Enhancing the Production of Thermostable Mangrovibacter plantisponsor Xylanase for Application in Breadmaking
Abstract
1. Introduction
2. Results and Discussion
2.1. Screening and Molecular Identification of the Xylanase-Producing Strain
2.2. Growth and Xylanase Activity Characteristics of Mangrovibacter plantisponsor
2.3. Optimization of M. plantisponsor Xylanase Production
2.4. Effect of Temperature and pH on M. plantisponsor Xylanase Activity and Stability
2.5. Effect of Substrate Concentration and Incubation Time on M. plantisponsor Xylanase
2.6. Effect of Metal Ions on M. plantisponsor Xylanase Activity
2.7. Effect of Inhibitors and Organic Solvents on M. plantisponsor Xylanase
2.8. Effects of Adding M. plantisponsor Xylanase on Breadmaking
3. Materials and Methods
3.1. Chemicals
3.2. Source of Strains
3.3. Screening of Xylanase-Producing Bacteria
3.4. Identification of the Selected Strain
3.5. Growth of Xylanase-Producing Bacteria
3.6. Xylanase Activity Measurement
3.7. Optimization of Mangrovibacter plantisponsor Xylanase Production
3.8. Effect of Temperature and pH on Crude Mangrovibacter plantisponsor Xylanase Activity and Stability
3.9. Effect of Incubation Time and Substrate Concentration on Xylanase Activity
3.10. Effect of Metal Ions, Enzyme Inhibitors, and Surfactants on Mangrovibacter plantisponsor Xylanase
3.11. Effect of Organic Solvents on Mangrovibacter plantisponsor Xylanase
3.12. Effects of the Addition of M. plantisponsor Xylanase in Breadmaking
3.13. Statistical Analysis
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ammar, I.; Sebii, H.; Aloui, T.; Attia, H.; Hadrich, B.; Felfoul, I. Optimization of a Novel, Gluten-Free Bread’s Formulation Based on Chickpea, Carob and Rice Flours Using Response Surface Design. Heliyon 2022, 8, e12164. [Google Scholar] [CrossRef]
- Dahiya, S.; Rapoport, A.; Singh, B. Biotechnological Potential of Lignocellulosic Biomass as Substrates for Fungal Xylanases and Its Bioconversion into Useful Products: A Review. Fermentation 2024, 10, 82. [Google Scholar] [CrossRef]
- Kostyuchenko, M.; Martirosyan, V.; Nosova, M.; Dremucheva, G.; Nevskaya, E.; Savkina, O. Effects of α-Amylase, Endo-Xylanase and Exoprotease Combination on Dough Properties and Bread Quality. Agron. Res. 2021, 19. [Google Scholar] [CrossRef]
- Kumar, R.; Verma, D.; Sharma, S.; Satyanarayana, T. Applicability of Fungal Xylanases in Food Biotechnology. In Fungi and Fungal Products in Human Welfare and Biotechnology; Satyanarayana, T., Deshmukh, S.K., Eds.; Springer: Singapore, 2023. [Google Scholar]
- Lensky, N.; Saidov, A.; Kalitka, D.; Eseeva, G.; Balguzhinova, Z. Study of Industrial Enzyme Improvers of the Rheological Properties of Baking Flour and the Quality of Finished Products. BIO Web Conf. 2024, 82, 02018. [Google Scholar] [CrossRef]
- Liu, W.; Brennan, M.; Tu, D.; Brennan, C. Influence of α-Amylase, Xylanase and Cellulase on the Rheological Properties of Bread Dough Enriched with Oat Bran. Sci. Rep. 2023, 13, 4543. [Google Scholar] [CrossRef]
- Mabrouk, S.B.; Hmida, B.B.H.; Sebii, H.; Fendri, A.; Sayari, A. Production of an Amylase from Newly Bacillus Strain: Optimization by Response-Surface Methodology, Characterization and Application with a Fungal Lipase in Bread Making. Int. J. Biol. Macromol. 2024, 285, 138147. [Google Scholar] [CrossRef]
