Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation
Abstract
1. Introduction
2. Results
2.1. Catalytic Characterization
2.2. Catalytic Tests
2.3. Effect of Reduction Conditions on Catalysts
3. Materials and Methods
3.1. Catalyst Preparation
3.2. Catalyst Characterization
3.3. Catalyst Tests
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary Advancements in Carbon Dioxide Valorization via Metal-Organic Framework-Based Strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Medina, O.E.; Amell, A.A.; López, D.; Santamaría, A. Comprehensive Review of Nickel-Based Catalysts Advancements for CO2 Methanation. Renew. Sustain. Energy Rev. 2025, 207, 114926. [Google Scholar] [CrossRef]
- Tommasi, M.; Degerli, S.N.; Ramis, G.; Rossetti, I. Advancements in CO2 Methanation: A Comprehensive Review of Catalysis, Reactor Design and Process Optimization. Chem. Eng. Res. Des. 2024, 201, 457–482. [Google Scholar] [CrossRef]
- Mebrahtu, C.; Krebs, F.; Abate, S.; Perathoner, S.; Centi, G.; Palkovits, R. CO2 Methanation: Principles and Challenges. In Studies in Surface Science and Catalysis; Elsevier: Amsterdam, The Netherlands, 2019; pp. 85–103. [Google Scholar]
- Yarbaş, T.; Ayas, N. A Detailed Thermodynamic Analysis of CO2 Hydrogenation to Produce Methane at Low Pressure. Int. J. Hydrog. Energy 2024, 49, 1134–1144. [Google Scholar] [CrossRef]
- Chen, Y.; Zhang, Y.; Fan, G.; Song, L.; Jia, G.; Huang, H.; Ouyang, S.; Ye, J.; Li, Z.; Zou, Z. Cooperative Catalysis Coupling Photo-/Photothermal Effect to Drive Sabatier Reaction with Unprecedented Conversion and Selectivity. Joule 2021, 5, 3235–3251. [Google Scholar] [CrossRef]
- Ren, J.; Lou, H.; Xu, N.; Zeng, F.; Pei, G.; Wang, Z. Methanation of CO/CO2 for Power to Methane Process: Fundamentals, Status, and Perspectives. J. Energy Chem. 2023, 80, 182–206. [Google Scholar] [CrossRef]
- Sani, L.A.; Bai, H.; Xu, Z.; Fu, L.; Sun, Y.; Huang, X.; Gao, H.; Liu, X.; Bai, D.; Zhang, Z.; et al. Optimized Combustion Temperature in the Facile Synthesis of Ni/Al2O3 Catalyst for CO2 Methanation. J. CO2 Util. 2024, 80, 102678. [Google Scholar] [CrossRef]
- Martins, N.J.; Perez-Lopez, O.W. Tuning the Composition of Ni-Al-LDH Catalysts for Low-Temperature CO2 Methanation. Fuel 2025, 381. [Google Scholar] [CrossRef]
- Guo, J.; Yang, J.; Wang, Q.; Zhao, N.; Xiao, F. Effect of Ni-Ov-Ce Interface on Low Temperature CO2 Methanation. Fuel 2025, 381, 133568. [Google Scholar] [CrossRef]
- Han, H.; Zhang, S.; Song, S.; Zhang, W.; Liu, D.; Song, Z.; Wang, Q.; Ma, C.; Feng, S.; Duan, X. Construction of Bi2O3−x/NiAl-LDH S-Scheme Heterojunction for Boosting Photothermal-Assisted Photocatalytic CO2 Reduction. Appl. Surf. Sci. 2024, 662, 160122. [Google Scholar] [CrossRef]
- Wang, Z.; Zhang, T.; Ramirez Reina, T.; Huang, L.; Xie, W.; Musyoka, N.M.; Oboirien, B.; Wang, Q. Enhanced Low-Temperature CO2 Methanation over La-Promoted NiMgAl LDH Derived Catalyst: Fine-Tuning La Loading for an Optimal Performance. Fuel 2024, 366, 131383. [Google Scholar] [CrossRef]
