Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effects of Different Ni-Based Bimetallic Zeolite Catalysts
2.2. Effects of HDO Reaction Temperature
2.3. Effects of Ni Metal Loading
2.4. Proposed HDO Reaction Pathways
3. Materials and Methods
3.1. Materials
3.2. Catalyst Preparation
3.3. Characterization of Catalyst and Bio-Oil
3.4. Catalytic Performance
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Nomenclature
Abbreviations | Full names |
Dmean | Most probable pore size |
EA | Elemental analysis |
HDO | Hydrodeoxygenation |
ICP-MS | Inductively coupled plasma mass spectrometry |
LHV | Lower heating value |
meso | Mesopore |
micro | Micropore |
VS | Total pore volume |
Vm | Micropore volume |
XPS | X-ray photoelectron spectroscopy |
XRD | X-ray powder diffraction |
Sorted in alphabetical order |
References
- Valizadeh, S.; Valizadeh, B.; Lee, J.; Park, Y. Catalytic guaiacol hydrodeoxygenation in supercritical fluids: A Review. ChemCatChem 2025, 17, e202401390. [Google Scholar] [CrossRef]
- Ambursa, M.M.; Juan, J.C.; Yahaya, Y.; Taufiq-Yap, Y.; Lin, Y.-C.; Lee, H.V. A review on catalytic hydrodeoxygenation of lignin to transportation fuels by using nickel-based catalysts. Renew. Sustain. Energy Rev. 2021, 138, 110667. [Google Scholar] [CrossRef]
- Paritosh, K.; Bose, A. Application of biogenic carbon in renewable energy vectors and devices: A step forward to decarbonization. Renew. Sustain. Energy Rev. 2024, 197, 114399. [Google Scholar] [CrossRef]
- Sayed, E.T.; Olabi, A.G.; Alami, A.H.; Radwan, A.; Mdallal, A.; Rezk, A.; Abdelkareem, M.A. Renewable energy and energy storage systems. Energies 2023, 16, 1415. [Google Scholar] [CrossRef]
- Zhang, X.; Yu, Z.; Yang, L.; Li, J.; Wu, K.; Gouda, S.G.; Niu, W.; Yuan, Q. Co-hydrothermal treatment of chicken carcass and non-animal biomass for cleaner production. Chem. Eng. J. 2025, 513, 162789. [Google Scholar] [CrossRef]
- Ge, L.; Ali, M.M.; Osman, A.I.; Elgarahy, A.M.; Samer, M.; Xu, Y.; Liu, Z. A critical review on conversion technology for liquid biofuel production from lignocellulosic biomass. Renew. Sustain. Energy Rev. 2025, 217, 115726. [Google Scholar] [CrossRef]
- Pantawane, S.R.; Chaurasia, A.S.; Ekhe, J.D. Unveiling the potential of thermo catalytic fast pyrolysis for the production of higher quantities of bio-oil: Lignin-derived oxygenates. J. Anal. Appl. Pyrolysis 2025, 190, 107121. [Google Scholar] [CrossRef]
- Xue, X.; Liu, J.; Xia, D.; Liang, J. Hydrocarbon-rich bio-oil production from the coupling formaldehyde-pretreatment and catalytic pyrolysis of poplar sawdust. Biomass Bioenergy 2023, 173, 106807. [Google Scholar] [CrossRef]
- Qu, L.; Jiang, X.; Zhang, Z.; Zhang, X.-G.; Song, G.-Y.; Wang, H.-L.; Yuan, Y.-P.; Chang, Y.-L. A review of hydrodeoxygenation of bio-oil: Model compounds, catalysts, and equipment. Green Chem. 2021, 23, 9348–9376. [Google Scholar] [CrossRef]
- da Silva, T.L.; Dutra, F.; Marques, S.; Gomes, M.; Costa, P.; Paradela, F.; Ferreira, F.C.; Faria, N.T.; Mugica, P.; Pinheiro, H.M.; et al. Production of sustainable aviation fuel precursors using the oleaginous yeast Rhodotorula toruloides PYCC 5615 cultivated on eucalyptus bark hydrolysate. Biomass Bioenergy 2025, 197, 107790. [Google Scholar] [CrossRef]
