Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries
Abstract
1. Introduction
2. Characteristics of RO Concentrated Water
Categories | Compound | Formula | CAS No. | Structure | Log Kow | Ambient Concentration Range/(ng/L) |
---|---|---|---|---|---|---|
Industrials | PFOS | C8HF17O3S | 1763-23-1 | Not measurable | 0.01~14 [12] | |
PFOA | C8HF15O2 | 335-67-1 | Not measurable | 2~260 [12] | ||
PBDEs | C12H5Br5O | / | 4.89~6.8 | 0.01~73.4 [13] | ||
PCBs | C12H10-xClx | / | 4.53 | 0.125~70.6 [14] | ||
Anthracene (PAHs) | C14H10 | 120-12-7 | 4.68 | 18.3~146.8 [15] | ||
Bisphenol A | C15H16O2 | 80-05-7 | 3.18 | 14~1390 [16] | ||
Pharmaceuticals | Diclofenac | C14H11Cl2NO2 | 15307-79-6 | 4.5~4.8 | 380~4700 [17] | |
Carbamazepine | C15H12N2O | 298-46-4 | Not measurable | 3.3~128.2 [18] | ||
Amoxicillin | C16H19N3O5S | 26787-78-0 | 3H2O | 0.87 | 66~5230 [19] | |
Estrone (E1) | C18H22O2 | 53-16-7 | 2.95 | 0.05~6.97 [20] | ||
Pesticides | Diazinon | C12H21N2O3PS | 333-41-5 | 3.3~3.8 | 6.3~308.8 [21] | |
Lindane | C6H6Cl6 | 58-89-9 | 3.7~4.1 | 0.16 [22] | ||
Dieldrin | C12H8Cl6O | 60-57-1 | 3.7~6.2 | 0~23.3 [23] | ||
Disinfection byproducts | NDMA | C2H6N2O | 62-75-9 | 0.57 | 20.7~56.7 [24] |
3. Mechanism of Action of Catalytic Ozone Oxidation Technology for the Treatment of RO Concentrated Water
4. Reaction Mechanism and Multi-Industry Application of Catalytic Ozone Oxidation for RO Concentrated Water Treatment
4.1. Municipal Concentrated Water Reuse
4.2. Petrochemical Industry
4.3. Coal Chemical Industry
4.4. Industrial Park
4.5. Other Industries
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ahmed, M.A.; Amin, S.; Mohamed, A.A. Fouling in Reverse Osmosis Membranes: Monitoring, Charac terization, Mitigation Strategies and Future Directions. Heliyon 2023, 9, e14908. [Google Scholar] [CrossRef]
- Lee, C.; Ho, H.; Chen, W.; Iizuka, A. Total Resource Circulation of Desalination Brine: A Review. Adv. Sustain. Syst. 2024, 8, 2300460. [Google Scholar] [CrossRef]
- Zhu, X.; Jassby, D. Electroactive Membranes for Water Treatment: Enhanced Treatment Functionalities, Energy Considerations, and Future Challenges. Acc. Chem. Res. 2019, 52, 1177–1186. [Google Scholar] [CrossRef]
- Ozyildiz, G.; Bodur, M.; Dilsizoglu-Akyol, N.; Kilicarpa, A.; Olmez-Hanci, T.; Cokgor, E.; Kilinc, C.; Okutan, H.C.; Insel, G. Simulating the Impact of Ozonation on Biodegradation Characteristics of Industrial Wastewater Concentrated with Membrane Filtration. J. Environ. Chem. Eng. 2023, 11, 109286. [Google Scholar] [CrossRef]
- Li, J.; Cheng, W.; Wang, H.; Luo, Y.; Liu, Q.; Wang, X.; Wang, L.; Zhang, T. Reverse Osmosis and Nanofiltration Processes in Industrial Wastewater Treatment: The Recent Progress, Challenge, and Future Opportunity. Sep. Purif. Technol. 2025, 362, 131687. [Google Scholar] [CrossRef]
- Sun, L.; Lin, W.; Wu, X.; Cabrera, J.; Chen, D.; Huang, X. Deciphering the Spatial Fouling Characteristics of Reverse Osmosis Membranes for Coal Chemical Wastewater Treatment. Sep. Purif. Technol. 2022, 286, 120456. [Google Scholar] [CrossRef]
- Pradhan, S.; Fan, L.; Roddick, F.A.; Shahsavari, E.; Ball, A.S.; Zhang, X. A Comparative Study of Biological Activated Carbon Based Treatments on Two Different Types of Municipal Reverse Osmosis Concentrates. Chemosphere 2020, 240, 124925. [Google Scholar] [CrossRef]
- Chen, W.; Gu, Z.; Ran, G.; Li, Q. Application of Membrane Separation Technology in the Treatment of Leachate in China: A Review. Waste Manag. 2021, 121, 127–140. [Google Scholar] [CrossRef]
- Liu, Y.; Mo, Y.; Zhao, X.; Wang, S.; Wang, L.; Guo, H. A Mini Review on Treatment Alternatives Removing Organic Pollutants for Reverse Osmosis Concentrate from Industrial Wastewater Sources. J. Environ. Chem. Eng. 2025, 13, 116339. [Google Scholar] [CrossRef]
- GB 5749-2022; Standards for Drinking Water Quality. China National Standardization Administration Committee: Beijing, China, 2022.
