Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS
Abstract
1. Introduction
2. Results and Discussion
2.1. Microstructural Characterization
2.2. UV-Vis Spectroscopy
2.3. Photocatalytic Process
2.4. SERS Monitoring and Kinetic Analysis
3. Materials and Methods
3.1. Materials
3.2. Synthesis of ANSs
3.3. Preparation of SERS-Active ANS Substrates
3.4. Microstructural Characterization and Raman Spectroscopy
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wu, S.M.; Schmuki, P. Single Atom Cocatalysts in Photocatalysis. Adv. Mater. 2025, 37, e2414889. [Google Scholar] [CrossRef] [PubMed]
- Sun, K.; Qian, Y.; Li, D.; Jiang, H.L. Reticular Materials for Photocatalysis. Adv. Mater. 2024, e2411118. [Google Scholar] [CrossRef] [PubMed]
- Ahmed, S.; Khan, M.K.; Kim, J. Revolutionary advancements in carbon dioxide valorization via metal-organic framework-based strategies. Carbon Capture Sci. Technol. 2025, 15, 100405. [Google Scholar] [CrossRef]
- Hao, Z.M.; Hu, M.; Kang, Z.Y.; Wang, J.R.; Liu, C.L.; Feng, Q.; Xu, L.J. Cu modified ZnS photocatalysts for enhancing the photocatalytic H2 production activity. Int. J. Hydrogen Energy 2025, 106, 403–410. [Google Scholar] [CrossRef]
- Lyons, R.J.; Sprick, R.S. Processing polymer photocatalysts for photocatalytic hydrogen evolution. Mater. Horiz. 2024, 11, 3764–3791. [Google Scholar] [CrossRef] [PubMed]
- Nishioka, S.; Osterloh, F.E.; Wang, X.C.; Mallouk, T.E.; Maeda, K. Photocatalytic water splitting. Nat. Rev. Methods Primers 2023, 3, 42. [Google Scholar] [CrossRef]
- Nishiyama, H.; Yamada, T.; Nakabayashi, M.; Maehara, Y.; Yamaguchi, M.; Kuromiya, Y.; Nagatsuma, Y.; Tokudome, H.; Akiyama, S.; Watanabe, T.; et al. Photocatalytic solar hydrogen production from water on a 100-m2 scale. Nature 2021, 598, 304–307. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Zi, J.Z.; Luan, X.; Zhong, Y.Q.; Qu, M.H.; Wang, Y.Z.; Lian, Z.C. Localized Surface Plasmon Resonance Promotes Metal-Organic Framework-Based Photocatalytic Hydrogen Evolution. Adv. Funct. Mater. 2023, 33, 7. [Google Scholar] [CrossRef]
- Xu, M.Y.; Li, R.F.; Wang, W.J.; Jia, T.K.; Jia, W.Q.; Wu, Y.S.; Zhang, C.Q.; Wang, W.Z.; Zhang, L. The promotion of CO2 reduction by light-induced magnetism in plasmonic metal nanoparticles. Appl. Catal. B-Environ. Energy 2025, 378, 11. [Google Scholar] [CrossRef]
- Yang, Y.Y.; Zhang, X.G.; Niu, C.G.; Feng, H.P.; Qin, P.Z.; Guo, H.; Liang, C.; Zhang, L.; Liu, H.Y.; Li, L. Dual-channel charges transfer strategy with synergistic effect of Z-scheme heterojunction and LSPR effect for enhanced quasi-full-spectrum photocatalytic bacterial inactivation: New insight into interfacial charge transfer and molecular oxygen activation. Appl. Catal. B-Environ. 2020, 264, 15. [Google Scholar] [CrossRef]
- You, C.J.; Zhang, X.L.; Zhao, Y.Q.; Yan, R.Y.; Shen, Y.W.; Xue, Q.Q.; Li, W.Y.; Liu, T.; Jiang, J.H.; Chen, X.B.; et al. Plasmonic effect augmented S-scheme mechanism in Ag/Ag2O/C3N5 photocatalyst enables efficient photocatalytic degradation of antibiotics. J. Mater. Sci. Technol. 2025, 242, 64–74. [Google Scholar] [CrossRef]