- Rueda, A.C.; Granados-Reyes, J.; Delaunay, J.; Mora-Masià, P.; Cesteros, Y. Tuning the acid-base properties of layered double hydroxides for the selective obtention of cyclohexane and cyclohexanol in the hydrodeoxygenation of guaiacol. Chem. Eng. J. 2025, 512, 162226. [Google Scholar] [CrossRef]
- Zhang, W.; Wang, F.; Feng, J.; Pan, H. Efficient hydrodeoxygenation of guaiacol to cyclohexanol over Ni–Co bimetallic nanoparticles supported on Al2O3–TiOx. Biomass Bioenergy 2025, 197, 107841. [Google Scholar] [CrossRef]
- Pastor-Pérez, L.; Jin, W.; Villora-Picó, J.J.; Wang, Q.; Pastor-Blas, M.M.; Sepúlveda-Escribano, A.; Reina, T.R. “H2-free” demethoxylation of guaiacol in subcritical water using Pt supported on N-doped carbon catalysts: A cost-effective strategy for biomass upgrading. J. Energy Chem. 2021, 58, 377–385. [Google Scholar] [CrossRef]
- Ding, W.; Li, H.; Zong, R.; Jiang, J.; Tang, X. Controlled Hydrodeoxygenation of Biobased Ketones and Aldehydes over an Alloyed Pd–Zr Catalyst under Mild Conditions. ACS Sustain. Chem. Eng. 2021, 9, 3498–3508. [Google Scholar] [CrossRef]
- Yan, P.; Mensah, J.; Drewery, M.; Kennedy, E.; Maschmeyer, T.; Stockenhuber, M. Role of metal support during ru-catalysed hydrodeoxygenation of biocrude oil. Appl. Catal. B Environ. 2021, 281, 119470. [Google Scholar] [CrossRef]
- Wang, X.; Wu, P.; Wang, Z.; Zhou, L.; Liu, Y.; Cheng, H.; Arai, M.; Zhang, C.; Zhao, F. Chlorine-modified Ru/TiO2 catalyst for selective guaiacol hydrodeoxygenation. ACS Sustain. Chem. Eng. 2021, 9, 3083–3094. [Google Scholar] [CrossRef]
- Dou, X.; Li, W.; Zhu, C.; Jiang, X. Catalytic waste Kraft lignin hydrodeoxygenation to liquid fuels over a hollow Ni-Fe catalyst. Appl. Catal. B Environ. 2021, 287, 119975. [Google Scholar] [CrossRef]
- Saraeian, A.; Burkhow, S.J.; Jing, D.; Smith, E.A.; Shanks, B.H. Catalyst property effects on product distribution during the hydrodeoxygenation of lignin pyrolysis vapors over MoO3/γ-Al2O3. ACS Sustain. Chem. Eng. 2021, 9, 6685–6696. [Google Scholar] [CrossRef]
- Oh, S.; Lee, J.H.; Choi, I.-G.; Choi, J.W. Enhancement of bio-oil hydrodeoxygenation activity over Ni-based bimetallic catalysts supported on SBA-15. Renew. Energy 2020, 149, 1–10. [Google Scholar] [CrossRef]
- Du, X.; Zhou, K.; Zhou, L.; Lei, X.; Yang, H.; Li, D.; Hu, C. Efficient catalytic conversion of jatropha oil to high grade biofuel on Ni-Mo2C/MCM-41 catalysts with tuned surface properties. J. Energy Chem. 2021, 61, 425–435. [Google Scholar] [CrossRef]
- Miao, C.; Zhou, G.; Chen, S.; Xie, H.; Zhang, X. Synergistic effects between Cu and Ni species in NiCu/γ-Al2O3 catalysts for hydrodeoxygenation of methyl laurate. Renew. Energy 2020, 153, 1439–1454. [Google Scholar] [CrossRef]
- Sangnikul, P.; Phanpa, C.; Xiao, R.; Zhang, H.; Reubroycharoen, P.; Kuchonthara, P.; Vitidsant, T.; Pattiya, A.; Hinchiranan, N. Role of copper- or cerium-promoters on NiMo/γ-Al2O3 catalysts in hydrodeoxygenation of guaiacol and bio-oil. Appl. Catal. A Gen. 2019, 574, 151–160. [Google Scholar] [CrossRef]