- Joo, S.H.; Tansel, B. Novel Technologies for Reverse Osmosis Concentrate Treatment: A Review. J. Environ. Manag. 2015, 150, 322–335. [Google Scholar] [CrossRef]
- Chen, S.; Jiao, X.; Gai, N.; Li, X.; Wang, X.; Lu, G.; Piao, H.; Rao, Z.; Yang, Y. Perfluorinated Compounds in Soil, Surface Water, and Groundwater from Rural Areas in Eastern China. Environ. Pollut. 2016, 211, 124–131. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Han, W.; Yang, X.; Li, Y.; Wang, Y. The Occurrence of Polybrominated Diphenyl Ether (PBDE) Contamination in Soil, Water/Sediment, and Air. Environ. Sci. Pollut. Res. 2019, 26, 23219–23241. [Google Scholar] [CrossRef] [PubMed]
- Yang, L.; Jin, F.; Liu, G.; Xu, Y.; Zheng, M.; Li, C.; Yang, Y. Levels and Characteristics of Polychlorinated Biphenyls in Surface Sediments of the Chaobai River, a Source of Drinking Water for Beijing, China. Ecotoxicol. Environ. Saf. 2020, 189, 109922. [Google Scholar] [CrossRef] [PubMed]
- Dong, L.; Lin, L.; He, J.; Pan, X.; Wu, X.; Yang, Y.; Jing, Z.; Zhang, S.; Yin, G. PAHs in the Surface Water and Sediments of the Middle and Lower Reaches of the Han River, China: Occurrence, Source, and Probabilistic Risk Assessment. Process Saf. Environ. Prot. 2022, 164, 208–218. [Google Scholar] [CrossRef]
- Sarma, H.; Lee, W. Bacteria Enhanced Lignocellulosic Activated Carbon for Biofiltration of Bisphenols in Water. Environ. Sci. Pollut. Res. 2018, 25, 17227–17239. [Google Scholar] [CrossRef]
- Soomro, R.A.; Lin, L.P.; Trzcinski, A.P. Degradation of Diclofenac Using Advanced Oxidation Processes: A Review. J. Environ. Sci. Health Part A 2025, 60, 12–28. [Google Scholar] [CrossRef]
- Wu, J.; Shi, D.; Wang, S.; Yang, X.; Zhang, H.; Zhang, T.; Zheng, L.; Zhang, Y. Derivation of Water Quality Criteria for Carbamazepine and Ecological Risk Assessment in the Nansi Lake Basin. Int. J. Environ. Res. Public Health 2022, 19, 10875. [Google Scholar] [CrossRef]
- Dominguez-Montero, L.; Burelo, E.D.L.C.; Viveros, A.P.; Poggi-Varaldo, H. Working Toward an Environmental Risk Assessment of Emerging Contaminants in Wastewater: The Case of Amoxicillin. Water Air Soil Pollut. 2025, 236, 366. [Google Scholar] [CrossRef]
- Duan, S.W.; Iwanowicz, L.R.; Noguera-Oviedo, K.; Kaushal, S.S.; Rosenfeldt, E.J.; Aga, D.S.; Murthy, S. Evidence that Watershed Nutrient Management Practices Effectively Reduce Estrogens in Environmental Waters. Sci. Total Environ. 2021, 758, 143904. [Google Scholar] [CrossRef]
- Chidya, R.; Derbalah, A.; Abdel-Dayem, S.; Kaonga, C.; Tsuji, H.; Takeda, K.; Sakugawa, H. Contamination, Dynamics, and Health Risk Assessment of Pesticides in Seawater and Marine Samples from the Seto Inland Sea, Japan. Environ. Sci. Pollut. Res. 2022, 29, 67894–67907. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, J.; Liu, P.; Qi, A.; Jin, H.; Jia, R.; Zheng, Z.; Yan, C.; Cai, M. Contamination Characteristics, Spatial Distribution and Ecological-Health Risk Assessment of Legacy and Current-Use Pesticides: A Case Study in the Beibu Gulf. Front. Mar. Sci. 2023, 10, 1167712. [Google Scholar] [CrossRef]
- Zhang, Y.; Zhang, H.; Yang, M. Profiles and Risk Assessment of Legacy and Current Use Pesticides in Urban Rivers in Beijing, China. Environ. Sci. Pollut. Res. 2021, 28, 39423–39431. [Google Scholar] [CrossRef]
