Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB
Abstract
1. Introduction
2. Results and Discussion
3. Experimental Section
3.1. Materials
3.2. Preparation of Photocatalysts
3.2.1. Synthesis of BiOBr
3.2.2. Synthesis of BNQDs
3.2.3. Synthesis of BiOBr/BNQDs-X%
3.3. Photocatalytic Activity Experiment
3.4. Characterizations
3.5. Photoelectrochemical Property
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Uddin, F. Environmental hazard in textile dyeing wastewater from local textile industry. Cellulose 2021, 28, 10715–10739. [Google Scholar] [CrossRef]
- Liu, H.; Zhang, J.; Lu, M.; Liang, L.; Zhang, H.; Wei, J. Biosynthesis based membrane filtration coupled with iron nanoparticles reduction process in removal of dyes. Chem. Eng. J. 2020, 387, 68–74. [Google Scholar] [CrossRef]
- Pitcheri, R.; Mooni, S.P.; Harikrishnan, L.; Raghav, J.; Roy, S.; Maaouni, N.; Radhalayam, D.; Alothman, A.A.; Alharbi, A.F.; Al-Zahrani, F.A.M.; et al. Novel S-scheme β-Cu2V2O7/Ni/Pg-C3N4 heterojunction photocatalyst for sunlight-induced degradation of RhB. Surf. Interf. 2024, 52, 133–142. [Google Scholar] [CrossRef]
- Basely, A.M.; Shaker, M.H.; Helmy, F.M.; Abdel-Messih, M.F.; Ahmed, M.A. Construction of Bi2S3/g-C3N4 step S-scheme heterojunctions for photothermal decomposition of rhodamine B dye under natural sunlight radiations. Inorg. Chem. Commun. 2023, 148, 111–126. [Google Scholar] [CrossRef]
- Liang, H.; Zhao, J.; Brouzgou, A.; Wang, A.; Jing, S.; Kannan, P.; Chen, F.; Tsiakaras, P. Efficient photocatalytic H2O2 production and photodegradation of RhB over K-doped g-C3N4/ZnO S-scheme heterojunction. J. Colloid. Interface Sci. 2025, 677, 1120–1133. [Google Scholar] [CrossRef]
- Liu, Y.; Hu, Z.; Yu, J.C. Photocatalytic degradation of ibuprofen on S-doped BiOBr. Chemosphere 2021, 278, 802–816. [Google Scholar] [CrossRef]
- Huang, S.; Wang, Y.; Wan, J.; Yan, Z.; Ma, Y.; Zhang, G.; Wang, S. Ti3C2Tx as electron-hole transfer mediators to enhance AgBr/BiOBr Z heterojunction photocatalytic for the degradation of Tetrabromobisphenol A: Mechanism Insight. Appl. Catal. B Environ. 2022, 319, 175–185. [Google Scholar] [CrossRef]
- Wang, C.; Wang, J.; Yu, X. Enhancement of photocatalytic ammonia production over BiOBr nanosheets with photo-assembled Au cocatalysts. Colloids Surf. A 2023, 662, 94–103. [Google Scholar] [CrossRef]
- Xia, Y.; Xia, X.; Chen, L.; Liang, R.; Yan, G.; Liang, S. O defect anchored Ru on BiOBr with nanoconfined structure for catalytic N2 fixation. Appl. Catal. B Environ. 2024, 349, 142–150. [Google Scholar] [CrossRef]
- Sun, J.; Zhang, Y.; Fan, S.; Li, X.; Zhao, Q. An efficient Z-type CeO2/BiOBr heterostructure with enhanced photo-oxidation degradation of o-DCB and CO2 reduction ability. Appl. Catal. B Environ. 2024, 356, 162–175. [Google Scholar] [CrossRef]
- Zhang, K.; Zhang, Y.; Zhang, D.; Liu, C.; Zhou, X.; Yang, H.; Qu, J.; He, D. Efficient photocatalytic water disinfection by a novel BP/BiOBr S-scheme heterojunction photocatalyst. Chem. Eng. J. 2023, 468, 357–368. [Google Scholar] [CrossRef]
- Cao, T.; Xu, Q.; Zhang, J.; Wang, S.; Di, T.; Deng, Q. S-scheme g-C3N4/BiOBr heterojunction for efficient photocatalytic H2O2 production. Chin. J. Catal. 2025, 72, 118–129. [Google Scholar] [CrossRef]
