Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination
Abstract
:1. Introduction
2. Materials and Methods
2.1. Glucose Oxidase (GOx) Enzyme
2.2. Textiles as Porous Support Materials for GOx Immobilization
2.2.1. PET Fibrous Nonwoven
2.2.2. Carbon Fibrous Nonwoven
2.3. Ecotechnologies for Fiber Surface Activation in GOx Immobilization
- Plasma treatments for fiber surface activation (air-atmospheric plasma and cold remote plasma-see Figure 2);
- Surface modification using amino-based biopolymers such as chitosan;
- Crosslinking with a novel bio-crosslinker, genipin.
2.3.1. Plasma Activation of Fibrous Nonwovens (Pre-Treatment)
- Air Atmospheric Plasma (ATMP)
- Cold Remote Plasma (CRP)
2.3.2. Surface Modification Using Amino-Based Biopolymer (Chitosan)
- Chitosan Functionalization for GOx Immobilization
- Crosslinking Using Genipin as a Bio-Crosslinker
2.4. Total Heterogeneous Bio-Fenton Setup
3. Results and Key Findings
3.1. Physico-Chemical Characterization of Plasma Activated Nonwoven Textiles
3.2. Activity of GOx Immobilized on Plasma-Activated PET Nonwovens
3.2.1. Application of GOx Immobilized PET for BioFenton Reaction
3.2.2. Enhanced Thermal Stability and Antibacterial Properties
3.3. Activity of GOx Immobilized on CRPNO-Activated Carbon Nonwoven with and Without Genipin
3.3.1. Biocatalytic Activity
3.3.2. Applications in Bio-Fenton Wastewater Treatment and Energy Generation
- Bio-Fenton Process for Wastewater Treatment
- Bio-Electro-Fenton (BEF) Process and Power Generation
4. Conclusions, Challenges, and Future Directions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Kahoush, M.; Behary, N.; Cayla, A.; Nierstrasz, V. Bio-Fenton and Bio-Electro-Fenton as Sustainable Methods for Degrading Organic Pollutants in Wastewater. Process Biochem. 2018, 64, 237–247. [Google Scholar] [CrossRef]
- Kahoush, M.; Behary, N.; Cayla, A.; Mutel, B.; Guan, J.; Nierstrasz, V. Surface modification of carbon felt by cold remote plasma for glucose oxidase enzyme immobilization. Appl. Surf. Sci. 2019, 476, 1016–1024. [Google Scholar] [CrossRef]
- Kahoush, M.; Behary, N.; Cayla, A.; Mutel, B.; Guan, J.; Nierstrasz, V. Influence of remote plasma on PEDOT:PSS–coated carbon felt for improved activity of glucose oxidase. J. Appl. Polym. Sci. 2019, 137, 48521. [Google Scholar] [CrossRef]
- Kahoush, M.; Behary, N.; Cayla, A.; Mutel, B.; Guan, J.; Nierstrasz, V. Genipin-mediated immobilization of glucose oxidase enzyme on carbon felt for use as heterogeneous catalyst in sustainable wastewater treatment. J. Environ. Chem. Eng. 2021, 9, 105633. [Google Scholar] [CrossRef]
- Kahoush, M. Eco-Technologies for Immobilizing Redox Enzymes on Conductive Textiles, for Sustainable Development. Ph.D. Thesis, Université de Lille, Lille, France, 2019. Available online: https://pepite-depot.univ-lille.fr/LIBRE/EDSPI/2019/50376-2019-Kahoush.pdf (accessed on 4 May 2025).