- Sack, S.; Avisar, D.; Kaplan, A.; Lester, Y. Detection of N-Nitrosodimethylamine (NDMA) and its Formation Potential in Hospital Wastewater. Environ. Sci. Pollut. Res. 2021, 28, 14199–14206. [Google Scholar] [CrossRef] [PubMed]
- Einaga, H.; Zheng, X. Fundamental Insights and Recent Advances in Catalytic Oxidation Processes Using Ozone for the Control of Volatile Organic Compounds. Environ. Sci. Pollut. Res. 2024, 31, 43540–43560. [Google Scholar] [CrossRef] [PubMed]
- Huang, Z.; Gu, Z.; Wang, Y.; Zhang, A. Improved Oxidation of Refractory Organics in Concentrated Leachate by a Fe2+-Enhanced O3/H2O2 Process. Environ. Sci. Pollut. Res. 2019, 26, 35797–35806. [Google Scholar] [CrossRef]
- Kong, Y.; Hou, Z.; Wang, J. Advances in carbo catalytic ozonation for water purification. China Environ. Sci. 2025, 45, 854–869. [Google Scholar] [CrossRef]
- Wang, J.; Chen, H. Catalytic Ozonation for Water and Wastewater Treatment: Recent Advances and Perspective. Sci. Total Environ. 2020, 704, 135249. [Google Scholar] [CrossRef]
- Yang, Z.; Yang, H.; Liu, Y.; Hu, C.; Jing, H.; Li, H. Heterogeneous Catalytic Ozonation for Water Treatment: Preparation and Application of Catalyst. Ozone Sci. Eng. 2023, 45, 147–173. [Google Scholar] [CrossRef]
- Zhu, H.; Ma, W.; Han, H.; Han, Y.; Ma, W. Catalytic ozonation of quinoline using nano-MgO: Efficacy, pathways, mechanisms and its application to real biologically pretreated coal gasification wastewater. Chem. Eng. J. 2017, 327, 91–99. [Google Scholar] [CrossRef]
- Huang, N.; Li, Y.; Wu, Q.; Wang, W.; Wu, Y.; Jia, Z.; Liu, P.; Hu, H. Effective treatment of municipal wastewater reverse osmosis concentrate by catalytic ozonation technology. Ind. Water Treat. 2021, 41, 56–59. [Google Scholar] [CrossRef]
- Niu, J.; Yuan, R.; Chen, H.; Zhou, B.; Luo, S. Heterogeneous Catalytic Ozonation for the Removal of Antibiotics in Water: A Review. Environ. Res. 2024, 262, 119889. [Google Scholar] [CrossRef]
- Xu, X.; Xia, Z.; Li, L.; Huang, Q.; He, C.; Wang, J. Catalytic Ozonation of Organics in Reverse Osmosis Concentrate with Catalysts Based on Activated Carbon. Molecules 2019, 24, 4365. [Google Scholar] [CrossRef]
- Xia, Y.; Liu, J.; He, X.; Yang, H. Removal Effect of Organics in Reverse Osmosis Concentrate of Municipal Wastewater by Ozone Catalytic Oxidation. J. Northeast. Univ. Nat. Sci. 2024, 45, 1342–1351. [Google Scholar] [CrossRef]
- King, J.F.; Szczuka, A.; Zhang, Z.; Mitch, W.A. Efficacy of Ozone for Removal of Pesticides, Metals and Indicator Virus from Reverse Osmosis Concentrates Generated During Potable Reuse of Municipal Wastewaters. Water Res. 2020, 176, 115744. [Google Scholar] [CrossRef]
- Sun, W.; Xiao, Z.; Sun, Y.; Ding, L.; Zhou, J. Preparation of Cu-Ce@γ-Al2O3 and Study on Catalytic Ozone Oxidation for the Treatment of RO Concentrate Water. Water 2022, 14, 2881. [Google Scholar] [CrossRef]
- Wang, L.; Liu, A.; Zhang, Z.; Zhao, B.; Xia, Y.; Tan, Y. Catalytic Ozonation of Thymol in Reverse Osmosis Concentrate with Core/Shell Fe3O4@SiO2@Yb2O3 Catalyst: Parameter Optimization and Degradation Pathway. Chin. J. Chem. Eng. 2017, 25, 665–670. [Google Scholar] [CrossRef]
- Shen, X.; Sheng, M.; Hao, S.; Cao, G.; Wang, J. Treatment of reverse osmosis concentrated water by combination process of catalytic ozonation-biological activated carbon adsorption. Environ. Prot. Chem. Ind. 2017, 37, 325–329. [Google Scholar] [CrossRef]
- Westerhoff, P.; Moon, H.; Minakata, D.; Crittenden, J. Oxidation of Organics in Retentates from Reverse Osmosis Wastewater Reuse Facilities. Water Res. 2009, 43, 3992–3998. [Google Scholar] [CrossRef]
