Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure
2.2. UOR Performance
3. Materials and Methods
3.1. Preparation of Ni-Co Boride
- (1)
- Preparation of Deposition Solutions
- (2)
- Stepwise Deposition Procedure
- (3)
- Tailoring Ni:Co Ratio and Deposition Number
3.2. Preparation of Ni9Co1-LDH@NF
3.3. Catalytic Characterization
3.4. Electrochemical Measurement
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Oliveira, A.M.; Beswick, R.R.; Yan, Y. A Green Hydrogen Economy for a Renewable Energy Society. Curr. Opin. Chem. Eng. 2021, 33, 100701. [Google Scholar] [CrossRef]
- Hai, B.; Huang, W.; Li, J. Promotion Effects of Pr-Doped CeO2·H2O to Pt Catalysts toward Alcohol Electrooxidation Reaction. Mater. Lett. 2023, 349, 134796. [Google Scholar] [CrossRef]
- Singh, R.K.; Rajavelu, K.; Montag, M.; Schechter, A. Advances in Catalytic Electrooxidation of Urea: A Review. Energy Technol. 2021, 9, 2100017. [Google Scholar] [CrossRef]
- Chen, H.; Zou, X. Intermetallic Borides: Structures, Synthesis and Applications in Electrocatalysis. Inorg. Chem. Front. 2020, 7, 2248–2264. [Google Scholar] [CrossRef]
- Quílez-Bermejo, J.; García-Dalí, S.; Karthik, R.; Canevesi, R.; Izquierdo, M.T.; Emo, M.; Celzard, A.; Fierro, V. Zinc Doping Enhances the Electrocatalytic Properties of Cobalt Borides for the Hydrogen Evolution Reaction. Front. Energy Res. 2022, 10, 901395. [Google Scholar] [CrossRef]
- Li, L.; Shao, Q.; Huang, X. Amorphous Oxide Nanostructures for Advanced Electrocatalysis. Chem. Eur. J. 2020, 26, 3943–3960. [Google Scholar] [CrossRef]
- Ma, Y.; Dong, J.; Yang, X.; Niu, L.; Zhang, H.; Bai, G. Hydrogelator as Growth-Controlling Agent for Enhancing the Catalytic Activity of NiB Amorphous Alloy Catalyst. Res. Chem. Intermed. 2018, 44, 7861–7872. [Google Scholar] [CrossRef]
- Chen, Z.; Zheng, R.; Zou, H.; Wang, R.; Huang, C.; Dai, W.; Wei, W.; Duan, L.; Ni, B.-J.; Chen, H. Amorphous Iron-Doped Nickel Boride with Facilitated Structural Reconstruction and Dual Active Sites for Efficient Urea Electrooxidation. Chem. Eng. J. 2023, 465, 142684. [Google Scholar] [CrossRef]
- Zhou, T.; Jagadeesan, S.N.; Zhang, L.; Deskins, N.A.; Teng, X. Enhanced Urea Oxidation Electrocatalytic Activity by Synergistic Cobalt and Nickel Mixed Oxides. J. Phys. Chem. Lett. 2023, 15, 81–89. [Google Scholar] [CrossRef]
- Fang, W.; Zhu, Z.; Yu, J.; Fan, W.; Hu, C.; Liu, X.; Wu, J.; Ling, Y.; Qi, Y.; Zhai, Y. First Principles Study on High-Efficient Overall Water Splitting by Anchoring Cobalt Boride with Transition Metal Atoms. Int. J. Hydrogen Energy 2024, 53, 1310–1322. [Google Scholar] [CrossRef]
- Tian, Z.; Zhou, K.; Xie, M.; Zhang, Y.; Chen, J.; Du, C.; Wan, L. Self-Supported Nickel Iron Selenide@Nickel Cobalt Boride Core-Shell Nanosheets Electrode for Asymmetric Supercapacitors. Chem. Eng. J. 2022, 447, 137495. [Google Scholar] [CrossRef]
- Jamadar, A.S.; Sutar, R.B.; Patil, S.; Khandekar, R.; Dongale, T.D.; Patil, R.; Chougale, A.; Yadav, J.B. Attaining High-Rate Hydrogen Evolution via SILAR Deposited Bimetallic Nickel Cobalt Boride Electrode: Exploring the Influence of Ni to Co Ratio. Int. J. Hydrogen Energy 2024, 85, 661–672. [Google Scholar] [CrossRef]
- Xu, N.; Cao, G.; Chen, Z.; Kang, Q.; Dai, H.; Wang, P. Cobalt Nickel Boride as an Active Electrocatalyst for Water Splitting. J. Mater. Chem. A 2017, 5, 12379–12384. [Google Scholar] [CrossRef]
