Ternary SiO2@CuO/g-C3N4 Nanoparticles for Solar-Driven Photoelectrocatalytic CO2-to-Fuel Conversion
Abstract
1. Introduction
2. Discussion
2.1. Elemental Composition and Surface Chemistry
2.2. Optical Properties
2.3. Electrochemical Properties
2.4. Photoelectrocatalytic Performanc for CO2RR
2.4.1. PEC Performance and Faraday Efficiency of the Catalysts
2.4.2. Comparison of PEC Performance at Different Potentials
2.4.3. Comparison of Photoelectrocatalytic Performance and Stability Test
Catalysts | Conditions | Reactor | CO | C2H4 | Ref. |
---|---|---|---|---|---|
Cu2O/Zn-Cr-LDHs | 200 W Hg-Xe lamp | H-type Cell | 1.3125 μmol/g/h | [1] | |
Cu2O/Cu/Cu3V2O7(OH)2·2H2O | 300 W Xe lamp (λ > 400 nm) | H-type cell | 6.97 μmol/g/h | [2] | |
3D porous Cu2O | 300 W Xe lamp (λ > 420 nm) | H-type cell | 26.8 μmol/g/h | 0.66 μmol/g/h | [3] |
BiVO4/C/Cu2O nanowires | 300 W Xe lamp (λ > 420 nm) | H-type cell | 3.01 μmol/g/h | [4] | |
g-C3N4/Cu2O | Flow cell | 8.182 μmol/g/h | [5] | ||
FeCuP | −1.6 V | Flow cell | 1.44 μmol/h | [11] | |
Co-ZIF-9/g-C3N4 | NA | Flow cell | 495 μmol/g/h | [13] | |
NH2/MOF | −1.2 V | Flow cell | 1.7 mmol/g/h | [14] | |
Re@NH2-MOF | −1.2 V | Flow cell | CO = 14.85 mmol/g/h | [14] | |
Cu2O/Sn/PTFE | −1.2 V | Flow cell | CO = 68.31 μmol/h/cm2 | [15] | |
Au-Cu/SrTiO3/TiO2 | NA | Flow cell | 3.7mmol/gcat/h | [16] | |
Ni/g-C3N4 | 300 W Xe lamp | Flow cell | 19.85 μmol/g/h | [17] | |
α-Fe2O3/g-C3N4 | 300 W Xe lamp | Flow cell | 27.2 μmol/g/h | [18] | |
Cu/ZnO/g-C3N4 | 400 W Hg lamp | H-type cell | 65.1 μmol/g/h | [39] | |
Ru/Zn-g-C3N4-1/20 | 300 W Xe lamp | H-type cell | 288.42 μmol/g/h | [40] | |
Pt/TiO2/g-C3N4 | 300 W Xe lamp | H-type cell | 3.8 μmol/g/h | [41] | |
SiO2@CuO (10 wt%)/g-C3N4 | 300 W, −1.2 VRHE, 2 h, 0.1 M KHCO3 | H-type cell | 17 mmol/g/h | 2305.1 μmol/g/h | This work |
2.5. DFT Calculations
3. Materials and Methods
3.1. Materials
3.2. Synthesis of the SiO2@Cu and SiO2@CuO/g-C3N4 Catalyst and Working Electrodes
3.3. Catalysts Characterization
3.4. Electrochemical Test
3.5. Photoelectrocatalytic CO2 Reduction
3.6. DFT Calculations Method
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Kumaravel, V.; Bartlett, J.; Pillai, S.C. Photoelectrochemical Conversion of Carbon Dioxide (CO2) into Fuels and Value-Added Products. ACS Energy Lett. 2020, 5, 486–519. [Google Scholar] [CrossRef]
- Zhang, Y.; Pan, D.; Tao, Y.; Shang, H.; Zhang, D.; Li, G.; Li, H. Photoelectrocatalytic Reduction of CO2 to Syngas via SnOx-Enhanced Cu2O Nanowires Photocathodes. Funct. Mater. 2021, 32, 2109600. [Google Scholar] [CrossRef]
- Yu, H.; Cohen, H.; Neumann, R. Photoelectrochemical Reduction of Carbon Dioxide with a Copper Graphitic Carbon Nitride Photocathode. Chem. Eur. J. 2021, 27, 13513–13517. [Google Scholar] [CrossRef]
- Dutta, N.; Bagchi, D.; Chawla, G.; Peter, S.C. A Guideline to Determine Faradaic Efficiency in Electrochemical CO2 Reduction. ACS Energy Lett. 2024, 9, 323–328. [Google Scholar] [CrossRef]
- Guo, C.; Guo, Y.; Shi, Y.; Lan, X.; Wang, Y.; Yu, Y.; Zhang, B. Electrocatalytic Reduction of CO2 to Ethanol at Close to Theoretical Potential via Engineering Abundant Electron-Donating Cuδ+ Species. Angew. Chem. Int. Ed. 2022, 134, e202205909. [Google Scholar] [CrossRef]