- Morshed, M.N.; Behary, N.; Bouazizi, N.; Guan, J.; Nierstrasz, V.A. An overview on biocatalysts immobilization on textiles: Preparation, progress and application in wastewater treatment. Chemosphere 2021, 279, 130481. [Google Scholar] [CrossRef] [PubMed]
- Morshed, M.N.; Behary, N.; Bouazizi, N.; Guan, J.; Chen, G.; Nierstrasz, V.A. Surface modification of polyester fabric using plasma-dendrimer for robust immobilization of glucose oxidase enzyme. Nat. Sci. Rep. 2019, 9, 15730. [Google Scholar] [CrossRef]
- Morshed, M.N.; Behary, N.; Guan, J.; Nierstrasz, V.A. Immobilization of redox enzyme on polyester textile: Effect of amine rich textile surface on enzyme stability and bio-catalytic activities. ACS Sustain. Chem. Eng. 2021, 9, 8879–8894. [Google Scholar] [CrossRef]
- Morshed, M.N. Immobilizing Catalysts on Textiles- Case of Zerovalent Iron and Glucose Oxidase Enzyme. Ph.D. Thesis, University of Borås, Borås, Sweden, 2021. Available online: https://pepite-depot.univ-lille.fr/LIBRE/EDSPI/2021/2021LILUI039.pdf (accessed on 4 May 2025).
- Rasmussen, M.; Abdellaoui, S.; Minteer, S.D. Enzymatic biofuel cells: 30 years of critical advancements. Biosens. Bioelectron. 2016, 76, 91–102. [Google Scholar] [CrossRef]
- Tahar, A.B.; Szymczyk, A.; Tingry, S.; Vadgama, P.; Zelsmann, M.; Tsujumura, S.; Cinquin, P.; Martin, D.; Zebda, A. One-year stability of glucose dehydrogenase confined in a 3D carbon nanotube electrode with coated poly-methylene green: Application as bioanode for a glucose biofuel cell. J. Electroanal. Chem. 2019, 847, 113069. [Google Scholar] [CrossRef]
- Yang, D.; Zhao, R. Advanced Oxidation Processes (AOPs) in Wastewater Treatment. Water Pollut. 2015, 1, 167–176. [Google Scholar] [CrossRef]
- Lin, H. Removal of Organic Pollutants from Water by Electro-Fenton and Electro-Fenton Like Processes. Ph.D. Thesis, Universite Paris-Est, Créteil, France, 2016. [Google Scholar]
- Pushpalatha, M.; Krishna, M.B. Electro-Fenton Process for Waste Water Treatment A Review. Int. J. Adv. Res. 2017, 3, 439–451. Available online: www.ijariit.com (accessed on 4 May 2025).
- Elhami, V.; Karimi, A.; Aghbolaghy, M. Preparation of heterogeneous bio-Fenton catalyst for decolorization of Malachite Green. J. Taiwan Inst. Chem. Eng. 2015, 56, 154–159. [Google Scholar] [CrossRef]
- Eskandarian, M.; Mahdizadeh, F.; Ghalamchi, L.; Naghavi, S. Bio-Fenton process for Acid Blue 113 textile azo dye decolorization: Characteristics and neural network modeling, Desalin. Water Treat. 2013, 52, 4990–4998. [Google Scholar] [CrossRef]
- Nasar, A.; Perveen, R. Applications of enzymatic biofuel cells in bioelectronic devices e A review. Int. J. Hydrogen Energy 2019, 44, 15287–15312. [Google Scholar] [CrossRef]
- Bard, E.; Allen, J.; Inzelt, G.; Scholz, F. Electrochemical Dictionary; Springer Science & Business Media: Berlin, Germany, 2008. [Google Scholar]
- Jain, R.; Jadon, N.; Pawaiya, A. Polypyrrole based next generation electrochemical sensors and biosensors: A review. Trends Anal. Chem. 2017, 97, 363–373. [Google Scholar] [CrossRef]