- Yu, Y.; Zhang, P.; Tuerhong, R.; Chai, K.; Du, X.; Su, X.; Zhao, L.; Han, L. Regulating the electronic structure of BiOBr by Cu-doping to promote efficient photocatalytic nitrogen fixation reaction. Sep. Purif. Technol. 2025, 364, 321–333. [Google Scholar] [CrossRef]
- Shan, L.; Liu, Y.; Chen, H.; Wu, Z.; Han, Z. An α-Bi2O3/BiOBr core–shell heterojunction with high photocatalytic activity. Dalton Trans. 2017, 46, 2310–2321. [Google Scholar] [CrossRef]
- Di, J.; Xia, J.; Ge, Y.; Xu, L.; Xu, H.; Chen, J.; He, M.; Li, H. Facile fabrication and enhanced visible light photocatalytic activity of few-layer MoS2 coupled BiOBr microspheres. Dalton Trans. 2014, 43, 15429–15438. [Google Scholar] [CrossRef]
- Cheng, T.; Xing, Z.; Zhang, N.; Sun, P.; Peng, H.; Li, Z.; Wang, N.; Zhou, W. Ti3C2 quantum dots-modified oxygen-vacancy-rich BiOBr hollow microspheres toward optimized photocatalytic performance. Chemosphere 2024, 364, 69–83. [Google Scholar] [CrossRef]
- Liu, J.; Qin, W.; Wang, Y.; Xu, Q.; Xie, Y.; Chen, Y.; Dai, Y.; Zhang, W. NH2-UiO-66 modification BiOBr enhancement photoreduction CO2 to CO. Sep. Purif. Technol. 2024, 344, 121–126. [Google Scholar] [CrossRef]
- Ning, J.; Zhang, B.; Siqin, L.; Liu, G.; Wu, Q.; Xue, S.; Shao, T.; Zhang, F.; Zhang, W.; Liu, X. Designing advanced S--scheme CdS QDs/La--Bi2WO6 photocatalysts for efficient degradation of RhB. Exploration 2023, 3, 264–279. [Google Scholar] [CrossRef]
- Li, S.; Yang, Y.; Niu, J.; Zheng, H.; Zhang, W.; Leong, Y.K.; Chang, J.-S.; Lai, B. Activation of PAA at the Fe–Nx Sites by Boron Nitride Quantum Dots Enhanced Charge Transfer Generates High-Valent Metal-Oxo Species for Antibiotics Degradation. Environ. Sci. Technol. 2024, 58, 21871–21881. [Google Scholar] [CrossRef] [PubMed]
- Dong, H.; Yin, B.; Li, J.; Guo, W.; Meng, D.; Zhu, X.; Zhang, G.; Zhang, G.; Xin, Y.; Chen, Q. Photocatalytic remediation of fluoranthene contaminated soil by eco-friendly GQDs/TiO2/α-FeOOH composite photocatalyst: Efficiency, influence factors, mechanism, and toxicity analysis. Sep. Purif. Technol. 2025, 357, 222–230. [Google Scholar] [CrossRef]
- Cheng, M.; Li, H.; Wu, Z.; Yu, Z.; Tao, X.; Huang, L. Synergistic effects of CQDs and oxygen vacancies on CeO2 photocatalyst for efficient photocatalytic nitrogen fixation. Sep. Purif. Technol. 2025, 354, 307–318. [Google Scholar] [CrossRef]
- Su, X.; Dong, Y.; Zhu, Y.; Shi, H. MIL-125-NH2/BNQDs persistent photocatalyst enhanced peroxymonosulfate activation for efficient PET plastics removal. Chem. Eng. J. 2024, 501, 851–862. [Google Scholar] [CrossRef]
- Guo, J.; Hou, J.; Yang, Z.; Xia, J.; Wu, J.; You, G.; Miao, L. Boron nitride quantum dots supported hollow NH2-MIL-125 drive photo-Fenton-PMS system for photocatalytic tetracycline degradation: Contribution of tannic acid etching. Chemosphere 2024, 365, 36–47. [Google Scholar] [CrossRef]
- Zhang, Q.; Peng, Y.; Lin, Y.; Wu, S.; Yu, X.; Yang, C. Bisphenol S-doped g-C3N4 nanosheets modified by boron nitride quantum dots as efficient visible-light-driven photocatalysts for degradation of sulfamethazine. Chem. Eng. J. 2021, 405, 784–795. [Google Scholar] [CrossRef]