- Zhou, Y.; Yang, Z.; Chen, S.; Sun, W.; Sun, Y. Ozonation Treatment of Simulated Wastewater Containing Characteristic Pollutants from the Petrochemical Industry. Water 2025, 17, 605. [Google Scholar] [CrossRef]
- Li, S.; Li, B.; Li, Y.; Liu, H.; Huang, S.; Yang, Q.; Liu, Y. Pilot Study on a Physical Process for Treating Petrochemical Wastewater. J. Environ. Manag. 2025, 379, 124891. [Google Scholar] [CrossRef]
- Xiu, H.; Zhai, S.; Wang, B. Research on reuse of concentrated water produced by petrochemical wastewater. Ind. Water Treat. 2019, 39, 101–103. [Google Scholar] [CrossRef]
- Qi, L.; Zhong, H.; Liu, S.; Chen, Y.; Dong, L. Removal of Organics in Petrochemical Reverse Osmosis Concentrated Water by Ozone Catalysis/Ultrafiltration Combined Process. Technol. Water Treat. 2024, 50, 113–118. [Google Scholar] [CrossRef]
- Wang, H. Technical discussion on treatment process of refinery high salt wastewater. Water Wastewater Eng. 2023, 59, 62–65. [Google Scholar] [CrossRef]
- Sang, J.; Gao, F.; Yang, C.; Sun, Y. Treatment of reverse osmosis concentrate by integrated process combining ozonation with ceramic membrane. Environ. Prot. Chem. Ind. 2022, 42, 155–160. [Google Scholar] [CrossRef]
- Sun, W.; Zhu, H.; Xie, Y.; Zhou, J.; Sun, Y. Catalytic ozonation of coal chemical biochemical secondary effluent by a Cu-MnFe2O4/Bt ozone catalyst. J. Water Process Eng. 2025, 69, 106903. [Google Scholar] [CrossRef]
- Bai, X.; Yang, Q.; Ding, Y. Experimental study on treatment of reverse osmosis concentrated water from a refinery by activated carbon-ozone technology. Mod. Chem. Ind. 2016, 36, 58–61. [Google Scholar] [CrossRef]
- Wang, H.; Zhang, Z.; Liu, J.; Wang, L.; Liu, Q.; Zhang, T. O3/H2O2-NF Coupling for Treating Coal Chemical Reverse Osmosis Concentrate: Organic Matter Removal and Membrane Fouling Control. Sep. Purif. Technol. 2025, 362, 131682. [Google Scholar] [CrossRef]
- Liu, N.; Zhao, X.; Wang, C.; Li, Y.; Pan, S.; Huang, W.; Hakizimana, I.; Kong, W.; Wang, Y. Application of Electrochemical Flow-Through Oxidation Technology in the Treatment of Concentrated Water from Nanofiltration and Reverse Osmosis in the Coal Chemical Industry. J. Environ. Chem. Eng. 2024, 12, 114663. [Google Scholar] [CrossRef]
- Wang, J.; Wang, S. Reactive Species in Advanced Oxidation Processes: Formation, Identification and Reaction Mechanism. Chem. Eng. J. 2020, 401, 126158. [Google Scholar] [CrossRef]
- Dai, M.; Niu, Q.; Wu, S.; Lin, Y.; Biswas, J.K.; Yang, C. Hydroxyl Radicals in Ozone-Based Advanced Oxidation of Organic Contaminants: A Review. Environ. Chem. Lett. 2024, 22, 3059–3106. [Google Scholar] [CrossRef]
- Wu, Z.; Ge, S.; Han, Y.; Zong, M.; He, S.; Zhang, J. Effect of Inorganic Anions on Quinoline Removal by Catalytic Ozonation: Performance and Mechanism. J. Environ. Chem. Eng. 2024, 12, 113289. [Google Scholar] [CrossRef]
- Shi, J.; Huang, W.; Han, H.; Xu, C. Review on Treatment Technology of Salt Wastewater in Coal Chemical Industry of China. Desalination 2020, 493, 114640. [Google Scholar] [CrossRef]
- Li, X.; Li, Y.; Zou, H.; Li, H.; Liu, C.; Gao, Q.; Zhuo, Z. Synthesis and intensive treatment of Fe2O3 blended ozone catalyst for reverse osmosis concentrated water in coal chemical industry. Water Wastewater Eng. 2024, 60, 88–95. [Google Scholar] [CrossRef]