- Haddaway, N.R.; McConville, J.; Piniewski, M. How is the term “ecotechnology” used in the research literature? A systematic review with thematic synthesis. Ecohydrol. Hydrobiol. 2018, 18, 247–261. [Google Scholar] [CrossRef]
- Arfaoui, M.; Behary, N.; Mutel, B.; Perwuelz, A.; Belhacene, K.; Dhulster, P.; Mamede, A.-S.; Froidevaux, R. Activity of Enzymes Immobilized on Plasma Treated Polyester. J. Mol. Catal. B: Enzym. 2016, 134, 261–272. [Google Scholar] [CrossRef]
- Zille, A.; Oliveira, F.R.; Souto, P.A.P. Plasma treatment in textile industry. Plasma Process. Polym. 2015, 12, 98–131. [Google Scholar] [CrossRef]
- Pasquet, V.; Perwuelz, A.; Behary, N. Environmental Impacts of Chemical/Ecotechnological /Biotechnological hydrophilisation of Polyester fabrics. J. Clean. Prod. 2014, 65, 551–560. [Google Scholar] [CrossRef]
- Nair, L.G.; Mahapatra, A.S.; Gomathi, N.; Joseph, K.; Neogi, S.; Nair, C.P.R. Radio frequency plasma mediated dry functionalization of multiwall carbon nanotube. Appl. Surf. Sci. 2015, 340, 64–71. [Google Scholar] [CrossRef]
- López-Gallego, F.; Betancor, L.; Mateo, C.; Hidalgo, A.; Alonso-Morales, N.; Dellamora-Ortiz, G.; Guisán, J.M.; Fernández-Lafuente, R. Enzyme stabilization by glutaraldehyde crosslinking of adsorbed proteins on aminated supports. J. Biotechnol. 2005, 119, 70–75. [Google Scholar] [CrossRef] [PubMed]
- El Ichi, S.; Zebda, A.; Alcaraz, J.P.; Laaroussi, A.; Boucher, F.; Boutonnat, J.; Reverdy-Bruas, N.; Chaussy, D.; Belgacem, M.N.; Cinquin, P.; et al. Bioelectrodes modified with chitosan for long-term energy supply from the body. Energy Environ. Sci. 2015, 8, 1017–1026. [Google Scholar] [CrossRef]
- Sung, H.W.; Huang, R.N.; Huang, L.H.; Tsai, C.C. In vitro evaluation of cytotoxicity of a naturally occurring cross-linking reagent for biological tissue fixation. J. Biomater. Sci. Polym. Ed. 1999, 10, 63–78. [Google Scholar] [CrossRef]
- Cui, C.; Chen, H.; Chen, B.; Tan, T. Genipin cross-linked glucose oxidase and catalase multi-enzyme for gluconic acid synthesis. Appl. Biochem. Biotechnol. 2017, 181, 526–535. [Google Scholar] [CrossRef]
- Muzzarelli, R.A.A. Genipin-crosslinked chitosan hydrogels as biomedical and pharmaceutical aids. Carbohydr. Polym. 2009, 77, 1–9. [Google Scholar] [CrossRef]
- Hecht, H.J.; Schomburg, D. The 3D structure of glucose oxidase from Aspergillus niger. Implications for the use of GOD as a biosensor enzyme. Biosens. Bioelectron. 1993, 8, 197–203. [Google Scholar] [CrossRef]
- Tiwari, B.R.; Noori, M.T.; Ghangrekar, M.M. A novel low cost polyvinyl alcohol-Nafion-borosilicate membrane separator for microbial fuel cell. Mater. Chem. Phys. 2016, 182, 86–93. [Google Scholar] [CrossRef]
- Santoro, C.; Arbizzani, C.; Erable, B.; Ieropoulos, I. Microbial fuel cells: From fundamentals to applications. A review. J. Power Sources 2017, 356, 225–244. [Google Scholar] [CrossRef]
- Du, Z.; Li, H.; Gu, T. A state of the art review on microbial fuel cells: A promising technology for wastewater treatment and bioenergy. Biotechnol. Adv. 2007, 25, 464–482. [Google Scholar] [CrossRef]
- Zhu, X.; Logan, B.E. Using single-chamber microbial fuel cells as renewable power sources of electro-Fenton reactors for organic pollutant treatment. J. Hazard. Mater. 2013, 252–253, 198–203. [Google Scholar] [CrossRef]
