Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol
Abstract
1. Introduction
2. Results and Discussion
2.1. Physical Characterisation Analysis
2.2. Electrochemical Performance Evaluation
3. Materials and Methods
3.1. Reagents and Chemicals
3.2. Preparation of Oxygen-Functionalised Carbon Carrier
3.3. Preparation of Precursor Solution
3.4. Preparation of the Catalyst
3.5. Physical Property Characterisation
3.6. Electrochemical Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Muthuswamy, N.; de la Fuente, J.L.G.; Ochal, P.; Giri, R.; Raaen, S.; Sunde, S.; Rønninga, M.; Chen, D. Towards a highly-efficient fuel-cell catalyst: Optimisation of Pt particle size, supports and surface-oxygen group concentration. Phys. Chem. Chem. Phys. 2013, 15, 3803–3813. [Google Scholar] [CrossRef] [PubMed]
- Nassr, A.B.A.A.; Sinev, I.; Grünert, W.; Bron, M. PtNi supported on oxygen functionalised carbon nanotubes: In depth structural characterisation and activity for methanol electrooxidation. Appl. Catal. B Environ. 2013, 142, 849–860. [Google Scholar] [CrossRef]
- Li, M.; Han, G.; Yang, B.; Chang, Y.; Xiao, Y.; Li, Y. Using formic acid vapor as reducer to prepare Pt nanoparticles supported on carbon nanofiber mats for methanol electrooxidation. Catal. Commun. 2014, 51, 86–89. [Google Scholar] [CrossRef]
- Chatterjee, S.; Sengupta, K. Carbon-based electrodes for direct methanol fuel cells. In Direct Methanol Fuel Cell Technology; Elsevier: Amsterdam, The Netherlands, 2020; pp. 135–176. [Google Scholar]
- Prithi, J.; Vedarajan, R.; Rao, G.; Rajalakshmi, N. Functionalisation of carbons for Pt electrocatalyst in PEMFC. Int. J. Hydrogen Energy 2021, 46, 17871–17885. [Google Scholar] [CrossRef]
- Li, Z.; Li, J.; Liu, J.; Zhao, Z.; Xia, C.; Li, F. Palladium nanoparticles supported on nitrogen-functionalised active carbon: A stable and highly efficient catalyst for the selective hydrogenation of nitroarenes. ChemCatChem 2014, 6, 1333–1339. [Google Scholar] [CrossRef]
- Salgado, J.; Alcaide, F.; Álvarez, G.; Calvillo, L.; Lázaro, M.; Pastor, E. Pt-Ru electrocatalysts supported on ordered mesoporous carbon for direct methanol fuel cell. J. Power Sources 2010, 195, 4022–4029. [Google Scholar] [CrossRef]
- Tang, H.; Chen, J.; Huang, Z.; Wang, D.; Ren, Z.; Nie, L.; Kuang, Y.; Yao, S. High dispersion and electrocatalytic properties of platinum on well-aligned carbon nanotube arrays. Carbon 2004, 42, 191–197. [Google Scholar] [CrossRef]
- Baruah, B.; Deb, P. Performance and application of carbon-based electrocatalysts in direct methanol fuel cell. Mater. Adv. 2021, 2, 5344–5364. [Google Scholar] [CrossRef]
- Figueiredo, J.L. Functionalization of porous carbons for catalytic applications. J. Mater. Chem. A 2013, 1, 9351–9364. [Google Scholar] [CrossRef]
- Yang, S.; Wang, X.; Yang, H.; Sun, Y.; Liu, Y. Influence of the different oxidation treatment on the performance of multi-walled carbon nanotubes in the catalytic wet air oxidation of phenol. J. Hazard. Mater. 2012, 233, 18–24. [Google Scholar] [CrossRef] [PubMed]
- Zhou, Y.; Neyerlin, K.; Olson, T.S.; Pylypenko, S.; Bult, J.; Dinh, H.N.; Gennett, T.; Shao, Z.; O'HAyre, R. Enhancement of Pt and Pt-alloy fuel cell catalyst activity and durability via nitrogen-modified carbon supports. Energy Environ. Sci. 2010, 3, 1437–1446. [Google Scholar] [CrossRef]
- Chen, W.; Xin, Q.; Sun, G.; Wang, Q.; Mao, Q.; Su, H. The effect of carbon support treatment on the stability of Pt/C electrocatalysts. J. Power Sources 2008, 180, 199–204. [Google Scholar] [CrossRef]