- Wu, J.; Xie, Y.; Ling, Y.; Si, J.; Li, X.; Wang, J.; Ye, H.; Zhao, J.; Li, S.; Zhao, Q.; et al. One-step synthesis and Gd3+ decoration of BiOBr microspheres consisting of nanosheets toward improving photocatalytic reduction of CO2 into hydrocarbon fuel. Chem. Eng. J. 2020, 400, 403–410. [Google Scholar] [CrossRef]
- Naveed, A.B.; Riaz, F.; Mahmood, A.; Shahid, A.; Aqeel, S. A Facile Synthesis of Bi2O3/CoFe2O4 Nanocomposite with Improved Synergistic Photocatalytic Potential for Dye Degradation. Catalysts 2021, 11, 1180. [Google Scholar] [CrossRef]
- Chen, R.; Zhang, H.; Dong, Y.; Shi, H. Dual metal ions/BNQDs boost PMS activation over copper tungstate photocatalyst for antibiotic removal: Intermediate, toxicity assessment and mechanism. J. Mater. Sci. Technol. 2024, 170, 11–24. [Google Scholar] [CrossRef]
- Ren, K.; Zhao, W.; Zhai, Z.; Han, T.; Shi, H. 2D/0D Bi2MoO6 nanosheets/BN quantum dots photocatalysts with enhanced charge separation for efficient elimination of antibiotic. Appl. Surf. Sci. 2021, 562, 23–29. [Google Scholar] [CrossRef]
- Sun, J.; Li, X.; Zhao, Q.; Liu, B. Ultrathin nanoflake-assembled hierarchical BiOBr microflower with highly exposed {001} facets for efficient photocatalytic degradation of gaseous ortho-dichlorobenzene. Appl. Catal. B Environ. 2021, 281, 214–221. [Google Scholar] [CrossRef]
- Ren, K.; Lv, M.; Xie, Q.; Zhang, C.; Shi, H. Dual BN quantum dot/Ag co-catalysts synergistically promote electron-hole separation on g-C3N4 nanosheets for efficient antibiotics oxidation and Cr(VI) reduction. Carbon 2022, 186, 355–366. [Google Scholar] [CrossRef]
- Miao, Z.; Zhang, Y.; Wang, N.; Xu, P.; Wang, X. BiOBr/Bi2S3 heterojunction with S-scheme structureand oxygen defects: In-situ construction and photocatalytic behavior for reduction of CO2 with H2O. J. Colloid. Interface Sci. 2022, 620, 407–418. [Google Scholar] [CrossRef]
- Wang, Y.; Wang, K.; Wang, J.; Wu, X.; Zhang, G. Sb2WO6/BiOBr 2D nanocomposite S-scheme photocatalyst for NO removal. J. Mater. Sci. Technol. 2020, 56, 236–243. [Google Scholar] [CrossRef]
- Shen, M.; Cai, X.; Cao, B.; Cao, J.; Zhao, P.; Xu, Y. Construction of an S-scheme AgBr/BiOBr heterojunction by in situ hydrolysis for highly efficient photocatalytic reduction of CO2 into CO. J. Alloy Comp. 2024, 1009, 112–121. [Google Scholar] [CrossRef]
- Sun, Z.; Zhang, Y. S-scheme heterojunction and double oxygen vacancies for BiOBr/MnO2 synergistically promote photocatalytic CO2 reduction. J. Alloy Comp. 2025, 1037, 62–66. [Google Scholar] [CrossRef]
- Fu, S.; Yuan, W.; Liu, X.; Yan, Y.; Liu, H.; Li, L.; Zhao, F.; Zhou, J. A novel 0D/2D WS2/BiOBr heterostructure with rich oxygen vacancies for enhanced broad-spectrum photocatalytic performance. J. Colloid. Interface Sci. 2020, 569, 150–163. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, K.; Li, Y.; Jiang, L.; Zhang, G. Novel BiSbO4/BiOBr nanoarchitecture with enhanced visible-light driven photocatalytic performance: Oxygen-induced pathway of activation and mechanism unveiling. Appl. Surf. Sci. 2019, 498, 267–360. [Google Scholar] [CrossRef]
- Liu, H.; Wang, B.; Chen, M.; Zhang, H.; Peng, J.; Ding, L.; Wang, W. Simple synthesis of BiOAc/BiOBr heterojunction composites for the efficient photocatalytic removal of organic pollutants. Sep. Purif. Technol. 2021, 261, 364–369. [Google Scholar] [CrossRef]