- Zhang, G.; Hu, H.; Deng, S.; Xiao, X.; Xiong, Y.; Peng, J.; Lai, W. An integrated colorimetric and photothermal lateral flow immunoassay based on bimetallic Ag-Au urchin-like hollow structures for the sensitive detection of E. coli O157:H7. Biosens. Bioelectron. 2023, 225, 115090. [Google Scholar] [CrossRef] [PubMed]
- Chen, L.; Wang, H.F.; Li, C.; Xu, Q. Bimetallic metal-organic frameworks and their derivatives. Chem. Sci. 2020, 11, 5369–5403. [Google Scholar] [CrossRef] [PubMed]
- Zhang, M.K.; Guo, X.D. Gold/platinum bimetallic nanomaterials for immunoassay and immunosensing. Coord. Chem. Rev. 2022, 465, 24. [Google Scholar] [CrossRef]
- Sanad, M.F.; Puente Santiago, A.R.; Tolba, S.A.; Ahsan, M.A.; Fernandez-Delgado, O.; Shawky Adly, M.; Hashem, E.M.; Mahrous Abodouh, M.; El-Shall, M.S.; Sreenivasan, S.T.; et al. Co-Cu Bimetallic Metal Organic Framework Catalyst Outperforms the Pt/C Benchmark for Oxygen Reduction. J. Am. Chem. Soc. 2021, 143, 4064–4073. [Google Scholar] [CrossRef] [PubMed]
- Li, C.M.; Zhu, D.Q.; Cheng, S.S.; Zuo, Y.; Wang, Y.; Ma, C.C.; Dong, H.J. Recent research progress of bimetallic phosphides-based nanomaterials as cocatalyst for photocatalytic hydrogen evolution. Chin. Chem. Lett. 2022, 33, 1141–1153. [Google Scholar] [CrossRef]
- Zhang, W.; Yu, R.; Chen, J.; Wu, Y.; Chen, Y.; Sui, Y.; Yan, S.; Zhang, Z.; Chen, L. One-pot preparation of anionic ligand-stabilized gold nanoparticles with low SERS background for detecting reaction intermediates under strong oxidative conditions. Analyst 2025, 150, 2524–2535. [Google Scholar] [CrossRef] [PubMed]
- Zhu, H.; Lin, M.; Li, Y.; Duan, K.; Hu, J.; Chen, C.; Yu, Z.; Lee, B.H. LSPR sensing for in situ monitoring the Ag dissolution of Au@Ag core-shell nanoparticles in biological environments. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2024, 310, 123885. [Google Scholar] [CrossRef] [PubMed]
- Qin, Z.; Liu, Y.; Jia, X.; Zhou, J.; Li, H.; Wang, X.; Zhang, S.; Chang, H.; Wang, G. One-step synthesized multisize AuAg alloy nanoparticles with high SERS sensitivity in directly detecting SARS-CoV-2 spike protein. Anal. Chim. Acta 2024, 1317, 342919. [Google Scholar] [CrossRef] [PubMed]
- Ramachandran, S.; Joao, S.M.; Jin, H.; Lischner, J. Hot carriers from intra- and interband transitions in gold-silver alloy nanoparticles. Commun. Chem. 2024, 7, 169. [Google Scholar] [CrossRef] [PubMed]
- Xu, D.; Zhou, L.; Zhang, S.; Wang, Z.; Yang, W.; Guo, Q.; Wang, Z.; Chen, J. Facile fabrication of Au-Ag alloy nanoparticles/Ag nanowires SERS substrates with bimetallic synergistic effect for ultra-sensitive detection of crystal violet and alkali blue 6B. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 324, 124981. [Google Scholar] [CrossRef] [PubMed]