- Guo, L.; Zhang, M.; Xie, S.; Xiao, Z.; Sun, W.; Xu, H.; Zhou, J.; Sun, Y. Catalytic ozonation of high-salinity wastewater using salt-resistant catalyst Fe-Bi@γ-Al2O3. J. Water Process Eng. 2022, 49, 103160. [Google Scholar] [CrossRef]
- Li, X.; Xie, L.; Wang, M.; Zhang, L. Ozone catalytic oxidation of reverse osmosis concentrated water by fixed bed with reflux. Chem. Ind. Eng. Prog. 2020, 39, 760–766. [Google Scholar] [CrossRef]
- Chen, X.; Gu, H.; Sun, X.; Tian, J.; Li, Q.; Pan, T.; Zhang, X.; Hu, X.; Linghu, S. Improvement of Coal Gasification Reverse Osmosis Concentrate Treatment by Cu-Co-Mn/AC Catalytic Ozonation. Water Sci. Technol. 2023, 87, 144–156. [Google Scholar] [CrossRef]
- Kong, X.; Garg, S.; Chen, G.; Li, W.; Wang, Y.; Wang, J.; Ma, J.; Yuan, Y.; Waite, T.D. Coal Chemical Industry Membrane Concentrates: Characterisation and Treatment by Ozonation and Catalytic Ozonation Processes. Environ. Chem. 2022, 19, 156–166. [Google Scholar] [CrossRef]
- Yuan, Y.; Garg, S.; Wang, Y.; Li, W.; Chen, G.; Gao, M.; Zhong, J.; Wang, J.; Waite, T.D. Influence of Salinity on the Heterogeneous Catalytic Ozonation Process: Implications to Treatment of High Salinity Wastewater. J. Hazard. Mater. 2022, 423, 127255. [Google Scholar] [CrossRef]
- Wang, J.; Li, S.; Wei, X.; Wei, F. Study on advanced oxidation processes in the treatment of reverse osmosis concentrated water from coal chemical industry. Appl. Chem. Ind. 2020, 49, 368–371. [Google Scholar] [CrossRef]
- Sun, W.Q.; Wang, Y.; Yang, X.W.; Wang, Z.R.; Zhu, H.Q.; Zhou, J.; Sun, Y.J. Catalytic Ozone Oxidation of Chemical RO Membrane Concentrate Wastewater by a Cu-Ce@γ-Al2O3 Ozone Catalyst. Water Environ. Res. 2025, 97, 70034. [Google Scholar] [CrossRef]
- Yu, B.; Li, X.; Zhang, M.; Shen, P. Study on comprehensive wastewater treatment in an industrial park bycatalytic ozone oxidation technology. Water Wastewater Eng. 2023, 59, 74–79. [Google Scholar] [CrossRef]
- Sun, W.; Cheng, Y.; Xiao, Z.; Zhou, J.; Shah, K.J.; Sun, Y. Catalytic Ozonation of Reverse Osmosis Membrane Concentrates by Catalytic Ozonation: Properties and Mechanisms. Water Environ. Res. 2024, 96, 11058. [Google Scholar] [CrossRef]
- Yang, L.; Sheng, M.; Li, Y.; Xue, W.; Li, K.; Cao, G. A Hybrid Process of Fe-Based Catalytic Ozonation and Biodegradation for the Treatment of Industrial Wastewater Reverse Osmosis Concentrate. Chemosphere 2020, 238, 124639. [Google Scholar] [CrossRef]
- Cheng, Z.; Yang, Z.; Guo, L.; Feng, Y.; Wang, Z.; Zhang, L. Instance of the Reusing Project on the Treatment of RO Concentrated Water. Technol. Water Treat. 2023, 49, 148–151. [Google Scholar] [CrossRef]
- Ding, H.; Wang, H.; Huang, G.; Zhu, Y.; Zhang, L.; Zhang, X.; Zhou, M.; Wang, Q.; Li, X.; Xu, Q.; et al. Assessing the Wastewater Reclaim System Consisted of Wastewater Plant–Hybrid Constructed Wetland–Ultra Filtration and Reverse Osmosis in a Chemical Industrial Park, a Multi-Criteria Decision-Making Analysis. Sci. Total Environ. 2024, 926, 171942. [Google Scholar] [CrossRef]
- Intaraburt, W.; Sangsanont, J.; Limpiyakorn, T.; Ruangrassamee, P.; Suttinon, P.; Suwannasilp, B.B. Feasibility Study of Water Reclamation Projects in Industrial Parks Incorporating Environmental Benefits: A Case Study in Chonburi, Thailand. Water 2022, 14, 1172. [Google Scholar] [CrossRef]