- Chen, X.; Wu, Y.; Tang, Y.; Li, P.; Gao, S.; Wang, Q.; Liu, W.; Zhan, S. Construction of Z-scheme Cu-CeO2/BiOBr heterojunction for enhanced photocatalytic degradation of sulfathiazole. Chin. Chem. Lett. 2024, 35, 33–39. [Google Scholar] [CrossRef]
- Ren, K.; Dong, Y.; Chen, Y.; Shi, H. Bi2WO6 nanosheets assembled BN quantum dots: Enhanced charge separation and photocatalytic antibiotics degradation. Colloids Surf. A Physicochem. Eng. Asp. 2022, 637, 22–27. [Google Scholar] [CrossRef]
- Chen, L.; Li, H.; Li, H.; Li, H.; Qi, W.; Zhang, Q.; Zhu, J.; Zhao, P.; Yang, S. Accelerating photogenerated charge kinetics via the g-C3N4 Schottky junction for enhanced visible-light-driven CO2 reduction. Appl. Catal. B Environ. 2022, 318, 127–132. [Google Scholar] [CrossRef]
- Xu, J.; Wang, Y.; Niu, J.; Chen, M. Facile construction of BiOBr/BiOCOOH p-n heterojunction photocatalysts with improved visible-light-driven photocatalytic performance. Sep. Purif. Technol. 2019, 225, 24–32. [Google Scholar] [CrossRef]
- Liu, K.; Tong, Z.; Muhammad, Y.; Huang, G.; Zhang, H.; Wang, Z.; Zhu, Y.; Tang, R. Synthesis of sodium dodecyl sulfate modified BiOBr/magnetic bentonite photocatalyst with Three-dimensional parterre like structure for the enhanced photodegradation of tetracycline and ciprofloxacin. Chem. Eng. J. 2020, 388, 267–273. [Google Scholar] [CrossRef]
- Liu, C.; Mao, S.; Shi, M.; Hong, X.; Wang, D.; Wang, F.; Xia, M.; Chen, Q. Enhanced photocatalytic degradation performance of BiVO4/BiOBr through combining Fermi level alteration and oxygen defect engineering. Chem. Eng. J. 2022, 449, 123–128. [Google Scholar] [CrossRef]
- Xu, H.; Yang, J.; Li, Y.; Fu, F.; Da, K.; Cao, S.; Chen, W.; Fan, X. Fabrication of Bi2O3 QDs decorated TiO2/BiOBr dual Z-scheme photocatalysts for efficient degradation of gaseous toluene under visible-light. J. Alloy Comp. 2023, 950, 546–551. [Google Scholar] [CrossRef]
- Tang, Q.-Y.; Yang, M.-J.; Yang, S.-Y.; Xu, Y.-H. Enhanced photocatalytic degradation of glyphosate over 2D CoS/BiOBr heterojunctions under visible light irradiation. J. Hazard. Mater. 2021, 407, 436–446. [Google Scholar] [CrossRef]
- Gao, X.; Shan, P.; Shi, W.; Guo, F. Photothermal-Assisted Photocatalytic Degradation of Antibiotic by Black g-C3N4 Materials Derived from C/N Precursors and Tetrachlorofluorescein. Catalysts 2025, 15, 504. [Google Scholar] [CrossRef]
- Li, Z.; Wang, P.; Ren, C.; Wu, L.; Yao, Y.; Zhong, S.; Lin, H.; Zhao, L.; Gao, Y.; Bai, S. Modulating the Selectivity of CO2 Photoreduction by Regulating the Location of PtCu in a UiO-66@ZnIn2S4 Core–Shell Nanoreactor. ACS Catal. 2024, 15, 828–840. [Google Scholar] [CrossRef]
- Li, S.; Zeng, H.; Fan, J.; Zhu, M.; Zhang, C.; An, X.; Luo, Z.; Fu, H.; Yang, X. Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties. Catalysts 2025, 15, 456. [Google Scholar] [CrossRef]
- Zhao, W.; Wang, W.; Han, T.; Wang, H.; Zhang, H.; Shi, H. Oxygen vacancies boosted charge separation towards enhanced photodegradation ability over 3D/2D Z-scheme BiO1−XBr/Fe2O3 heterostructures. Sep. Purif. Technol. 2021, 269, 66–74. [Google Scholar] [CrossRef]
- Zhang, P.; Wang, Z.; Zhao, L.; Li, L.; Li, N.; Su, X.; Su, Q. Construction of a novel 0D-3D boron nitride quantum dots /NH2-MIL-125(Ti) composite for photodegradation of Rhodamine B. Mater. Sci. Semicond. Process. 2023, 167, 263–268. [Google Scholar] [CrossRef]