- Salem, K.; Elgharbi, F.; Ben Hlima, H.; Alghamdi, O.A.; Perduca, M.; Sayari, A.; Hmida-Sayari, A. His-Tag Effect on Biochemical Properties of B. subtilis US572 α-Amylase Produced in E. coli: Application of the Recombinant Enzyme in Breadmaking. Food Biotechnol. 2024, 38, 134–158. [Google Scholar] [CrossRef]
- Dhevagi, P.; Ramya, A.; Priyatharshini, S.; Geetha Thanuja, K.; Ambreetha, S.; Nivetha, A. Industrially Important Fungal Enzymes: Productions and Applications. In Recent Trends in Mycological Research. Fungal Biology; Yadav, A.N., Ed.; Springer: Cham, Switzerland, 2021; pp. 263–309. [Google Scholar]
- Chauhan, J.; Bishoyi, A.; Gohel, R.; Sanghvi, G. Purification and Characterization of Acidophilic Xylanase from Bacillus sp. with Potential Application as Fruit Juice Clarifier. Emir. J. Food Agric. 2023, 35, 620–630. [Google Scholar] [CrossRef]
- Tran, P.L.; Park, E.-J.; Hong, J.-S.; Lee, C.-K.; Kang, T.; Park, J.-T. Mechanism of Action of Three Different Glycogen Branching Enzymes and Their Effect on Bread Quality. Int. J. Biol. Macromol. 2024, 256, 128471. [Google Scholar] [CrossRef]
- Xue, Y.; Cui, X.; Zhang, Z.-H.; Zhou, T.; Gao, R.; Li, Y.; Ding, X. Effect of β-Endoxylanase and α-Arabinofuranosidase Enzymatic Hydrolysis on Nutritional and Technological Properties of Wheat Brans. Food Chem. 2020, 302, 125332. [Google Scholar] [CrossRef] [PubMed]
- Goupy, J. Introduction Aux Plans d’Expériences, 5th ed.; Dunod: Paris, France, 2013; ISBN 978-21-0059-296-8. [Google Scholar]
- Montgomery, D.C. Design and Analysis of Experiments; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2017; ISBN 9781119113478. [Google Scholar]
- Abdelaliem, Y.F.; Mahmoud, M.H.; Elkassem, N.A.; Mansour, S.M.; Ramadan, M.F. Utilization of Agro-Industrial Biowastes to Produce Xylanase Using Aspergillus Niger AUMC 14230: Optimization of Production Parameters. Rend. Lincei Sci. Fis. Nat. 2023, 34, 941–951. [Google Scholar] [CrossRef]
- Abou-Dobara, M.I.; El-Sayed, A.K.; Elfayoumy, R.A. Optimization and Physiochemical Properties of Xylanase from Bacillus coagulans and Bacillus licheniformis. J. Am. Sci. 2011, 7, 661–670. [Google Scholar]
- Zhou, H.; Cai, Y.; Long, M.; Zheng, N.; Zhang, Z.; You, C.; Hussain, A.; Xia, X. Computer-Aided Reconstruction and Application of Bacillus halodurans S7 Xylanase with Heat and Alkali Resistance. J. Agric. Food Chem. 2024, 72, 1213–1227. [Google Scholar] [CrossRef]
- Della Torre, C.L.; Silva-Lucca, R.A.; Ferreira, R.d.S.; Andrade Luz, L.; Oliva, M.L.V.; Kadowaki, M.K. Correlation of the Conformational Structure and Catalytic Activity of the Highly Thermostable Xylanase of Thermomyces lanuginosus PC7S1T. Biocatal. Biotransform. 2021, 41, 81–92. [Google Scholar] [CrossRef]
- Malhotra, G.; Chapadgaonkar, S.S. Taguchi Optimization and Scale up of Xylanase from Bacillus licheniformis Isolated from Hot Water Geyser. J. Genet. Eng. Biotechnol. 2020, 18, 65. [Google Scholar] [CrossRef]
- Joshi, N.; Sharma, M.; Singh, S.P. Characterization of a Novel Xylanase from an Extreme Temperature Hot Spring Metagenome for Xylooligosaccharide Production. Appl. Microbiol. Biotechnol. 2020, 104, 4889–4901. [Google Scholar] [CrossRef] [PubMed]
- Ravichandra, K.; Balaji, R.; Devarapalli, K.; Batchu, U.R.; Thadikamala, S.; Banoth, L.; Pinnamaneni, S.R.; Prakasham, R.S. Enzymatic Production of Prebiotic Xylo oligosaccharides from Sorghum (Sorghum bicolor (L.) Xylan: Value Addition to Sorghum Bagasse. Biomass Convers. Biorefinery 2022, 13, 11131–11139. [Google Scholar] [CrossRef]