- Hewer, T.L.; Souza, A.G.; Roseno, K.T.; Moreira, P.F.; Bonfim, R.; Alves, R.M.; Schmal, M. Influence of acid sites on the hydrodeoxygenation of anisole with metal supported on SBA-15 and SAPO-11. Renew. Energy 2018, 119, 615–624. [Google Scholar] [CrossRef]
- Kim, S.; Kwon, E.E.; Kim, Y.T.; Jung, S.; Kim, H.J.; Huber, G.W.; Lee, J. Recent advances in hydrodeoxygenation of biomass-derived oxygenates over heterogeneous catalysts. Green Chem. 2019, 21, 3715–3743. [Google Scholar] [CrossRef]
- Yang, X.; Jenkins, R.W.; Leal, J.H.; Moore, C.M.; Judge, E.J.; Semelsberger, T.A.; Sutton, A.D. Hydrodeoxygenation (HDO) of biomass derived ketones using supported transition metals in a continuous reactor. ACS Sustain. Chem. Eng. 2019, 7, 14521–14530. [Google Scholar] [CrossRef]
- Yan, P.; Mensah, J.; Adesina, A.; Kennedy, E.; Stockenhuber, M. Highly-dispersed Ni on BEA catalyst prepared by ion-exchange-deposition-precipitation for improved hydrodeoxygenation activity. Appl. Catal. B Environ. 2020, 267, 118690. [Google Scholar] [CrossRef]
- Wu, Y.; Xu, X.; Sun, Y.; Jiang, E.; Fan, X.; Tu, R.; Wang, J. Gas-phase hydrodeoxygenation of guaiacol over Ni-based HUSY zeolite catalysts under atmospheric H2 pressure. Renew. Energy 2020, 152, 1380–1390. [Google Scholar] [CrossRef]
- Zhu, C.; Wang, H.; Li, H.; Cai, B.; Lv, W.; Cai, C.-L.; Wang, C.; Yan, L.; Liu, Q.; Ma, L. Selective hydrodeoxygenation of 5-hydroxymethylfurfural to 2,5-dimethylfuran over alloyed Cu−Ni encapsulated in biochar catalysts. ACS Sustain. Chem. Eng. 2019, 7, 19556–19569. [Google Scholar] [CrossRef]
- Auersvald, M.; Shumeiko, B.; Vrtiška, D.; Straka, P.; Staš, M.; Šimáček, P.; Blažek, J.; Kubička, D. Hydrotreatment of straw bio-oil from ablative fast pyrolysis to produce suitable refinery intermediates. Fuel 2019, 238, 98–110. [Google Scholar] [CrossRef]
- Zhou, G.; Jensen, P.A.; Le, D.M.; Knudsen, N.O.; Jensen, A.D. Atmospheric hydrodeoxygenation of biomass fast pyrolysis vapor by MoO3. ACS Sustain. Chem. Eng. 2016, 4, 5432–5440. [Google Scholar] [CrossRef]
- Zhang, Y.; Fan, G.; Yang, L.; Zheng, L.; Li, F. Cooperative effects between Ni-Mo alloy sites and defective structures over hierarchical Ni-Mo bimetallic catalysts enable the enhanced hydrodeoxygenation activity. ACS Sustain. Chem. Eng. 2021, 9, 11604–11615. [Google Scholar] [CrossRef]
- Wu, Y.; Sun, Y.; Liang, K.; Yang, Z.; Tu, R.; Fan, X.; Cheng, S.; Yu, H.; Jiang, E.; Xu, X. Enhancing hydrodeoxygenation of bio-oil via bimetallic Ni-V catalysts modified by cross-surface migrated-carbon from biochar. ACS Appl. Mater. Interfaces 2021, 13, 21482–21498. [Google Scholar] [CrossRef] [PubMed]
- Xu, Q.; Chen, Z.; Xian, S.; Wu, Y.; Li, M. Sulfur release behavior and sulfur fixation mechanism during biomass microwave co-pyrolysis of Ascophyllum and rice straw. Bioresour. Technol. 2024, 407, 131073. [Google Scholar] [CrossRef]
- Zhang, X.; Jiang, J.; Li, H. Critical role of support crystal structures on highly selective hydrodeoxygenation of lignin-derived vanillin over Pd/ZrO2 catalysts. Fuel Process. Technol. 2023, 249, 107844. [Google Scholar] [CrossRef]