- Kuang, P.; Ni, Z.; Zhu, B.; Lin, Y.; Yu, J. Modulating the d-Band Center Enables Ultrafine Pt(3) Fe Alloy Nanoparticles for pH-Universal Hydrogen Evolution Reaction. Adv. Mater. 2023, 35, e2303030. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Dong, J.; Ren, Y.; Zhou, W.; Han, Q.; Zhang, C.; Ren, K.; Wang, Y.; Gao, W.; Qi, J. Fabrication of plasmonic Au-Ag alloy nanostars for ultrasensitive SERS detection. Spectrochim. Acta A Mol. Biomol. Spectrosc. 2025, 339, 126208. [Google Scholar] [CrossRef] [PubMed]
- Moreira, M.; Cottancin, E.; Pellarin, M.; Roiban, L.; Masenelli-Varlot, K.; Ugarte, D.; Rodrigues, V.; Hillenkamp, M. Intrinsic Coexistence of Miscibility and Segregation in Gold-Silver Nanoalloys. Small 2025, 21, e2411151. [Google Scholar] [CrossRef] [PubMed]
- Wang, W.C.; Shan, L.A.; Qian, L.; Tang, J.G.; Liu, J.X. A uni-micelle approach for controlled synthesis of monodisperse Au-Ag alloy nanoparticles. Mater. Lett. 2025, 398, 3. [Google Scholar] [CrossRef]
- Lyu, X.; Liu, Q.; Yuan, Q.; Liang, X.; Chen, Q.S.; Luo, P.; Yang, Y.S.; Fang, Z.; Bao, H.F. Ultrafast synthesis of multi-branched Au/Ag bimetallic nanoparticles at room temperature for photothermal reduction of 4-nitrophenol. J. Catal. 2023, 428, 9. [Google Scholar] [CrossRef]
- Wang, Z.H.; Sha, X.; Li, W.Y.; Song, Q.L.; Guo, J.Y.; Zhan, H.L.; Liu, T. Antibacterial and anti-tumor migration potency of biosynthesized gold/silver alloy nanoparticles mediated by polydopamine. J. Drug Deliv. Sci. Technol. 2025, 109, 15. [Google Scholar] [CrossRef]
- Hu, M.; Huang, Z.; Liu, R.; Zhou, N.; Tang, H.; Meng, G. SERS spectral evolution of azo-reactions mediated by plasmonic Au@Ag core-shell nanorods. Nanoscale Adv. 2022, 4, 4730–4738. [Google Scholar] [CrossRef] [PubMed]
- Yang, W.; Geng, W.; Lu, X.; Qian, L.; Luo, S.; Zheng, R.; Xu, L.; Yang, D. The Influence of Pore Size on the Photocatalytic and SERS Performance of Nanoporous Au-Ag Shells. Molecules 2025, 30, 1475. [Google Scholar] [CrossRef] [PubMed]
- Ling, Z.; Li, Z.; Wang, J.; Ge, H.; Fang, J.; Cheng, M.; Wu, J. Preparation and sensitive SERS properties of sapphire-supported plasmonic Ag/Au hybrid coupled nanoarray. Appl. Surf. Sci. 2024, 646, 11. [Google Scholar] [CrossRef]
- Zhang, C.P.; Zhang, C.J.; Yuan, Y.X.; Yao, J.L. Fabrication of AFM tips for tip-enhanced Raman spectroscopy using Au nanoparticle monolayer films and electrodeposition. Nanoscale 2025, 17, 14183–14192. [Google Scholar] [CrossRef] [PubMed]
- Gorbunova, A.; Votkina, D.E.; Semyonov, O.; Kogolev, D.; Joly, J.P.; Marque, S.R.A.; Mokkah, J.H.; Gahlawat, S.; Valtiner, M.; Chevalier, O.; et al. Revising Model Reactions in Plasmonic Chemistry: From Nitrothiophenol Coupling to Alkoxyamine Homolysis. ACS Catal. 2025, 15, 11163–11176. [Google Scholar] [CrossRef] [PubMed]
- Zhang, C.; Li, Z.; Qiu, S.; Lu, W.; Shao, M.; Ji, C.; Wang, G.; Zhao, X.; Yu, J.; Li, Z. Highly ordered arrays of hat-shaped hierarchical nanostructures with different curvatures for sensitive SERS and plasmon-driven catalysis. Nanophotonics 2022, 11, 33–44. [Google Scholar] [CrossRef] [PubMed]
- Carvalho, H.M.L.; Nunes, R.W.; Matos, M.J.S.; Dias, M.R.S.; Bezerra, A.T. Anisotropic Optical Response of Gold-Silver Alloys. Phys. Status Solidi-Rapid Res. Lett. 2025, 19, 8. [Google Scholar] [CrossRef]