- Zhang, G.; Li, Z.; Chen, G.; Zhang, L.; Cai, W.; Deng, S.; Zhang, H.; Wu, L.; Li, H.; Liu, H. Purification and Characterization of the Low Molecular Weight Xylanase from Bacillus cereus L-1. Braz. J. Microbiol. 2023, 54, 2951–2959. [Google Scholar] [CrossRef]
- Joshi, J.B.; Priyadharshini, R.; Uthandi, S. Glycosyl Hydrolase 11 (XynA) Gene with Xylanase Activity from Thermophilic Bacteria Isolated from Thermal Springs. Microb. Cell Factories 2022, 21, 62. [Google Scholar] [CrossRef] [PubMed]
- Chauhan, J.; Shukla, R.; Bishoyi, A.K.; Goyal, S.; Sanghvi, G. Investigation of Physical, Nutritional and Sensory Properties of Wheat Bread Treated with Purified Thermostable Cellulase and Alpha Amylase. Cogent Food Agric. 2023, 9, 2261839. [Google Scholar] [CrossRef]
- El-Gendi, H.; Badawy, A.S.; Bakhiet, E.K.; Rawway, M.; Ali, S.G. Valorization of Lignocellulosic Wastes for Sustainable Xylanase Production from Locally Isolated Bacillus Subtilis Exploited for Xylooligosaccharides’ Production with Potential Antimicrobial Activity. Arch. Microbiol. 2023, 205, 315. [Google Scholar] [CrossRef]
- Gupta, P.K.; Choudhary, S.; Chandrananthi, C.; Eveline, J.S.; Sushmitha, S.P.; Hiremath, L.; Srivastava, A.K.; Kumar, S.N. Fungal Biodiversity Producing Xylanase Enzymes Involved in Efficient Uses of Xylanolysis. In Mycodegradation of Lignocelluloses. Fungal Biology; Naraian, R., Ed.; Springer: Cham, Switzerland, 2019; pp. 51–63. [Google Scholar]
- Ameen, F. Purification and Characterization of Xylanase Produced by Aspergillus Fumigatus Isolated from the Northern Border Region of Saudi Arabia. Fermentation 2023, 9, 595. [Google Scholar] [CrossRef]
- Khandeparker, R.; Verma, P.; Deobagkar, D. A Novel Halotolerant Xylanase from Marine Isolate Bacillus subtilis Cho40: Gene Cloning and Sequencing. New Biotechnol. 2011, 28, 814–821. [Google Scholar] [CrossRef]
- Singh, A.; Sharma, D.; Varghese, L.M.; Mahajan, R. Fast Flow Rate Processes for Purification of Alkaline Xylanase Isoforms from Bacillus pumilus AJK and Their Biochemical Characterization for Industrial Application Purposes. Biotechnol. Prog. 2019, 36, e2898. [Google Scholar] [CrossRef]
- Ulucay, O.; Gormez, A.; Ozic, C. For Biotechnological Applications: Purification and Characterization of Recombinant and Nanoconjugated Xylanase Enzyme from Thermophilic Bacillus subtilis. Biocatal. Agric. Biotechnol. 2022, 44, 102478. [Google Scholar] [CrossRef]
- Paul, M.; Nayak, D.P.; Thatoi, H. Optimization of Xylanase from Pseudomonas mohnii Isolated from Simlipal Biosphere Reserve, Odisha, Using Response Surface Methodology. J. Genet. Eng. Biotechnol. 2020, 18, 81. [Google Scholar] [CrossRef] [PubMed]
- Devi, S.; Dwivedi, D.; Bhatt, A.K. Utilization of Agroresidues for the Production of Xylanase by Bacillus safensis XPS7 and Optimization of Production Parameters. Fermentation 2022, 8, 221. [Google Scholar] [CrossRef]
- Iram, A.; Cekmecelioglu, D.; Demirci, A. The Effect of Dilution, Aeration, and Agitation on Fungal Cellulase and Xylanase Production by DDGS-Based Fermentation Media in Stirred Tank Bioreactors. In Proceedings of the ASABE Annual International Meeting 2022, Houston, TX, USA, 17–20 July 2022. [Google Scholar] [CrossRef]