- Salgado, J.; Duarte, R.; Ilharco, L.; do Rego, A.M.B.; Ferraria, A.M.; Ferreira, M.G.S. Effect of functionalised carbon as Pt electrocatalyst support on the methanol oxidation reaction. Appl. Catal. B Environ. 2011, 102, 496–504. [Google Scholar] [CrossRef]
- de la Fuente, J.G.; Martínez-Huerta, M.; Rojas, S.; Hernández-Fernández, P.; Terreros, P.; Fierro, J.; Peña, M. Tailoring and structure of PtRu nanoparticles supported on functionalised carbon for DMFC applications: New evidence of the hydrous ruthenium oxide phase. Appl. Catal. B Environ. 2009, 88, 505–514. [Google Scholar] [CrossRef]
- Ryu, Y.B.; Kim, J.S.; Baek, J.H.; Kim, M.H.; Kim, Y.; Lee, M.S. Carbon Nano Tube Supported Pd Catalyst: Effect of Support Textual Properties with Pre-Treatment Method of Pd Particle. J. Nanosci. Nanotechnol. 2015, 15, 9052–9056. [Google Scholar] [CrossRef] [PubMed]
- Toebes, M.L.; van Heeswijk, J.M.; Bitter, J.H.; van Dillen, A.J.; de Jong, K.P. The influence of oxidation on the texture and the number of oxygen-containing surface groups of carbon nanofibers. Carbon 2004, 42, 307–315. [Google Scholar] [CrossRef]
- Edwards, H.; Fawcett, V. Quantitative Raman spectroscopic studies of nitronium ion concentrations in mixtures of sulphuric and nitric acids. J. Mol. Struct. 1994, 326, 131–143. [Google Scholar] [CrossRef]
- Prado-Burguete, C.; Linares-Solano, A.; Rodriguez-Reinoso, F.; de Lecea, C.S.-M. The effect of oxygen surface groups of the support on platinum dispersion in Pt/carbon catalysts. J. Catal. 1989, 115, 98–106. [Google Scholar] [CrossRef]
- Kim, U.J.; Furtado, C.A.; Liu, X.; Chen, G.; Eklund, P.C. Raman and IR spectroscopy of chemically processed single-walled carbon nanotubes. J. Am. Chem. Soc. 2005, 127, 15437–15445. [Google Scholar] [CrossRef] [PubMed]
- Rethinasabapathy, M.; Kang, S.-M.; Haldorai, Y.; Jankiraman, M.; Jonna, N.; Choe, S.R.; Huh, Y.S.; Natesan, B. Ternary PtRuFe nanoparticles supported N-doped graphene as an efficient bifunctional catalyst for methanol oxidation and oxygen reduction reactions. Int. J. Hydrogen Energy 2017, 42, 30738–30749. [Google Scholar] [CrossRef]
- Li, J.; Ma, L.; Li, X.; Lu, C.; Liu, H. Effect of nitric acid pretreatment on the properties of activated carbon and supported palladium catalysts. Ind. Eng. Chem. Res. 2005, 44, 5478–5482. [Google Scholar] [CrossRef]
- Tan, Q.; Shu, C.Y.; Abbott, J.; Zhao, Q.; Liu, L.; Qu, T.; Chen, Y.; Zhu, H.; Liu, Y.-N.; Wu, G. Highly dispersed Pd-CeO2 nanoparticles supported on N-doped core-shell structured mesoporous carbon for methanol oxidation in alkaline media. ACS Catal. 2019, 9, 6362–6371. [Google Scholar] [CrossRef]
- Zhu, K.; Yang, H.C.; Guo, G.G.; Wang, Y.; Tan, W.; Ma, F.; Zhang, H.; Peng, S. Pd Single Atoms/Clusters at the Oxygen Defect-Rich WOx_C Nanowire Structure Facilitate H* Adsorption and Desorption for Efhcient and Stable Hydrogen Evolution Reaction. ACS Catal. 2025, 15, 9563–9573. [Google Scholar] [CrossRef]
- Calvo, L.; Gilarranz, M.; Casas, J.; Mohedano, A.F.; Rodríguez, J.J. Effects of support surface composition on the activity and selectivity of Pd/C catalysts in aqueous-phase hydride-chlorination reactions. Ind. Eng. Chem. Res. 2005, 44, 6661–6667. [Google Scholar] [CrossRef]