- Wang, W.; Zhang, W.; Deng, C.; Sheng, H.; Zhao, J. Accelerated Photocatalytic Carbon Dioxide Reduction and Water Oxidation under Spatial Synergy. Angew. Chem. Int. Ed. 2024, 136, e202317969. [Google Scholar] [CrossRef]
- Wang, K.; Liu, Y.; Wang, Q.; Zhang, Y.; Yang, X.; Chen, L.; Liu, M.; Qiu, X.; Li, J.; Li, W. Asymmetric Cu-N sites on copper oxide photocathode for photoelectrochemical CO2 reduction towards C2 products. App. Catal. B Environ. 2022, 316, 121616. [Google Scholar] [CrossRef]
- Chen, Y.; Xiang, C.; Lin, M. Performance assessment of photoelectrochemical CO2 reduction photocathodes with patterned electrocatalysts: A multi-physical model-based approach. Energy Environ. Sci. 2024, 17, 3032–3041. [Google Scholar] [CrossRef]
- Abbas, T.; Yahya, H.S.M.; Amin, N.A.S. Insights and Progress on Photocatalytic and Photoelectrocatalytic Reactor Configurations and Materials for CO2 Reduction to Solar Fuels. Energy Fuels 2023, 37, 18330–18368. [Google Scholar] [CrossRef]
- Wang, Q.; Zhang, Y.; Liu, Y.; Wang, K.; Qiu, W.; Chen, L.; Li, J.; Li, W. Core–Shell In/Cu2O Nanowires Schottky Junction for Enhanced Photoelectrochemical CO2 Reduction under Visible Light. Ind. Eng. Chem. Res. 2022, 61, 16470–16478. [Google Scholar] [CrossRef]
- Liang, H.; Li, M.; Li, Z.; Xie, W.; Zhang, T.; Wang, Q. Photoelectrochemical CO2 reduction with copper-based photocathodes. J. CO2 Util. 2024, 79, 102639. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; Castro, S.; Irabien, A.; Hernández, I.; Rodríguez, V.; Camarillo, R.; Rincón, J.; Albo, J. Efficient photoelectrochemical conversion of CO2 to ethylene and methanol using a Cu cathode and TiO2 nanoparticles synthesized in supercritical medium as photoanode. J. Environ. Chem. Eng. 2022, 10, 107441. [Google Scholar] [CrossRef]
- Guo, L.; Cao, J.; Zhang, J.; Hao, Y.; Bi, K. Photoelectrochemical CO2 reduction by Cu2O/Cu2S hybrid catalyst immobilized in TiO2 nanocavity arrays. J. Mater. Sci. 2019, 54, 10379–10388. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Chen, P.; Jaroniec, M.; Qiao, S.-Z. Molecular Scaffolding Strategy with Synergistic Active Centers to Facilitate Electrocatalytic CO2 Reduction to Hydrocarbon/Alcohol. J. Am. Chem. Soc. 2017, 139, 18093–18100. [Google Scholar] [CrossRef]
- Chen, P.; Zhang, Y.; Zhou, Y.; Dong, F. Photoelectrocatalytic carbon dioxide reduction: Fundamental, advances and challenges. Nano Mater. Sci. 2021, 3, 344–367. [Google Scholar] [CrossRef]
- Kecsenovity, E.; Endrődi, B.; Tóth, P.S.; Zou, Y.; Dryfe, R.A.W.; Rajeshwar, K.; Janáky, C. Enhanced Photoelectrochemical Performance of Cuprous Oxide/Graphene Nanohybrids. J. Am. Chem. Soc. 2017, 139, 6682–6692. [Google Scholar] [CrossRef] [PubMed]
- Deng, X.; Li, R.; Wu, S.; Wang, L.; Hu, J.; Ma, J.; Jiang, W.; Zhang, N.; Zheng, X.; Gao, C.; et al. Metal–Organic Framework Coating Enhances the Performance of Cu2O in Photoelectrochemical CO2 Reduction. J. Am. Chem. Soc. 2019, 141, 10924–10929. [Google Scholar] [CrossRef]
- Qadir, M.I.; Albo, J.; de Pedro, I.; Cieslar, M.; Hernández, I.; Brüner, P.; Grehl, T.; Castegnaro, M.V.; Morais, J.; Martins, P.R.; et al. Nanoarchitectonics of CuNi bimetallic nanoparticles in ionic liquids for LED-assisted synergistic CO2 photoreduction. Mol. Cat. 2022, 531, 112654. [Google Scholar] [CrossRef]