- Sun, H.; Lv, J.; Wang, C.; Zhang, Y.; Sun, S.; Zhang, P.; Cheng, G.; Mei, D.; Wang, Y.; Yan, Z. Ru/CeO2 Catalysts with Enriched Oxygen Vacancies by Plasma Treatment for Efficient CO2 Methanation. Fuel 2025, 381, 133413. [Google Scholar] [CrossRef]
- Zhou, L.; Guo, X.; Hu, X.; Zhang, Y.; Cheng, J.; Guo, Q. CO2 Methanation Reaction over La-Modified NiAl Catalysts Derived from Hydrotalcite-like Precursors. Fuel 2024, 362, 130888. [Google Scholar] [CrossRef]
- Wasnik, C.G.; Nakamura, M.; Shimada, T.; Machida, H.; Norinaga, K. CO2 Methanation over Low-Loaded Ni-M, Ru-M (M = Co, Mn) Catalysts Supported on CeO2 and SiC. Carbon. Resour. Convers. 2024, 8, 100241. [Google Scholar] [CrossRef]
- Perez-Lopez, O.W.; Senger, A.; Marcilio, N.R.; Lansarin, M.A. Effect of Composition and Thermal Pretreatment on Properties of Ni–Mg–Al Catalysts for CO2 Reforming of Methane. Appl. Catal. A Gen. 2006, 303, 234–244. [Google Scholar] [CrossRef]
- Thommes, M.; Kaneko, K.; Neimark, A.V.; Olivier, J.P.; Rodriguez-Reinoso, F.; Rouquerol, J.; Sing, K.S.W. Physisorption of Gases, with Special Reference to the Evaluation of Surface Area and Pore Size Distribution (IUPAC Technical Report). Pure Appl. Chem. 2015, 87, 1051–1069. [Google Scholar] [CrossRef]
- Pinthong, P.; Praserthdam, P.; Jongsomjit, B. Effect of Calcination Temperature on Mg-Al Layered Double Hydroxides (LDH) as Promising Catalysts in Oxidative Dehydrogenation of Ethanol to Acetaldehyde. J. Oleo Sci. 2019, 68, 95–102. [Google Scholar] [CrossRef]
- Dias, Y.R.; Perez-Lopez, O.W. CO2 Methanation over Ni-Al LDH-Derived Catalyst with Variable Ni/Al Ratio. J. CO2 Util. 2023, 68, 102381. [Google Scholar] [CrossRef]
- Takehira, K. Highly Dispersed and Stable Supported Metal Catalysts Prepared by Solid Phase Crystallization Method. Catal. Surv. Asia 2002, 6, 19–32. [Google Scholar] [CrossRef]
- Takehira, K.; Kawabata, T.; Shishido, T.; Murakami, K.; Ohi, T.; Shoro, D.; Honda, M.; Takaki, K. Mechanism of Reconstitution of Hydrotalcite Leading to Eggshell-Type Ni Loading on MgAl Mixed Oxide. J. Catal. 2005, 231, 92–104. [Google Scholar] [CrossRef]
- Hidayat, T.; Rhamdhani, M.A.; Jak, E.; Hayes, P.C. The Kinetics of Reduction of Dense Synthetic Nickel Oxide in H2-N2 and H2-H2O Atmospheres. Metall. Mater. Trans. B 2009, 40, 1–16. [Google Scholar] [CrossRef]
- Yin, S.; Xu, C.; Yang, H.; Wu, C.; Wu, M.; Xu, J.; Zhu, H.; Qiu, J.; Xu, L.; Chen, M. Facilely Preparing Highly Dispersed Ni-Based CO2 Methanation Catalysts via Employing the Amino-Functionalized KCC-1 Support. Fuel 2024, 365, 131162. [Google Scholar] [CrossRef]
