bagasse | NH4OH | 300 rpm for 12 h | Adsorbent, BMBG600-N | Sorption of reactive red | 27.4 mg/g | Not reported | Not reported | [209] |
Hickory | MgO | 500 rpm for 12 h | Adsorbent, BMMg50 | Removal of phosphate | 62.9% | Not reported | Not reported | [197] |
Hickory | MgO | 500 rpm for 12 h | Adsorbent, BMMg50 | Removal of MB | 87.5% | Not reported | Not reported | [197] |
Hickory chips | NH4OH | 300 rpm for 12 h | Adsorbent, BMHC600-N | Sorption of CO2 | 52.5 mg/g | Not reported | Not reported | [209] |
Hickory chips | NH4OH | 300 rpm for 12 h | Adsorbent, BMHC600-N | Sorption of reactive red | 37.4 mg/g | Not reported | Not reported | [209] |
Lignin | AgNO3 | 30 Hz for 90 min | Antibacterial silver nanomaterials, AgNP@TM-PLig/PAM. | Antimicrobial filters | Killing 99.99% of bacteria | Five | Bacterial activity completely eradicated | [210] |
Urea and h-BN | Cu(NO3)2·3H2O | 800 rpm for 8 h | Catalyst, CuO/BCN | Depolymerization of lignins | 10 wt% (Yield of monomers) 70 wt% (Yields of bio-oils) | Three | high yields of bio-oil were maintained | [211] |
Glycerol | K2CO3 | 350 rpm for 2 h | K2CO3 | Synthesis of benzoxazine | 35% (Yield) | Not reported | Not reported | [212] |
Regeneration Process | Electrochemical Performance | |||||||
---|---|---|---|---|---|---|---|---|
Materials | Type of Mill | Ball Milling Parameters | Sintering Temperature (°C) | Regenerated Cathode | Specific Charging Capacity (mA h/g) | Cycle | Retention Rate | Ref. |
NCM | Planetary | Speed = 400 rpm, Time = 120 min | 900 for 30 min | Li[Li0.2Mn0.54Ni0.13Co0.13]O2 | 239 | 100 | 98% | [244] |
NCM | Planetary | Speed = 400 rpm; Time: 240 min, Co-grinding reagent: Li/TM (Ni, Co, Mn) = 1.20/1 | 800 for 10 h | MA-1.20-800 | 165 | 100 | >80% | [246] |
NCM | Without mechanochemical activation | Li/TM (Ni, Co, Mn) = 1.20/1 | 800 for 10 h | non-MA-1.20-800 | <165 | - | - | [246] |
LiMn2O4 | Planetary | Speed: 800 rpm; Time: 240 min; Co-grinding reagent: NH3H2PO4, polyvinyl alcohol (PVA) and ethyl alcohol | 650 for 6 h | LiMnPO4/C | 148.5 | 100 | 98% | [245] |
LFP | Planetary | Speed: 400 rpm; Time: 240 min Co-grinding reagent: LFP of Li:V: = 1.05:0.03) | 700 for 9 h | R3 | 134.3 | 200 | 99.10 | [248] |
W-LFP | Planetary | Speed: 500 rpm; Time: 120 min; Co-grinding reagent: 5 wt% CNTs, 15 wt% glucose, 5 wt% Li2CO3, W-LFP (1:1 ethanol aqueous solution as dispersant) | 650 for 12 h | R-LFP | 155.47 | 800 | 70.84 | [247] |
LFP | Planetary | Speed: 500 rpm; Time: 120 min; nitrogen-doped carbon-coated LiFePO4 composites, lithium carbonate and melamine; LFP (1:1 ethanol aqueous solution as dispersant) | 650 for 12 h | R-(C + N)-LiFePO4 | 168 | 200 | 99.03 | [249] |
LFP | Planetary | Ball milling; Time: 2 h Co-grinding reagent: PVDF/LFP = 5 wt% | 650 for 2 h | R3-LFP | 141.5 | 100 | 99.60 | [250] |
LFP | Planetary | Ball milling; Time: 2 h Co-grinding reagent: sucrose, g-C3N4 powder and ethanol | 700 for 8 h | RLFP/g10–700/8 | 135.50 | 300 | - | [251] |
Benefits | Drawbacks |
---|---|
|
|
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Vasconcelos, A.A.; Gatti, L.C.P.; de Mescouto, V.A.; de Oliveira, A.d.N.; Melchiorre, M.; Noronha, R.C.R.; Luque, R.; Esposito, R.; Nascimento, L.A.S.d. Mechanochemistry in Waste Valorization: Advances in the Synthesis of Catalysts, Polymers, and Functional Materials. Catalysts 2025, 15, 897. https://doi.org/10.3390/catal15090897
Vasconcelos AA, Gatti LCP, de Mescouto VA, de Oliveira AdN, Melchiorre M, Noronha RCR, Luque R, Esposito R, Nascimento LASd. Mechanochemistry in Waste Valorization: Advances in the Synthesis of Catalysts, Polymers, and Functional Materials. Catalysts. 2025; 15(9):897. https://doi.org/10.3390/catal15090897
Chicago/Turabian StyleVasconcelos, Arthur Abinader, Larissa Carla Pinheiro Gatti, Vanessa Albuquerque de Mescouto, Alex de Nazaré de Oliveira, Massimo Melchiorre, Renata Coelho Rodrigues Noronha, Rafael Luque, Roberto Esposito, and Luís Adriano Santos do Nascimento. 2025. "Mechanochemistry in Waste Valorization: Advances in the Synthesis of Catalysts, Polymers, and Functional Materials" Catalysts 15, no. 9: 897. https://doi.org/10.3390/catal15090897
APA StyleVasconcelos, A. A., Gatti, L. C. P., de Mescouto, V. A., de Oliveira, A. d. N., Melchiorre, M., Noronha, R. C. R., Luque, R., Esposito, R., & Nascimento, L. A. S. d. (2025). Mechanochemistry in Waste Valorization: Advances in the Synthesis of Catalysts, Polymers, and Functional Materials. Catalysts, 15(9), 897. https://doi.org/10.3390/catal15090897