- Su, X.; Jiang, Z.; Zhou, J.; Liu, H.; Zhou, D.; Shang, H.; Ni, X.; Peng, Z.; Yang, F.; Chen, W.; et al. Complementary Operando Spectroscopy identification of in-situ generated metastable charge-asymmetry Cu2-CuN3 clusters for CO2 reduction to ethanol. Nat. Commun. 2022, 13, 1322. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; González-Cobos, J.; Dappozze, F.; Vernoux, P.; Caravaca, A.; Guillard, C. Basic comprehension and recent trends in photoelectrocatalytic systems. Green Chem. 2024, 26, 1682–1708. [Google Scholar] [CrossRef]
- Ma, L.; Guan, R.; Kang, W.; Sun, Z.; Li, H.; Li, Q.; Shen, Q.; Chen, C.; Liu, X.; Jia, H.; et al. Rational synthesis of two isostructural thiophene-containing metal-organic frameworks toward photocatalytic degradation of organic pollutants. J. Colloid Interface Sci. 2024, 660, 381–392. [Google Scholar] [CrossRef]
- Schreier, M.; Gao, P.; Mayer, M.T.; Luo, J.; Moehl, T.; Nazeeruddin, M.K.; Tilley, S.D.; Grätzel, M. Efficient and selective carbon dioxide reduction on low cost protected Cu2O photocathodes using a molecular catalyst. Energy Environ. Sci. 2015, 8, 855–861. [Google Scholar] [CrossRef]
- Jiang, Z.; Wan, W.; Li, H.; Yuan, S.; Zhao, H. A Hierarchical Z-Scheme α-Fe2O3/g-C3N4 Hybrid for Enhanced Photocatalytic CO2 Reduction. Adv. Mater. 2018, 30, 1706108. [Google Scholar] [CrossRef]
- Castro, S.; Albo, J.; Irabien, A. Continuous conversion of CO2 to alcohols in a TiO2 photoanode-driven photoelectrochemical system. J. Chem. Technol. Biotechnol. 2020, 95, 1876–1882. [Google Scholar] [CrossRef]
- Autthawong, T.; Namsar, O.; Yu, A.; Sarakonsri, T. Cost-effective production of SiO2/C and Si/C composites derived from rice husk for advanced lithium-ion battery anodes. J. Mater. Sci.: Mater. Electron. 2020, 31, 9126–9132. [Google Scholar] [CrossRef]
- Wang, P.; Yang, H.; Tang, C.; Wu, Y.; Zheng, Y.; Cheng, T.; Davey, K.; Huang, X.; Qiao, S.Z. Boosting electrocatalytic CO2–to–ethanol production via asymmetric C–C coupling. Nat. Commun. 2022, 13, 3754. [Google Scholar] [CrossRef]
- Chen, J.-J.; Li, Y.-Y.; Cui, T.-L.; Shi, Y.; Wang, R.-R.; Liu, X.-M.; Liu, G.; Chen, K.-K. Preparation and Properties of g-C3N4 Photocatalysts with Hierarchical Porous Structure. Chin. J. Inorg. Chem. 2020, 36, 835–840. [Google Scholar]
- Wang, X.; Wang, S.; Hu, W.; Cai, J.; Zhang, L.; Dong, L.; Zhao, L.; He, Y. Synthesis and photocatalytic activity of SiO2/g-C3N4 composite photocatalyst. Mater. Lett. 2014, 115, 53–56. [Google Scholar] [CrossRef]
- Tang, D.; Zhang, G. Fabrication of AgFeO2/g-C3N4 nanocatalyst with enhanced and stable photocatalytic performance. Appl. Surf. Sci. 2017, 391, 415–422. [Google Scholar] [CrossRef]
- Yuan, Y.; Huang, G.-F.; Hu, W.-Y.; Xiong, D.-N.; Zhou, B.-X.; Chang, S.; Huang, W.-Q. Construction of g-C3N4/CeO2/ZnO ternary photocatalysts with enhanced photocatalytic performance. J. Phys. Chem. Solids 2017, 106, 1–9. [Google Scholar] [CrossRef]
- Merino-Garcia, I.; García, G.; Hernández, I.; Albo, J. An optofluidic planar microreactor with photoactive Cu2O/Mo2C/TiO2 heterostructures for enhanced visible light-driven CO2 conversion to methanol. J. CO2 Util. 2023, 67, 102340. [Google Scholar] [CrossRef]
- Zhang, L.; Cao, H.; Lu, Y.; Zhang, H.; Hou, G.; Tang, Y.; Zheng, G. Effective combination of CuFeO2 with high temperature resistant Nb-doped TiO2 nanotube arrays for CO2 photoelectric reduction. J. Colloid Interface Sci. 2020, 568, 198–206. [Google Scholar] [CrossRef] [PubMed]