- Ni, Q.; Ke, X.; Qian, W.; Yan, Z.; Luan, J.; Liu, W. Insight into tetracycline photocatalytic degradation mechanism in a wide pH range on BiOI/BiOBr: Coupling DFT/QSAR simulations with experiments. Appl. Catal. B Environ. 2024, 340, 468–476. [Google Scholar] [CrossRef]
- Long, Z.; Zhang, G.; Du, H.; Zhu, J.; Li, J. Preparation and application of BiOBr-Bi2S3 heterojunctions for efficient photocatalytic removal of Cr(VI). J. Hazard. Mater. 2021, 407, 357–362. [Google Scholar] [CrossRef] [PubMed]
- Kanagaraj, T.; Thiripuranthagan, S. Photocatalytic activities of novel SrTiO3—BiOBr heterojunction catalysts towards the degradation of reactive dyes. Appl. Catal. B Environ. 2017, 207, 218–232. [Google Scholar] [CrossRef]
- Zhong, R.; Liao, H.; Deng, Q.; Zou, X.; Wu, L. Preparation of a novel composite photocatalyst BiOBr/ZIF-67 for enhanced visible-light photocatalytic degradation of RhB. J. Mol. Struct. 2022, 1259, 11–16. [Google Scholar] [CrossRef]
- Jiao, W.; Xie, Y.; He, F.; Wang, K.; Ling, Y.; Hu, Y.; Wang, J.; Ye, H.; Wu, J.; Hou, Y. A visible light-response flower-like La-doped BiOBr nanosheets with enhanced performance for photoreducing CO2 to CH3OH. Chem. Eng. J. 2021, 418, 55–61. [Google Scholar] [CrossRef]
- Liu, T.; Liu, J.; Yang, Y.; Wang, X.; Zhou, T.; Yin, G.; Jia, F.; Liu, B. 1D 2D and 3D anatase TiO2 sensitized with BNQDs for sensitive acetone detection. Surf. Interf. 2023, 38, 12–16. [Google Scholar] [CrossRef]
- Huang, H.; Chen, Y.; Shi, H. Boosting Separation of Charge Carriers in 2D/0D BiOBr Nanoflower Sheets/BN Quantum Dots with the Lorentz Force via Magnetic Field. Energy Fuel 2022, 36, 11495–11502. [Google Scholar] [CrossRef]
- Yang, C.; Zhang, X.; Jin, J.; Kang, X. Type II Heterojunction Formed by 3D Flower-like Microspheres of BiOBr/NH2–Fe-MOF with High Photocatalytic Degradation of RhB via Visible Light. Ind. Eng. Chem. Res. 2023, 62, 19510–19523. [Google Scholar] [CrossRef]
- Zheng, X.-H.; Chen, W.; Xu, M.-N.; Cai, C.-B.; Yang, F.-E. Photocatalytic properties of BiOBr/BiOCl/AgBr ternary photocatalysts for degradation of RhB dye. J. Nanopart. Res. 2023, 25, 10–16. [Google Scholar] [CrossRef]
Samples | Average Particle Size (nm) |
---|---|
BiOBr | 22.62 |
BNQDs | 3.18 |
BOB/BNQDs-2.9% | 28.54 |
BOB/BNQDs-5.7% | 33.30 |
BOB/BNQDs-8.3% | 27.12 |
BOB/BNQDs-10.7% | 28.54 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qin, Y.; Peng, X.; Wu, T.; Zhong, Y.; Xu, H.; Mao, Z.; Zhang, L. Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB. Catalysts 2025, 15, 771. https://doi.org/10.3390/catal15080771
Qin Y, Peng X, Wu T, Zhong Y, Xu H, Mao Z, Zhang L. Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB. Catalysts. 2025; 15(8):771. https://doi.org/10.3390/catal15080771
Chicago/Turabian StyleQin, Yufeng, Xinyu Peng, Tong Wu, Yi Zhong, Hong Xu, Zhiping Mao, and Linping Zhang. 2025. "Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB" Catalysts 15, no. 8: 771. https://doi.org/10.3390/catal15080771
APA StyleQin, Y., Peng, X., Wu, T., Zhong, Y., Xu, H., Mao, Z., & Zhang, L. (2025). Construction of BiOBr/BNQDs Heterostructure Photocatalyst and Performance Studies of Photocatalytic Degradation of RhB. Catalysts, 15(8), 771. https://doi.org/10.3390/catal15080771