Yields (wt.%) | Pyrolysis Non-HDO | SiO2 | NiV/γ-Al2O3 | NiV/HZSM-5 | NiV/USY | NiV/MesoY |
---|---|---|---|---|---|---|
Solid char | 36.8 | 34.5 | 34.9 | 36.2 | 35.6 | 36.2 |
Liquid oil | 38.7 | 38.2 | 37.5 | 35.9 | 34.6 | 34.5 |
Gas a | 24.5 | 27.3 | 27.6 | 27.9 | 29.8 | 29.3 |
Elemental Analysis (%) | Pyrolysis Non-HDO | SiO2 | NiV/γ-Al2O3 | NiV/HZSM-5 | NiV/USY | NiV/MesoY |
---|---|---|---|---|---|---|
C | 62.3 | 62.6 | 64.0 | 64.5 | 64.6 | 65.8 |
H | 7.9 | 8.0 | 8.6 | 8.3 | 8.2 | 8.5 |
O a | 28.3 | 27.9 | 26.4 | 25.9 | 25.7 | 24.5 |
N | 1.2 | 1.1 | 0.9 | 1.1 | 1.3 | 1.0 |
S | 0.3 | 0.4 | 0.2 | 0.2 | 0.2 | 0.2 |
H/C | 1.52 | 1.53 | 1.61 | 1.54 | 1.52 | 1.55 |
O/C | 0.34 | 0.33 | 0.31 | 0.30 | 0.30 | 0.28 |
Catalysts | Ni a (wt.%) | V a (wt.%) | SBET b (m2/g) | Vs (cm3/g) | Vm c (cm3/g) | Vm/Vs (%) | Dmean d (nm) | SizeNi e (nm) |
---|---|---|---|---|---|---|---|---|
NiV/γ-Al2O3 | 17.89 | 8.96 | 91 | 0.226 | 0.001 | 0.4 | 8.6 | 39.9 |
NiV/HZSM-5 | 18.21 | 9.01 | 197 | 0.150 | 0.101 | 67.3 | 0.9 | 41.8 |
NiV/USY | 18.33 | 8.95 | 244 | 0.198 | 0.092 | 46.5 | 6.4 | 43.3 |
NiV/MesoY | 19.04 | 9.35 | 338 | 0.239 | 0.077 | 32.2 | 1.0 | 33.6 |
30NiV/MesoY | 26.42 | 8.13 | 297 | 0.225 | 0.068 | 30.2 | 0.9 | - |
40NiV/MesoY | 35.33 | 7.86 | 272 | 0.216 | 0.058 | 26.9 | 0.8 | - |
HDO Temperature (°C) | Moisture Content (wt.%) | pH | Density (g/mL) | LHV (MJ/kg) | Elemental Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O a | N | S | H/C | O/C | |||||
NiV/MesoY-375 °C | 9.23 | 2.68 | 1.107 | 25.83 | 64.9 | 8.4 | 25.5 | 1.0 | 0.2 | 1.55 | 0.29 |
NiV/MesoY-400 °C | 8.91 | 2.69 | 1.102 | 26.07 | 65.8 | 8.5 | 24.5 | 1.0 | 0.2 | 1.55 | 0.28 |
NiV/MesoY-425 °C | 8.05 | 2.79 | 1.001 | 26.88 | 66.0 | 8.9 | 23.7 | 1.2 | 0.2 | 1.62 | 0.27 |
Ni Loading (wt.%) | Moisture Content (wt.%) | pH | Density (g/mL) | LHV (MJ/kg) | Elemental Analysis (%) | ||||||
---|---|---|---|---|---|---|---|---|---|---|---|
C | H | O a | N | S | H/C | O/C | |||||
20NiV/MesoY | 8.91 | 2.69 | 1.102 | 26.07 | 65.8 | 8.5 | 24.5 | 1 | 0.2 | 1.55 | 0.28 |
30NiV/MesoY | 8.79 | 2.82 | 1.101 | 26.89 | 65.7 | 8.7 | 24.2 | 1.1 | 0.3 | 1.59 | 0.28 |
40NiV/MesoY | 7.81 | 2.84 | 1.101 | 27.03 | 65.8 | 8.9 | 23.8 | 1.3 | 0.2 | 1.62 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Y.; Xu, X.; Fan, X.; Sun, Y.; Tu, R.; Jiang, E.; Xu, Q.; Xu, C.C. Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites. Catalysts 2025, 15, 498. https://doi.org/10.3390/catal15050498
Wu Y, Xu X, Fan X, Sun Y, Tu R, Jiang E, Xu Q, Xu CC. Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites. Catalysts. 2025; 15(5):498. https://doi.org/10.3390/catal15050498
Chicago/Turabian StyleWu, Yujian, Xiwei Xu, Xudong Fan, Yan Sun, Ren Tu, Enchen Jiang, Qing Xu, and Chunbao Charles Xu. 2025. "Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites" Catalysts 15, no. 5: 498. https://doi.org/10.3390/catal15050498
APA StyleWu, Y., Xu, X., Fan, X., Sun, Y., Tu, R., Jiang, E., Xu, Q., & Xu, C. C. (2025). Catalytic Hydrodeoxygenation of Pyrolysis Volatiles from Pine Nut Shell over Ni-V Bimetallic Catalysts Supported on Zeolites. Catalysts, 15(5), 498. https://doi.org/10.3390/catal15050498