- de Carvalho, M.V.; Lago, J.H.G.; Hajjar-Garreau, S.; Camilo, F.F.; Oliveira, L.V.F. Cellulose Membranes Embedded with Gold-Silver Bimetallic Nanoparticles for the Efficient Reduction of 4-Nitrophenol. ACS Omega 2025, 10, 14805–14815. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.H.; Azad, M.A.K.; Khan, K.A.; Rahman, M.O.; Chakma, U.; Kumer, A. Analysis of Crystallographic Structures and Properties of Silver Nanoparticles Synthesized Using PKL Extract and Nanoscale Characterization Techniques. ACS Omega 2023, 8, 28133–28142. [Google Scholar] [CrossRef] [PubMed]
- Holder, C.F.; Schaak, R.E. Tutorial on Powder X-ray Diffraction for Characterizing Nanoscale Materials. ACS Nano 2019, 13, 7359–7365. [Google Scholar] [CrossRef] [PubMed]
- Kumar, V.; Shariq, M.; Alhashmialameer, D.; Alrashidi, K.A.; Al-Qasmi, N.; Alamri, M.M.; Osailan, R.; Baqais, A.; Elhelali, T.M. Green synthesis of gold nanoparticles using extract: Photoinduced fabrication, characterization, and biosensing applications. Res. Chem. Intermed. 2025, 1–22. [Google Scholar] [CrossRef]
- Trivedi, A.; Khetri, M.; Surampudi, A.; Gupta, M.C. Gold Metal Recovery from Electronic Waste through Laser Generation of Micro and Nanoparticles. ACS Omega 2025, 10, 26033–26040. [Google Scholar] [CrossRef] [PubMed]
- Bej, S.; Swain, S.; Bishoyi, A.K.; Sahoo, C.R.; Jali, B.R.; Padhy, R.N. Monitoring of antibacterial capabilities of biosynthesized gold nanoparticles facilitated cyanobacterium, Spirulina subsalsa, against MDR pathogenic bacteria. Naunyn. Schmiedebergs Arch. Pharmacol. 2025, 1–13. [Google Scholar] [CrossRef] [PubMed]
- Sankareswari, M.; Amutha, C.; Vasantha, V.S.; Oh, T.H.; Arunpandian, M.; Selvakumar, K. Biosynthesis of bimetallic Au-Ag nanoparticles using seed Extract: Analysis of photocatalytic, cytotoxic, and antibacterial activities. Inorg. Chem. Commun. 2024, 169, 13. [Google Scholar] [CrossRef]
- Zubair, M.; Rafique, M.S.; Khalid, A.; Yaqub, T.; Shahid, M.F.; Alomar, S.Y.; Shar, M.A. The Fabrication of Gold-Silver Bimetallic Colloids by Microplasma: A Worthwhile Strategy for Counteracting the Surface Activity of Avian Influenza Virus. Crystals 2023, 13, 340. [Google Scholar] [CrossRef]
- Hamamoto, M.; Yagyu, H. Particle size distribution and Au concentration dependence of the refractive-index sensitivity of LSPR sensors based on gold nanoparticles. J. Nanopart. Res. 2023, 25, 13. [Google Scholar] [CrossRef]
- Condorelli, M.; Brancato, A.; Longo, C.; Barcellona, M.; Fragalá, M.E.; Fazio, E.; Compagnini, G.; D’Urso, L. Tuning plasmonic reactivity: Influence of nanostructure, and wavelength on the dimerization of 4-NTP. J. Catal. 2025, 450, 10. [Google Scholar] [CrossRef]
- Xiu, X.W.; Hou, L.P.; Yu, J.; Jiang, S.Z.; Li, C.H.; Zhao, X.F.; Peng, Q.Q.; Qiu, S.; Zhang, C.; Man, B.Y.; et al. Manipulating the surface-enhanced Raman spectroscopy (SERS) activity and plasmon-driven catalytic efficiency by the control of Ag NP/graphene layers under optical excitation. Nanophotonics 2021, 10, 1529–1540. [Google Scholar] [CrossRef]