- Pan, Z.; Han, E.; Zheng, J.; Lu, J.; Wang, X.; Yin, Y.; Waterhouse, G.I.N.; Wang, X.; Li, P. Highly Efficient Photoelectrocatalytic Reduction of CO2 to Methanol by a p–n Heterojunction CeO2/CuO/Cu Catalyst. Nano-Micro-Lett. 2020, 12, 18. [Google Scholar] [CrossRef]
- Gu, X.; Qian, L.; Zheng, G. Photoelectrochemical CO2 reduction to syngas by a ZnO–CdS–Cu nanocomposite. Mol. Cat. 2020, 492, 110953. [Google Scholar] [CrossRef]
- Wang, L.; Peng, H.; Lamaison, S.; Gregoire, J.; Abild-Pedersen, F. Bimetallic effects on Zn-Cu electrocatalysts enhance activity and selectivity for the conversion of CO2 to CO. Chem. Catal. 2021, 1, 663–680. [Google Scholar] [CrossRef]
- Shi, L.; Yang, Y.; Song, J.; Yang, L.; Dai, Z.; Yao, L.; Jiang, W. A carbon quantum dot (CQD) modified-CuZn bimetallic catalyst for efficient electrocatalytic CO2 reduction. J. Mater. Chem. A 2025, 13, 5068–5080. [Google Scholar] [CrossRef]
- Fan, J.; Shi, L.; Ge, H.; Liu, J.; Deng, X.; Li, Z.; Liang, Q. Regulating the Oxygen Vacancy on Bi2MoO6/Co3O4 Core-Shell Nanocage Enables Highly Selective CO2 Photoreduction to CH4. Adv. Funct. Mater. 2025, 35, 2412078. [Google Scholar] [CrossRef]
- Ren, Z.; Li, B.; Wu, Y.; Liu, H.; Guo, F.; Tian, S.; Yang, J. Sn doping in In2O3-x nanoparticle achieving its synergy with oxygen vacancy towards high-efffciency electrocatalytic CO2 reduction and upcycling of spent liquid crystal display panels. Chem. Eng. J. 2025, 507, 160394. [Google Scholar] [CrossRef]
- Zhu, Z.; Chen, C.-Y.; Wu, R.-J. Hydrocarbon production by addition of Cu-ZnO on g-C3N4 for CO2 conversion. J. Chin. Chem. Soc. 2020, 67, 1654–1660. [Google Scholar] [CrossRef]
- Li, N.; Li, Y.; Jiang, R.; Zhou, J.; Liu, M. Controllable microstructure of polymer-small molecule blends thin films for high-performance organic field-effect transistors. Appl. Surf. Sci. 2019, 498, 143861. [Google Scholar] [CrossRef]
- Li, K.; Peng, B.; Jin, J.; Zan, L.; Peng, T. Dynamic oxygen storage modeling in a three-way catalyst for natural gas engines: A dual-site and shrinking-core diffusion approach. Appl. Catal. B 2017, 203, 910–916. [Google Scholar] [CrossRef]
- Zhan, C.; Dattila, F.; Rettenmaier, C.; López, N.; Cuenya, B.R. Key intermediates and Cu active sites for CO2 electroreduction to ethylene and ethanol. Nat. Energy 2024, 9, 1485–1496. [Google Scholar] [CrossRef] [PubMed]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, Z.; Choy, K.L. Ternary SiO2@CuO/g-C3N4 Nanoparticles for Solar-Driven Photoelectrocatalytic CO2-to-Fuel Conversion. Catalysts 2025, 15, 892. https://doi.org/10.3390/catal15090892
Li Z, Choy KL. Ternary SiO2@CuO/g-C3N4 Nanoparticles for Solar-Driven Photoelectrocatalytic CO2-to-Fuel Conversion. Catalysts. 2025; 15(9):892. https://doi.org/10.3390/catal15090892
Chicago/Turabian StyleLi, Zhen, and Kwang Leong Choy. 2025. "Ternary SiO2@CuO/g-C3N4 Nanoparticles for Solar-Driven Photoelectrocatalytic CO2-to-Fuel Conversion" Catalysts 15, no. 9: 892. https://doi.org/10.3390/catal15090892
APA StyleLi, Z., & Choy, K. L. (2025). Ternary SiO2@CuO/g-C3N4 Nanoparticles for Solar-Driven Photoelectrocatalytic CO2-to-Fuel Conversion. Catalysts, 15(9), 892. https://doi.org/10.3390/catal15090892