- Köstekci, S.; Aygan, A.; Comlekcioglu, N.; Sarıtürk, S. Alkaline Cellulase Free Xylanase from Bacillus sp. ASX42: Properties, Purification and Its Effect on Seed Germination. J. Microbiol. Biotechnol. Food Sci. 2022, 12, e4431. [Google Scholar] [CrossRef]
- Das, A.; Ray, L. Production of Crude Xylanase Using a Isolated Fungal Strain Aspergillus sp. S6by Solid State Fermentation. Mater. Today Proc. 2016, 3, 3343–3360. [Google Scholar] [CrossRef]
- Silva, L.A.O.; Terrasan, C.R.F.; Carmona, E.C. Purification and Characterization of Xylanases from Trichoderma inhamatum. Electron. J. Biotechnol. 2015, 18, 307–313. [Google Scholar] [CrossRef]
- Abdella, A.; Ramadan, S.; Hamouda, R.A.; Saddiq, A.A.; Alhazmi, N.M.; Al-Saman, M.A. Paecilomyces variotii Xylanase Production, Purification and Characterization with Antioxidant Xylo-Oligosaccharides Production. Sci. Rep. 2021, 11, 16468. [Google Scholar] [CrossRef]
- Tiwari, S.; Singh, R.; Yadav, J.; Gaur, R.; Singh, A.; Yadav, J.S.; Pandey, P.K.; Yadav, S.K.; Prajapati, J.; Helena, P.; et al. Three-Step Purification and Characterization of Organic Solvent-Tolerant and Alkali-Thermo-Tolerant Xylanase from Bacillus paramycoides T4 [MN370035]. Catalysts 2022, 12, 749. [Google Scholar] [CrossRef]
- Lv, Z.; Yang, J.; Yuan, H. Production, Purification and Characterization of an Alkaliphilic Endo-β-1,4-Xylanase from a Microbial Community EMSD5. Enzym. Microb. Technol. 2008, 43, 343–348. [Google Scholar] [CrossRef]
- Zafar, A.; Aftab, M.N.; Din, Z.U.; Aftab, S.; Iqbal, I.; Shahid, A.; Tahir, A.; Haq, I.U. Cloning, Expression, and Purification of Xylanase Gene from Bacillus licheniformis for Use in Saccharification of Plant Biomass. Appl. Biochem. Biotechnol. 2015, 178, 294–311. [Google Scholar] [CrossRef]
- Hamid, A.; Aftab, M.N. Cloning, Purification, and Characterization of Recombinant Thermostable β-Xylanase Tnap_0700 from Thermotoga naphthophila. Appl. Biochem. Biotechnol. 2019, 189, 1274–1290. [Google Scholar] [CrossRef]
- Suhag, A.; Kumar, V.; Singh, B. Biochemical Characteristics of a Novel Ethanol-Tolerant Xylanase from Bacillus subtilis subsp. Subtilis JJBS250 and Its Applicability in Saccharification of Rice Straw. Biomass Convers. Biorefinery 2021, 13, 1937–1949. [Google Scholar] [CrossRef]
- Kallel, F.; Driss, D.; Bouaziz, F.; Neifer, M.; Ghorbel, R.; Ellouz Chaabouni, S. Production of Xylooligosaccharides from Garlic Straw Xylan by Purified Xylanase from Bacillus mojavensis UEB-FK and Their in Vitro Evaluation as Prebiotics. Food Bioprod. Process. 2015, 94, 536–546. [Google Scholar] [CrossRef]
- Rajabi, M.; Nourisanami, F.; Ghadikolaei, K.K.; Changizian, M.; Noghabi, K.A.; Zahiri, H.S. Metagenomic Psychrohalophilic Xylanase from Camel Rumen Investigated for Bioethanol Production from Wheat Bran Using Bacillus subtilis AP. Sci. Rep. 2022, 12, 8152. [Google Scholar] [CrossRef]
- Zhang, Y.; Liu, C.; Yang, M.; Ou, Z.; Lin, Y.; Zhao, F.; Han, S. Characterization and Application of a Novel Xylanase from Halolactibacillus miurensis in Wholewheat Bread Making. Front. Bioeng. Biotechnol. 2022, 10, 1018476. [Google Scholar] [CrossRef]
- Ratnadewi, A.A.I.; Santoso, A.B.; Naqib, M. Isolation and Some Properties of Xylanase from Soil-Termite Guts and Influence of Enzymes in Baking. 2024. Available online: http://repository.unej.ac.id/handle/123456789/56810 (accessed on 10 April 2014).