- Wang, X.; Wu, S.; Yao, X.; Yuan, W.; Niu, X.; Feng, X.; Ma, Y.; Feng, L. Research on advanced oxidation process for reverse osmosis concentrated water. J. Water Process Eng. 2024, 68, 106449. [Google Scholar] [CrossRef]
- Cui, T.; Wang, X.; Chen, Y.; Chen, Y.; Fu, B.; Tu, Y. Reverse Osmosis Coupling Multi-Catalytic Ozonation (RO-MCO) in Treating Printing and Dyeing Wastewater and Membrane Concentrate: Removal Performance and Mechanism. Water Resour. Ind. 2023, 30, 100217. [Google Scholar] [CrossRef]
- Wang, S.; Qiu, J.; Ren, M.; Cui, Y.; Xie, Y.; Cao, H. Enhanced Treatment of Reverse Osmosis Concentrates by Ozone Micro-Nano Bubbles Coupled with Catalytic Ceramic Membranes. J. Water Process Eng. 2024, 61, 105213. [Google Scholar] [CrossRef]
- Li, P.; Chen, L.; Zhang, Y.; Zhang, Z. Study on reverse osmosis concentrated water process for treating comprehensive wastewater from power plant by advanced oxidation method. Appl. Chem. Ind. 2022, 51, 119–123. [Google Scholar] [CrossRef]
- Zhang, Z.; Zhang, Q.; Lou, Z.; Liu, W.; Zhu, Y.; Yuan, C.; Yu, X.; Zhao, T. Oxidation characteristics and spectral analysis of leachate reverse osmosis concentrate by catalytic ozonation. CIESC J. 2021, 72, 5362–5371. [Google Scholar] [CrossRef]
Process Type | Catalyst | Raw Water Quality | Catalyst, Ozone Dosing | Pollutant Removal Effects | Reference |
---|---|---|---|---|---|
Ozone oxidation | / | Municipal wastewater reuse Fipronil: 12~280 ng/L Imidacloprid: 53~1080 ng/L | Ozone dosage: 26.55~102.3 mg/L | Fipronil removal rate: 80~97% Imidacloprid removal rate: 44~74% | [35] |
Catalytic ozone oxidation | Fe/Cu-loaded Al2O3 | Municipal wastewater treatment plant, RO concentrated water COD: 37~96 mg/L | Catalyst dosage: 0.24 m3 Ozone dosage: 30 mg/L | COD removal rate: 50–57% | [31] |
Catalytic ozone oxidation | Zn/Ce-loaded Al2O3 | RO concentrated water of a city wastewater reclamation plant in Beijing DOC: 21.3 mg/L COD: 65.4 mg/L UVA254: 0.434 PPCPs: 2.8~101.9 ng/L | Catalyst dosage: 1 L Ozone dosage: 17 mg/L | DOC removal rate: 48.05% COD removal rate: 55.75% UVA254 removal rate: 85.05% PPCPs removal rate: 98% | [34] |
Catalytic ozone oxidation | Cu-Ce@γ-Al2O3 | Jiangsu, a water group, RO concentrated water COD: 146.6 mg/L | Catalyst filling rate: 12% Ozone flow rate: 0.2 L/min | COD removal rate: 85.2% | [36] |
Catalytic ozone oxidation | Fe3O4@SiO2@Yb2O3 | Simulated wastewater COD: 100 mg/L | Catalyst dosage: 1 g Ozone dosage: 48 mg/min | COD removal rate: 57% | [37] |
Catalytic ozone oxidation | WP-01 | RO concentrated water of a chemical enterprise in Zhejiang COD: 90~108 mg/L | Catalyst dosage: approx. 200 g/L Ozone flow rate: 2 L/min | COD removal rate: 28.3~32.5% | [38] |
Catalytic ozone oxidation | activated carbon | RO concentrated water from municipal wastewater treatment plants TOC: 9.28~10.69 mg/L Tetracycline concentration: 2 mg/L Metoprolol concentration: 2 mg/L | Catalyst dosage: 0.2 g/L Ozone dosage: 12.15 mg/min | TOC removal rate: 70.4% Tetracycline removal rate: 0.05 mg/L Metoprolol removal rate: 96.2% | [33] |
O3/H2O2 | H2O2 | Scottsdale Water Campus RO retentate DOC: 40 mg/L | H2O2 dosage: 0.7 mol H2O2/mol O3 Ozone dosage: 1000 mg/L | DOC removal rate: 75% | [39] |
Process Type | Catalyst | Raw Water Quality | Catalyst, Ozone Dosing | Pollutant Removal Effects | Reference |
---|---|---|---|---|---|
Ozone oxidation | / | A petrochemical plant in Shandong RO concentrated water COD: 86 mg/L | / Ozone dosage: 20~200 mg/L | COD removal rate: 53.5% The removal effect of other indicators is not obvious | [42] |