- Soria-Sánchez, M.; Maroto-Valiente, A.; Álvarez-Rodríguez, J.; Muñoz-Andrés, V.; Rodríguez-Ramos, I.; Guerrero-Ruíz, A. Carbon nanostrutured materials as direct catalysts for phenol oxidation in aqueous phase. Appl. Catal. B Environ. 2011, 104, 101–109. [Google Scholar] [CrossRef]
- Li, G.; Wang, S.; Li, H.; Guo, P.; Li, Y.; Ji, D.; Zhao, X. Carbon-supported pdcu alloy as extraordinary electrocatalysts for methanol electrooxidation in alkaline direct methanol fuel cells. Nanomaterials 2022, 12, 4210. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Gao, W.; Ci, L.; Wang, C.; Ajayan, P.M. Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electrooxidation. Carbon 2010, 48, 1124–1130. [Google Scholar] [CrossRef]
- Wang, H.X.; Sheng, L.M.; Zhao, X.L.; An, K.; Ou, Z.; Fang, Y. One-step synthesis of Pt-Pd catalyst nanoparticles supported on few-layer graphene for methanol oxidation. Curr. Appl. Phys. 2018, 18, 898–904. [Google Scholar] [CrossRef]
- Guo, P.; Huang, B.Y.; Li, Y.; Ji, D.; Li, G.; Li, H.; Zhao, X. Highly Dispersed PdNi Nanoparticles on an Oxygen-Functionalized Activated Carbon with Extraordinary Electrocatalytic Activity for Methanol Oxidation. J. Phys. Chem. C 2023, 127, 16414–16421. [Google Scholar] [CrossRef]
- Jiang, T.W.; Qin, X.X.; Ye, K.; Zhang, W.-Y.; Li, H.; Liu, W.; Huo, S.; Zhang, X.-G.; Jiang, K.; Cai, W.-B. An interactive study of catalyst and mechanism for electrochemical CO2 reduction to formate on Pd surfaces. Appl. Catal. B Environ. 2023, 334, 122815. [Google Scholar] [CrossRef]
Simple | Specific Surface Area (m2·g−1) | Mean Aperture (nm) | Mean Pore Volume (cm3·g−1) |
---|---|---|---|
AC | 1477 | 2.220 | 0.820 |
FAC-A | 814 | 2.252 | 0.458 |
FAC-B | 758 | 2.251 | 0.426 |
FAC-C | 860 | 2.302 | 0.495 |
FAC-D | 681 | 2.235 | 0.380 |
FAC-E | 701 | 2.266 | 0.391 |
Simple | Specific Surface Area (m2·g−1) | Mean Aperture (nm) | Mean Pore Volume (cm3·g−1) |
---|---|---|---|
Pd/AC | 1358 | 2.154 | 0.710 |
Pd/FAC-A | 752 | 2.131 | 0.560 |
Pd/FAC-B | 639 | 2.200 | 0.659 |
Pd/FAC-C | 780 | 2.217 | 0.452 |
Pd/FAC-D | 493 | 2.119 | 0.320 |
Pd/FAC-E | 687 | 2.210 | 0.398 |
Simple | C (at%) | O (at%) | O1s (at%) | O/C | Pd | |||
---|---|---|---|---|---|---|---|---|
C=O | C–O–C | C–O | Pd0 (at%) | PdII (at%) | ||||
Pd/AC | 79.12 | 18.06 | 5.39 | 7.14 | 5.53 | 0.228 | 56.89 | 43.11 |
Pd/FAC-A | 73.10 | 21.65 | 7.09 | 7.81 | 6.71 | 0.296 | 79.78 | 20.22 |
Pd/FAC-B | 68.06 | 23.37 | 7.74 | 7.78 | 7.85 | 0.343 | 82.21 | 17.79 |
Pd/FAC-C | 74.58 | 20.82 | 6.05 | 9.09 | 5.68 | 0.279 | 63.56 | 36.44 |
Pd/FAC-D | 68.21 | 24.28 | 8.52 | 7.91 | 7.85 | 0.356 | 85.36 | 14.64 |
Pd/FAC-E | 73.65 | 21.80 | 7.08 | 8.63 | 6.09 | 0.296 | 73.91 | 26.09 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Li, H.; An, X.; Li, W.; Liu, R.; Zhao, X.; Li, G. Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol. Catalysts 2025, 15, 704. https://doi.org/10.3390/catal15080704
Xu H, Li H, An X, Li W, Liu R, Zhao X, Li G. Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol. Catalysts. 2025; 15(8):704. https://doi.org/10.3390/catal15080704
Chicago/Turabian StyleXu, Hanqiao, Hongwei Li, Xin An, Weiping Li, Rong Liu, Xinhong Zhao, and Guixian Li. 2025. "Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol" Catalysts 15, no. 8: 704. https://doi.org/10.3390/catal15080704
APA StyleXu, H., Li, H., An, X., Li, W., Liu, R., Zhao, X., & Li, G. (2025). Effect of Oxygen-Containing Functional Groups on the Performance of Palladium/Carbon Catalysts for Electrocatalytic Oxidation of Methanol. Catalysts, 15(8), 704. https://doi.org/10.3390/catal15080704