- Iqbal, S.; Arif, S.; Khurshid, S.; Iqbal, H.M.; Akbar, Q.; Ali, T.M.; Mohiuddin, S. A Combined Use of Different Functional Additives for Improvement of Wheat Flour Quality for Bread Making. J. Sci. Food Agric. 2023, 103, 3261–3271. [Google Scholar] [CrossRef]
- Yang, M.; Yue, Y.; Liu, L.; Tong, L.; Wang, L.; Ashraf, J.; Li, N.; Zhou, X.; Zhou, S. Investigation of Combined Effects of Xylanase and Glucose Oxidase in Whole Wheat Buns Making Based on Reconstituted Model Dough System. LWT 2020, 135, 110261. [Google Scholar] [CrossRef]
- Mohammadi, M.; Zoghi, A.; Azizi, M.H. Effect of Xylanase and Pentosanase Enzymes on Dough Rheological Properties and Quality of Baguette Bread. J. Food Qual. 2022, 2022, 2910821. [Google Scholar] [CrossRef]
- Gahfif, O.; Yasmina Souagui, Y.; Azzouz, Z.; Nouari, S.; Amghar, Z.; Boucherba, N.; Kecha, M.; Benallaoua, S.; Bettache, A. Isolation and Screening of Fungal Culture Isolated from Algerian Soil for the Production of Cellulase and Xylanase. J. Drug Deliv. Ther. 2020, 10, 108–113. [Google Scholar] [CrossRef]
- Morán-Aguilar, M.G.; Calderón-Santoyo, M.; Domínguez, J.M.; Aguilar-Uscanga, M.G. Optimization of Cellulase and Xylanase Production by Aspergillus niger CECT 2700 Using Brewery Spent Grain Based on Taguchi Design. Biomass Convers. Biorefinery 2021, 13, 7983–7991. [Google Scholar] [CrossRef]
- Buonaurio, R.; Stravato, V.M.; Cappelli, C. Brown Spot Caused by Sphingomonas sp. On Yellow Spanish Melon Fruits in Spain*. Plant Pathol. 2001, 50, 397–401. [Google Scholar] [CrossRef]
- Okonechnikov, K.; Golosova, O.; Fursov, M. Unipro UGENE: A Unified Bioinformatics Toolkit. Bioinformatics 2012, 28, 1166–1167. [Google Scholar] [CrossRef]
- Bailey, M.J.; Biely, P.; Poutanen, K. Interlaboratory Testing of Methods for Assay of Xylanase Activity. J. Biotechnol. 1992, 23, 257–270. [Google Scholar] [CrossRef]
- Božinović, M.; Sokač, T.; Šalić, A.; Dukarić, A.-M.; Tišma, M.; Planinić, M.; Zelić, B. Standardization of 3,5-Dinitrosalicylic Acid (DNS) Assay for Measuring Xylanase Activity. Croat. J. Food Sci. Technol. 2023, 15, 151–162. [Google Scholar] [CrossRef]
- Hadrich, B. Design of Experiments Applications Review: Food Processing Engineering as an Example Field. Contemp. Math. 2025, 6, 3686–3704. [Google Scholar] [CrossRef]
- Gautério, G.V.; da Silva, L.G.G.; Hübner, T.; Ribeiro, T.d.R.; Kalil, S.J. Xylooligosaccharides Production by Crude and Partially Purified Xylanase from Aureobasidium pullulans: Biochemical and Thermodynamic Properties of the Enzymes and Their Application in Xylan Hydrolysis. Process Biochem. 2021, 104, 161–170. [Google Scholar] [CrossRef]