Catalytic ozone oxidation | Silica-aluminum-based spherically loaded rare metals | RO Concentrate Water in Circulating Cooling Water System of a Petrochemical Plant in Ningxia, China COD: 95.76 mg/L TOC: 38.96 mg/L | Catalyst dosage: 1.2 L Ozone dosage: 17 mg/L | COD removal rate: 56.4% TOC removal rate: 46.6% Remove part of the large organic molecules and humus | [43] |
Catalytic ozone oxidation | / | Primary RO Concentrate at Water Chemistry Station COD: 40.1 mg/L Turbidity: 4.06 NTU | / Ozone dosage: 40~50 mg/L | COD removal rate: 51% Turbidity removal rate: 65.7% | [44] |
Ozone oxidation + ceramic membrane | MnO2 | A refining and chemical enterprise wastewater reuse system, RO concentrated water. COD: 97.38 mg/L TOC: 30.4 mg/L | Effective area of catalyst: 0.053 m2 Ozone dosage: 50 mg/L | TOC removal rate: 22.9% COD removal rate: 27.9% | [45] |
Catalytic ozone oxidation | Cu-MnFe2O4/Bt(bentonite) | The biochemical secondary effluent from a coal chemical enterprise in Yunnan Province COD: 223.0 mg/L | Catalyst dosage: 0.3 g/L Ozone dosage: 400 mg/L/h | COD removal rate: 70.85% | [46] |
O3-AC | Modified AC | A refining and chemical enterprise in Tianjin sewage secondary biochemical treatment effluent after UF-RO concentrated water COD: 270~350 mg/L | Catalyst dosage: 2 g Ozone dosage: approx. 65 mg/L | COD removal rate: 51.4% | [47] |
Process Type | Catalyst | Raw Water Quality | Catalyst, Ozone Dosing | Pollutant Removal Effects | Reference |
---|---|---|---|---|---|
Catalytic ozone oxidation | CuO/7.5–CAT | RO concentrated water from coal to natural gas TOC: 87.5 mg/L | Catalyst loading capacity: 400 mL Ozone dosage: 10 mg/min | TOC removal rate: 64% | [54] |
Catalytic ozone oxidation | Fe-Bi@γ-Al2O3 | A sewage treatment plant in a chemical industry park in Jiangsu COD: 206 mg/L | Catalyst filling rate: 10 % Ozone aeration rate: 0.2 L/min | COD removal rate: 83.9% | [55] |
Catalytic ozone oxidation | α-Fe2O3/γ-Al2O3 | A coal chemical industry RO concentrated water COD: 225 mg/L | Catalyst loading height: 350 mm Ozone dosage: 300 mg/L | COD removal rate: 74.33% | [56] |
Catalytic ozone oxidation | Cu-Co-Mn/AC | Simulated ROC of coal gasification wastewater after coagulation treatment COD: 172.3 mg/L | Catalyst dosage: 1.33 g/L Ozone dosage: 1.08 g/L | COD removal rate: 81.49% | [57] |
Catalytic ozone oxidation | Fe-Al2O3 | Wastewater treatment plants ROC COD: approx. 69.14 mg/L DOC: approx. 30 mg/L | Catalyst dosage: 33.3 g/L Ozone dosage: 51 mg/L | DOC removal rate: approx. 47% COD removal rate: approx. 47% | [58] |
Catalytic ozone oxidation | Fe-Al2O3 | Synthetic wastewater, consisting of humic acid (HA) and tert-butanol (TBA) COD: 60 mg/L | Catalyst dosage: 20.0 g/L Ozone dosage: 3.06 mg/min | COD removal rate: 39.5% | [59] |
O3/H2O2 | H2O2 | Concentrated water generated by RO desalination and reuse in a coal chemical enterprise in Hebei, China COD: 208 mg/L | Pure H2O2 dosage: 416 mg/L Ozone dosage: 200 mL/min | COD removal rate: 63.5% | [60] |
Process Type | Catalyst | Raw Water Quality | Catalyst, Ozone Dosing | Pollutant Removal Effects | Reference |
---|---|---|---|---|---|
Catalytic ozone oxidation | Cu-Ce@γ-Al2O3 | The first-stage RO membrane concentrate in the advanced treatment of a sewage plant in an industrial park in Jiangsu Province COD: 145.0 mg/L | Optimum filling ratio of catalyst: 10%. Ozone dosage 8 mg/L/min | COD removal rate: 63.4% | [61] |