- Butler, M.F.; Ng, Y.F.; Pudney, P.D.A. Mechanism and kinetics of the crosslinking reaction between biopolymers containing primary amine groups and genipin. J. Polym. Sci. A Polym. Chem. 2003, 41, 3941–3953. [Google Scholar] [CrossRef]
- Mani, S.; Bharagava, R.N. Exposure to crystal violet, its toxic, genotoxic and carcinogenic effects on environment and its degradation and detoxification for environmental safety, in: Reviews of Environmental Contamination and Toxicology. Springer 2016, 237, 71–104. [Google Scholar]
- Morshed, M.N.; Bouazizi, N.; Behary, N.; Vieillard, J.; Thoumire, O.; Nierstrasz, V.A.; Azzouz, A. Iron-loaded amine/thiol functionalized polyester fibers with high catalytic activities: Comparative study. Dalton Trans. 2019, 48, 8384–8399. [Google Scholar] [CrossRef] [PubMed]
- ISO 20645:2004; Textile Fabrics—Determination of Antibacterial Activity—Agar Diffusion Plate Test. ISO: Geneva, Switzerland, 2004.
Sample Description and Fiber Surface Morphology | Water Contact Angle | Capillary Uptake | Chemical Functional Groups (ESCA or XPS Analysis, at Fiber Surface |
---|---|---|---|
PET nonwoven untreated (AFM image) | 141° | 0 mg | O/C = 0.3 (ester groups) |
PET nonwoven treated with air atmospheric plasma ATMP (AFM image) | 0° | 1460 mg | Carboxylic group (COOH) N = 0% O/C = 0.5% |
PET nonwoven treated with CRPNO (AFM image) | 0° | 1648 mg | Carboxylic group (COOH); amino group (–NH2) N = 1.1% O/C = 0.3% |
Carbon nonwoven (untreated)-SEM image | 115° | 0% | Pyridine Pyridinium groups N = 4.2% O/C = 5.9% |
Carbon nonwoven activated with CRPNO-SEM image | 60° | 600% | Pyridone amines and amides N = 4.52% O/C = 24.1% |
Sample Description | Sample Name | Loading, % pH 5.5 | Active Immobilized GOx% (pH 5.5), After 10 Washes |
---|---|---|---|
Untreated polyester PET nonwoven | Untreated PET | 14 | 0 |
CRPNO activated PET + GOx | CRPNO + GOx | 20 | 68 |
Atmospheric plasma activated PET + sorption of GOx | ATMP + GOx | 30 | 54 |
Atmospheric plasma activated PET + Padding with chitosan + sorption of GOx | ATMP + Chitosan CS + GOx | 46 | 71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Behary, N.; Kahoush, M.; Morshed, M.N.; Guan, J.; Nierstrasz, V. Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination. Catalysts 2025, 15, 472. https://doi.org/10.3390/catal15050472
Behary N, Kahoush M, Morshed MN, Guan J, Nierstrasz V. Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination. Catalysts. 2025; 15(5):472. https://doi.org/10.3390/catal15050472
Chicago/Turabian StyleBehary, Nemeshwaree, May Kahoush, Mohammad Neaz Morshed, Jinping Guan, and Vincent Nierstrasz. 2025. "Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination" Catalysts 15, no. 5: 472. https://doi.org/10.3390/catal15050472
APA StyleBehary, N., Kahoush, M., Morshed, M. N., Guan, J., & Nierstrasz, V. (2025). Ecotechnologies for Glucose Oxidase-GOx Immobilization on Nonconductive and Conductive Textiles for Heterogeneous Catalysis and Water Decontamination. Catalysts, 15(5), 472. https://doi.org/10.3390/catal15050472