- American Association of Cereal Chemists (Ed.) AACC Approved Method of the AACC, 10th ed.; American Association of Cereal Chemists: St. Paul, MN, USA, 2000. [Google Scholar]
Run | Tryptone in g/L (Coded Level) | Yeast Extract in g/L (Coded Level) | NaCl in g/L (Coded Level) | Initial OD (Coded Level) | Xylanase Activity in U/mL |
---|---|---|---|---|---|
1 | 8 (−1) | 5 (−1) | 10 (0) | 0.15 (0) | 15.055 ± 0.155 |
2 | 16 (+1) | 5 (−1) | 10 (0) | 0.15 (0) | 15.198 ± 0.350 |
3 | 8 (−1) | 15 (+1) | 10 (0) | 0 | 12.467 ± 0.320 |
4 | 16 (+1) | 15 (+1) | 10 (0) | 0.15 (0) | 14.085 ± 0.755 |
5 | 12 (0) | 10 (0) | 5 (−1) | 0.10 (−1) | 12.674 ± 0.327 |
6 | 12 (0) | 10 (0) | 15 (+1) | 0.10 (−1) | 13.710 ± 0.261 |
7 | 12 (0) | 10 (0) | 5 (−1) | 0.20 (+1) | 16.413 ± 0.474 |
8 | 12 (0) | 10 (0) | 15 (+1) | 0.20 (+1) | 18.225 ± 0.208 |
9 | 8 (−1) | 10 (0) | 10 (0) | 0.10 (−1) | 17.854 ± 0.288 |
10 | 16 (+1) | 10 (0) | 10 (0) | 0.10 (−1) | 16.051 ± 0.254 |
11 | 8 (−1) | 10 (0) | 10 (0) | 0.20 (+1) | 16.011 ± 0.227 |
12 | 16 (+1) | 10 (0) | 10 (0) | 0.20 (+1) | 18.683 ± 0.474 |
13 | 12 (0) | 5 (−1) | 5 (−1) | 0.15 (0) | 15.197 ± 0.281 |
14 | 12 (0) | 15 (+1) | 5 (−1) | 0.15 (0) | 15.359 ± 0.242 |
15 | 12 (0) | 5 (−1) | 15 (+1) | 0.15 (0) | 11.855 ± 0.326 |
16 | 12 (0) | 15 (+1) | 15 (+1) | 0.15 (0) | 13.858 ± 0.372 |
17 | 8 (−1) | 10 (0) | 5 (−1) | 0.15 (0) | 12.289 ± 0.215 |
18 | 16 (+1) | 10 (0) | 5 (−1) | 0.15 (0) | 12.209 ± 0.338 |
19 | 8 (−1) | 10 (0) | 15 (+1) | 0.15 (0) | 12.120 ± 0.283 |
20 | 16 (+1) | 10 (0) | 15 (+1) | 0.15 (0) | 16.676 ± 0.583 |
21 | 12 (0) | 5 (−1) | 10 (0) | 0.10 (−1) | 11.381 ± 0.369 |
22 | 12 (0) | 15 (+1) | 10 (0) | 0.10 (−1) | 10.840 ± 0.408 |
23 | 12 (0) | 5 (−1) | 10 (0) | 0.20 (+1) | 11.390 ± 0.329 |
24 | 12 (0) | 15 (+1) | 10 (0) | 0.20 (+1) | 12.940 ± 0.456 |
25 | 12 (0) | 10 (0) | 10 (0) | 0.15 (0) | 8.221 ± 0.171 |
Factor | Coeff. | Std. Err. | t(12) | p |
---|---|---|---|---|
Mean/Interc. | 16.290 | 0.795 | 20.487 | <0.001 |
(1) Tryptone (g/L) (L) | 0.592 | 0.689 | 0.860 | 0.407 |
Tryptone (g/L) (Q) | −1.977 | 0.516 | −3.828 | 0.002 |
(2) Yeast extract (g/L) (L) | −0.044 | 0.689 | −0.064 | 0.950 |
Yeast extract (g/L) (Q) | −0.785 | 0.516 | −1.520 | 0.154 |
(3) NaCl (g/L) (L) | 0.192 | 0.689 | 0.279 | 0.785 |
NaCl (g/L) (Q) | −1.470 | 0.516 | −2.847 | 0.015 |
(4) Initial OD (L) | 0.929 | 0.689 | 1.350 | 0.202 |
Initial OD (Q) | −1.819 | 0.516 | −3.523 | 0.004 |
1 L by 2 L | 0.369 | 1.193 | 0.309 | 0.763 |
1 L by 3 L | 1.159 | 1.193 | 0.972 | 0.350 |
1 L by 4 L | 1.119 | 1.193 | 0.938 | 0.367 |