Catalytic ozone oxidation | Catalysts with manganese as the active component | Hohhot an industrial park wastewater treatment plant RO concentrated water COD: 50~60 mg/L | Catalyst dosage: 42.3 L Ozone dosage: 75 mg/L | COD removal rate: 30~58.33% | [62] |
Catalytic ozone oxidation | Ni-Mn@KL | A concentrated solution of first-stage RO membrane obtained from a chemical enterprise in Yunnan Province COD: 215 mg/L | Catalyst dosage: 100 mL Ozone dosage: 0.3 L/min | COD removal rate: 60.5% | [63] |
Catalytic ozone oxidation | The Fe-based heterogeneous catalyst | RO concentrated water after production of caprolactam in a chemical enterprise in Zhejiang Province COD: 90~108 mg/L | Catalyst dosage: 196.35 mL Ozone dosage: 3.6 mg/(L·min) | COD removal rate: 30% | [64] |
Catalytic ozone oxidation | Fe-Al2O3 | Simulated high salinity ROC water COD: 60 mg/L | Catalyst dosage: 20.0 g/L Ozone dosage: 20.4 mg/(L·min) | COD removal rate: 39.5% | [59] |
O3/H2O2 | H2O2 | Jiangsu, an industrial park circulating, cooling water ROC brine COD: approx. 60 mg/L | Ozone dosage: 120 mg/L H2O2 dosage: 36 mg/L | COD removal rate: approx. 56.7% TN removal rate: 83.3% | [65] |
Industry Type | Catalyst | Raw Water Quality | Catalyst, Ozone Dosing | Pollutant Removal Effects | Reference |
---|---|---|---|---|---|
Printing and dyeing industry | Cu/Fe/Ce-CAC | Biological Treatment of Tailwater in Printing and Dyeing Industrial Parks COD: 110–125 mg/L | Catalyst dosage: 0.5 g/L Ozone dosage: 5 mg/L H2O2 dosage: 10 mg/L | COD removal rate: 49.05% | [69] |
Steel industry | Co3O4/Al2O3 ceramic membrane (CO-CMU) | Concentrate of integrated wastewater from a steel company in Liaoning Province, China, after UF-RO treatment COD: 80.0–130.0 mg/L UV254: 0.3–0.5 | Catalyst injection volume: 30 mL Ozone dosage: 10 mg/min | COD removal rate: 42.7% UV254 removal rate: 51.8% | [70] |
Electric power plant | AC | RO concentrated water of a power plant in Hebei COD: 520 mg/L | Catalyst dosage: 2 g/L Ozone dosage: approx. 20 g/L | COD removal rate: 42.2% | [71] |
Textile industry | Fe-Ce@γ-Al2O3 | The ROC produced in the process of textile wastewater treatment COD: 127.38 mg/L | Catalyst dosage: 139.07 g/L Ozone dosage: 340.8 mg/L | COD removal rate: 89.21% | [68] |
Garbage leachate | Ce-AC | A large leachate treatment plant in Bishan, Chongqing ROC liquid COD: 2090 mg/L | Catalyst dosage: 1 g Ozone dosage: 60 mg/min | COD removal rate: 44.7% Humus removal rate: 66.7% | [72] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, S.; Gao, Y.; Sun, W.; Zhou, J.; Sun, Y. Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries. Catalysts 2025, 15, 692. https://doi.org/10.3390/catal15070692
Chen S, Gao Y, Sun W, Zhou J, Sun Y. Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries. Catalysts. 2025; 15(7):692. https://doi.org/10.3390/catal15070692
Chicago/Turabian StyleChen, Siqi, Yun Gao, Wenquan Sun, Jun Zhou, and Yongjun Sun. 2025. "Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries" Catalysts 15, no. 7: 692. https://doi.org/10.3390/catal15070692
APA StyleChen, S., Gao, Y., Sun, W., Zhou, J., & Sun, Y. (2025). Catalytic Ozonation for Reverse Osmosis Concentrated Water Treatment: Recent Advances in Different Industries. Catalysts, 15(7), 692. https://doi.org/10.3390/catal15070692