- Sivagurunathan, A.T.; Seenivasan, S.; Kavinkumar, T.; Kim, D.-H. Phosphorus Doping of Nickel-Cobalt Boride to Produce a Metal–Metalloid-Nonmetal Electrocatalyst for Improved Overall Water Splitting. J. Mater. Chem. A 2024, 12, 4643–4655. [Google Scholar] [CrossRef]
- Liu, X.; Qin, H.; Ye, Z.; Yao, D.; Miao, W.; Mao, S. Interconnected Mn-Doped Ni(OH)2 Nanosheet Layer for Bifunctional Urea Oxidation and Hydrogen Evolution: The Relation between Current Drop and Urea Concentration during the Long-Term Operation. ACS ES&T Eng. 2022, 2, 853–862. [Google Scholar] [CrossRef]
- Sreenivasulu, M.; Shetti, R.S.; Mathi, S.; Maiyalagan, T.; Shetti, N.P. Ni-Tethered MoS2: In-Situ Fast Reduction Synthesis as an Ultra-Durable and Highly Active Electrocatalyst for Water Splitting and Urea Oxidation. Mater. Today Sustain. 2024, 26, 100782. [Google Scholar] [CrossRef]
- Liu, Y.; Zheng, D.; Zhao, Y.; Shen, P.; Du, Y.; Xiao, W.; Du, Y.; Fu, Y.; Wu, Z.; Wang, L. Ru-Doped 3D Porous Ni3N Sphere as Efficient Bi-Functional Electrocatalysts toward Urea Assisted Water-Splitting. Int. J. Hydrogen Energy 2022, 47, 25081–25089. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, M.; Wu, S.; Huang, B.; Lee, C.; Zhang, W. Oxygen-Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts for Urea-Assisted Energy-Saving Hydrogen Production in Alkaline Electrolyte. Adv. Funct. Mater. 2021, 31, 2104951. [Google Scholar] [CrossRef]
- Fan, Y.; Gu, Y.; Wang, D.; Jiao, Y.; Wu, A.; Tian, C. Hollow NiMo-Based Nitride Heterojunction with Super-Hydrophilic/Aerophobic Surface for Efficient Urea-Assisted Hydrogen Production. J. Energy Chem. 2024, 95, 428–439. [Google Scholar] [CrossRef]
- Liu, M.; Zou, W.; Qiu, S.; Su, N.; Cong, J.; Hou, L. Active Site Tailoring of Ni-Based Coordination Polymers for High-Efficiency Dual-Functional HER and UOR Catalysis. Adv. Funct. Mater. 2024, 34, 2310155. [Google Scholar] [CrossRef]
- Li, R.; Hu, B.; Yu, T.; Chen, H.; Wang, Y.; Song, S. Insights into Correlation among Surface-Structure-Activity of Cobalt-Derived Pre-Catalyst for Oxygen Evolution Reaction. Adv. Sci. 2020, 7, 1902830. [Google Scholar] [CrossRef] [PubMed]
- Guo, F.; Wu, Y.; Chen, H.; Liu, Y.; Yang, L.; Ai, X.; Zou, X. High-Performance Oxygen Evolution Electrocatalysis by Boronized Metal Sheets with Self-Functionalized Surfaces. Energy Environ. Sci. 2019, 12, 684–692. [Google Scholar] [CrossRef]
Material/Substrate | Electrolyte | Potential (V vs. RHE) @ (mA cm−2) | Reference |
---|---|---|---|
Co-NiB@NF | 1 M KOH + 0.33 M urea | 1.29@10 | This work |
aFe-NiB | 1 M KOH + 0.5 M urea | 1.29@10 | [8] |
Mn-Ni(OH)2/CP | 1 M KOH + 0.33 M urea | 1.33@10 | [15] |
NiMoS2/NF | 1 M KOH + 0.33 M urea | 1.39@10 | [16] |
Ru-Ni3N@NC | 1 M KOH + 0.33 M urea | 1.36@10 | [17] |
O-NiMoP/NF | 1 M KOH + 0.5 M urea | 1.41@100 | [18] |
Ni/NiMoN | 1 M KOH + 0.5 M urea | 1.39@100 | [19] |
W-NT@NF-3 | 1 M KOH + 0.33 M urea | 1.43@100 | [20] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Geng, S.; Hai, B.; Shi, H. Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction. Catalysts 2025, 15, 612. https://doi.org/10.3390/catal15070612
Geng S, Hai B, Shi H. Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction. Catalysts. 2025; 15(7):612. https://doi.org/10.3390/catal15070612
Chicago/Turabian StyleGeng, Shuai, Bo Hai, and Heping Shi. 2025. "Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction" Catalysts 15, no. 7: 612. https://doi.org/10.3390/catal15070612
APA StyleGeng, S., Hai, B., & Shi, H. (2025). Amorphous Co-NiB@NF as an Efficient Electrocatalyst for Urea Oxidation Reaction. Catalysts, 15(7), 612. https://doi.org/10.3390/catal15070612