- Yao, X.; Ehtesabi, S.; Hoppener, C.; Deckert-Gaudig, T.; Schneidewind, H.; Kupfer, S.; Grafe, S.; Deckert, V. Mechanism of Plasmon-Induced Catalysis of Thiolates and the Impact of Reaction Conditions. J. Am. Chem. Soc. 2024, 146, 3031–3042. [Google Scholar] [CrossRef] [PubMed]
- Li, H.; Tang, Z.X.; Zhang, J.X.; Zhang, X.B.; Zhang, Y.F.; Zhang, Y.; Zhang, Y.; Dong, Z.C. Probing coverage-dependent adsorption configuration and on-surface dimerization by single-molecule tip-enhanced Raman spectroscopy. Appl. Phys. A-Mater. Sci. Process. 2023, 129, 10. [Google Scholar] [CrossRef]
- Fan, S.; Scarpitti, B.T.; Smith, A.E.; Luo, Z.; Ye, J.; Schultz, Z.D. Linker-Free Synthesis of Core/Satellite Nanoparticles for Single-Particle Surface-Enhanced Raman Spectroscopy and Photocatalysis. Nano Lett. 2025, 25, 7785–7792. [Google Scholar] [CrossRef] [PubMed]
- Bao, L.; Zhou, F.; Liu, Y.; Wang, B.; Chu, R.; Zhang, Q.; Wang, H. Remote and in-situ monitoring of plasmon-induced catalysis reaction by fiber SERS probes. Talanta 2025, 288, 127735. [Google Scholar] [CrossRef] [PubMed]
- Wu, L.; Xue, R.T.; Zou, S.J.; Mao, X.Q.; Li, J.; Li, Y.; Yang, J.; Fan, X.M. Constructing plasmonic semiconductor S-scheme heterojunction for deep toluene oxidation. Colloid Surf. A-Physicochem. Eng. Asp. 2025, 723, 10. [Google Scholar] [CrossRef]
- Yang, W.; Wu, K.; Yang, W.; Wang, H.; Lv, X.; Qian, L.; Yu, T.; Li, Z.; Zhou, X.; Okumu Barasa, G.; et al. Nanoporous Au-Ag shell with fast kinetics: Integrating chemical and plasmonic catalysis. Nanotechnology 2017, 28, 425704. [Google Scholar] [CrossRef] [PubMed]
Catalyst | Rate Constant | Reaction Order | Laser/Power |
---|---|---|---|
ANSs | 0.0562–0.0650 s−1 | Second-order | 633 nm, 0.42 mW |
Au NPs | 0.00016–0.00026 s−1 | Second-order | 633 nm, 0.42 mW |
Ag NPs | 0.0062–0.0079 s−1 | Second-order | 633 nm, 0.42 mW |
Au@Ag NRs [28] | 0.030 s−1 | first-order | 633 nm, 1.7 mW |
NPAS10 [29] | 0.0068–0.0070 s−1 | Second-order | 633 nm, 0.17 mW |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, W.; Geng, W.; Lu, X.; Qian, L.; Luo, S.; Xu, L.; Shi, Y.; Song, T.; Li, M. Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS. Catalysts 2025, 15, 705. https://doi.org/10.3390/catal15080705
Yang W, Geng W, Lu X, Qian L, Luo S, Xu L, Shi Y, Song T, Li M. Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS. Catalysts. 2025; 15(8):705. https://doi.org/10.3390/catal15080705
Chicago/Turabian StyleYang, Wenpeng, Wenguang Geng, Xiyuan Lu, Lihua Qian, Shijun Luo, Lei Xu, Yu Shi, Tengda Song, and Mengyang Li. 2025. "Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS" Catalysts 15, no. 8: 705. https://doi.org/10.3390/catal15080705
APA StyleYang, W., Geng, W., Lu, X., Qian, L., Luo, S., Xu, L., Shi, Y., Song, T., & Li, M. (2025). Unveiling the Photocatalytic Behavior of PNTP on Au-Ag Alloy Nanoshells Through SERS. Catalysts, 15(8), 705. https://doi.org/10.3390/catal15080705