- Sikander, U.; Samsudin, M.F.; Sufian, S.; KuShaari, K.; Kait, C.F.; Naqvi, S.R.; Chen, W.-H. Tailored Hydrotalcite-Based Mg-Ni-Al Catalyst for Hydrogen Production via Methane Decomposition: Effect of Nickel Concentration and Spinel-like Structures. Int. J. Hydrog. Energy 2019, 44, 14424–14433. [Google Scholar] [CrossRef]
- Znak, L.; Zieliński, J. Effects of Support on Hydrogen Adsorption/Desorption on Nickel. Appl. Catal. A Gen. 2008, 334, 268–276. [Google Scholar] [CrossRef]
- Wang, T.; Tang, R.; Li, Z. Enhanced CO2 Methanation Activity over Ni/CeO2 Catalyst by Adjusting Metal-Support Interactions. Mol. Catal. 2024, 558, 114034. [Google Scholar] [CrossRef]
- Hao, Z.; Shen, J.; Lin, S.; Han, X.; Chang, X.; Liu, J.; Li, M.; Ma, X. Decoupling the Effect of Ni Particle Size and Surface Oxygen Deficiencies in CO2 Methanation over Ceria Supported Ni. Appl. Catal. B 2021, 286, 119922. [Google Scholar] [CrossRef]
- Szabados, M.; Szabados, T.; Mucsi, R.; Baán, K.; Kiss, J.; Szamosvölgyi, Á.; Sápi, A.; Kónya, Z.; Kukovecz, Á.; Sipos, P. Directed Thermocatalytic CO2 Reduction over NiAl4 Layered Double Hydroxide Precursors − Activity and Selectivity Control Using Different Interlayer Anions. J. CO2 Util. 2023, 75, 102567. [Google Scholar] [CrossRef]
- Ren, J.; Lei, H.; Mebrahtu, C.; Zeng, F.; Zheng, X.; Pei, G.; Zhang, W.; Wang, Z. Ni-Based Hydrotalcite-Derived Catalysts for Enhanced CO2 Methanation: Thermal Tuning of the Metal-Support Interaction. Appl. Catal. B 2024, 340, 123245. [Google Scholar] [CrossRef]
- Dębek, R.; Motak, M.; Duraczyska, D.; Launay, F.; Galvez, M.E.; Grzybek, T.; Da Costa, P. Methane Dry Reforming over Hydrotalcite-Derived Ni–Mg–Al Mixed Oxides: The Influence of Ni Content on Catalytic Activity, Selectivity and Stability. Catal. Sci. Technol. 2016, 6, 6705–6715. [Google Scholar] [CrossRef]
- Aziz, M.A.A.; Jalil, A.A.; Wongsakulphasatch, S.; Vo, D.-V.N. Understanding the Role of Surface Basic Sites of Catalysts in CO2 Activation in Dry Reforming of Methane: A Short Review. Catal. Sci. Technol. 2020, 10, 35–45. [Google Scholar] [CrossRef]
- Lima, D.d.S.; Dias, Y.R.; Perez-Lopez, O.W. CO2 Methanation over Ni–Al and Co–Al LDH-Derived Catalysts: The Role of Basicity. Sustain. Energy Fuels 2020, 4, 5747–5756. [Google Scholar] [CrossRef]
- Cao, M.; Li, S.; Wang, S.; Xu, W.; Zhou, X.; Ma, G.; Wang, X.; Nie, L.; Chen, Y. Designing Highly Active Hydrotalcite-Derived NiAl Catalysts for Methane Cracking to H2. Fuel 2024, 375, 132606. [Google Scholar] [CrossRef]
- Kaydouh, M.-N.; El Hassan, N.; Osman, A.I.; Ahmed, H.; Alarifi, N.; Fakeeha, A.H.; Bin Jumah, A.; Al-Fatesh, A.S. Optimizing CO2 Methanation: Effect of Surface Basicity and Active Phase Reducibility on Ni-Based Catalysts. React. Chem. Eng. 2024, 9, 1933–1946. [Google Scholar] [CrossRef]
- Xu, Y.; Du, X.; Shi, L.; Chen, T.; Wan, H.; Wang, P.; Wei, S.; Yao, B.; Zhu, J.; Song, M. Improved Performance of Ni/Al2O3 Catalyst Deriving from the Hydrotalcite Precursor Synthesized on Al2O3 Support for Dry Reforming of Methane. Int. J. Hydrog. Energy 2021, 46, 14301–14310. [Google Scholar] [CrossRef]