2 L by 3 L | 0.460 | 1.193 | 0.386 | 0.706 |
2 L by 4 L | 0.523 | 1.193 | 0.438 | 0.670 |
3 L by 4 L | 0.194 | 1.193 | 0.163 | 0.874 |
Metal Ions | Concentrations (mM) | Relative Activity (%) |
---|---|---|
Control | 0.0 | 100.0 ± 1.3 |
NaCl2 | 5.0 | 55.1 ± 0.12 |
7.5 | 30.2 ± 1.01 | |
10.0 | 24.5 ± 1.00 | |
12.5 | 11.1 ± 0.09 | |
CaCl2 | 5.0 | 73.5 ± 0.01 |
7.5 | 55.2 ± 1.02 | |
10.0 | 38.1 ± 0.04 | |
12.5 | 27.0 ±1.01 | |
NiCl2 | 5.0 | 97.1 ± 1.07 |
7.5 | 72.9 ± 1.12 | |
10.0 | 44.0 ± 0.02 | |
12.5 | 31.1 ± 0.07 | |
KCl | 5.0 | 64.0 ± 1.02 |
7.5 | 40.5 ± 0.02 | |
10.0 | 22.0 ± 2.03 | |
12.5 | 9.50 ± 1.10 | |
MnCl2 | 5.0 | 190 ± 0.07 |
7.5 | 223 ± 0.02 | |
10.0 | 227 ± 0.08 | |
12.5 | 182 ± 0.01 | |
MgSO4 | 5.0 | 56.0 ± 0.20 |
7.5 | 33.2 ± 0.03 | |
10.0 | 25.5 ± 0.09 | |
12.5 | 9.01 ± 0.01 | |
FeSO4 | 5.0 | 81.2 ± 0.12 |
7.5 | 66.7 ± 0.09 | |
10.0 | 40.3 ± 0.01 | |
12.5 | 31.4 ± 0.22 | |
HgCl2 | 5.0 | 16.0 ± 1.10 |
7.5 | 9.40 ± 0.05 | |
10.0 | 2.23 ± 0.20 | |
12.5 | 0.60 ± 0.11 |
Relative activity (%) | |
Control | 100.0 ± 1.2 |
Inhibitors | |
EDTA | 16.4 ± 0.2 |
DTT | 23.5 ± 1.0 |
BME | 15.1 ± 0.7 |
SDS | 17.2 ± 1.1 |
H2O2 | 53.5 ± 0.4 |
Sodium azide | 32.1 ± 0.2 |
Polyethene glycol | 41.0 ± 0.5 |
Surfactants | |
Tween-20 | 19.0 ± 0.2 |
Tween-80 | 15.2 ± 1.4 |
Organic solvents | |
Isopropanol | 45.8 ± 4.3 |
Ethanol | 60.2 ± 2.3 |
Acetone | 43.7 ± 1.9 |
Chloroform | 46.5 ± 2.6 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alshehri, W.A.; Alharbi, E.M.; Hadrich, B.; Khalel, A.F.; Alqahtani, F.S.; Almulaiky, Y.Q.; Sayari, A. Enhancing the Production of Thermostable Mangrovibacter plantisponsor Xylanase for Application in Breadmaking. Catalysts 2025, 15, 792. https://doi.org/10.3390/catal15080792
Alshehri WA, Alharbi EM, Hadrich B, Khalel AF, Alqahtani FS, Almulaiky YQ, Sayari A. Enhancing the Production of Thermostable Mangrovibacter plantisponsor Xylanase for Application in Breadmaking. Catalysts. 2025; 15(8):792. https://doi.org/10.3390/catal15080792
Chicago/Turabian StyleAlshehri, Wafa A., Ebtihal M. Alharbi, Bilel Hadrich, Ashjan F. Khalel, Fatimah S. Alqahtani, Yaaser Q. Almulaiky, and Adel Sayari. 2025. "Enhancing the Production of Thermostable Mangrovibacter plantisponsor Xylanase for Application in Breadmaking" Catalysts 15, no. 8: 792. https://doi.org/10.3390/catal15080792
APA StyleAlshehri, W. A., Alharbi, E. M., Hadrich, B., Khalel, A. F., Alqahtani, F. S., Almulaiky, Y. Q., & Sayari, A. (2025). Enhancing the Production of Thermostable Mangrovibacter plantisponsor Xylanase for Application in Breadmaking. Catalysts, 15(8), 792. https://doi.org/10.3390/catal15080792