- Muniz, F.T.L.; Miranda, M.A.R.; Morilla dos Santos, C.; Sasaki, J.M. The Scherrer Equation and the Dynamical Theory of X-Ray Diffraction. Acta Crystallogr. A Found. Adv. 2016, 72, 385–390. [Google Scholar] [CrossRef]
- Gouveia, L.G.T.; Agustini, C.B.; Perez-Lopez, O.W.; Gutterres, M. CO2 Adsorption Using Solids with Different Surface and Acid-Base Properties. J. Environ. Chem. Eng. 2020, 8, 103823. [Google Scholar] [CrossRef]
- Stangeland, K.; Kalai, D.Y.; Li, H.; Yu, Z. Active and Stable Ni Based Catalysts and Processes for Biogas Upgrading: The Effect of Temperature and Initial Methane Concentration on CO2 Methanation. Appl. Energy 2018, 227, 206–212. [Google Scholar] [CrossRef]
Sample | SBET (m2 g−1) | Vpore (cm3 g−1) | Dpore (nm) | Crystallite Size (nm) | |
---|---|---|---|---|---|
Calcined * | Reduced ** | ||||
NiAl 400 °C 8 h | 308 | 0.38 | 19.14 | 3.0 | 4.4 |
NiAl 600 °C 6 h | 278 | 0.36 | 4.79 | 3.7 | 6.7 |
NiAl 800 °C 2 h | 234 | 0.34 | 6.04 | 4.4 | 7.2 |
Catalyst | Relative Area (%) * | Total H2 Consumption (µmol/gcat) * | Metallic Area (m2/g) ** | Total Dispersion (%) ** | |||
---|---|---|---|---|---|---|---|
Peak 1 | Peak 2 | Peak 3 | Peak 4 | ||||
NiAl 400 °C 8 h | 4.9 | 48.6 | 12.5 | 34.0 | 178.6 | 22.61 | 4.06 |
NiAl 600 °C 6 h | 0.0 | 5.2 | 74.1 | 20.7 | 96.5 | 23.41 | 4.21 |
NiAl 800 °C 2 h | 10.8 | 10.4 | 31.0 | 47.8 | 177.8 | 12.51 | 2.25 |
Samples | Total Basicity [μmol/g] | Weak [μmol/g] * | Medium [μmol/g] * | Strong [μmol/g] * | Very Strong [μmol/g] * |
---|---|---|---|---|---|
NiAl 400 °C 8 h | 53.91 | 11.88 (22) | 10.93 (20) | 16.02 (30) | 15.08 (28) |
NiAl 600 °C 6 h | 44.41 | 11.62 (26) | 10.31 (23) | 18.74 (42) | 3.75 (8) |
NiAl 800 °C 2 h | 55.84 | 11.24 (20) | 14.05 (25) | 19.30 (35) | 11.24 (20) |
Temperature (°C) | Time (h) | Atmosphere Reduction | Crystallite Size (nm) |
---|---|---|---|
400 | 4 | 90 N2 + 10 H2 | 3.1 |
500 | 2 | 90 N2 + 10 H2 | 3.9 |
600 | 1 | 90 N2 + 10 H2 | 3.4 |
600 | 1 | 90 N2 + 10 CH4 | 9.8 |
600 | 1 | 90 N2 + 10 CO2 | 3.2 |
600 | 1 | 75 N2 + 15 CO2 + 10 CH4 | 13.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martins, N.; Perez-Lopez, O.W. Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation. Catalysts 2025, 15, 760. https://doi.org/10.3390/catal15080760
Martins N, Perez-Lopez OW. Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation. Catalysts. 2025; 15(8):760. https://doi.org/10.3390/catal15080760
Chicago/Turabian StyleMartins, Nailma, and Oscar W. Perez-Lopez. 2025. "Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation" Catalysts 15, no. 8: 760. https://doi.org/10.3390/catal15080760
APA StyleMartins, N., & Perez-Lopez, O. W. (2025). Influence of Calcination and Reduction Conditions of Ni-Al-LDH Catalysts for CO2 Methanation. Catalysts, 15(8), 760. https://doi.org/10.3390/catal15080760