Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties
Abstract
:1. Introduction
2. Results and Discussion
2.1. Morphology and Structure Characterization
2.2. Elemental Analysis
2.3. Optical Absorption Properties of Ag/LaFeO3
2.4. PEC Performance and Charge Transfer of the Ag/LaFeO3 Photoelectrode
2.5. Photoelectrocatalytic Mechanism
3. Experimental Section
3.1. Chemicals
3.2. Preparation of Pristine LaFeO3 Particles
3.3. Preparation of Ag Nanoparticles Modified LaFeO3 Particles
3.4. Characterization
3.5. PEC Electrode Assembly and Measurements
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Reddy, N.M.; Kothandan, D.; Reddy, V.P.; Juvvala, S.R.; Kiran, M.G.; Chebattina, K.R.R.; Pathem, U.C.; Basha, S.J.; Narendrudu, T.; Kalpana, A. Collating the structural, vibrational, and photocatalysis properties of LaFeO3 rare-earth orthoferrite nanoparticles synthesized by the sol-gel method. J. Sol-Gel Sci. Technol. 2025, 113, 322–330. [Google Scholar] [CrossRef]
- Sukumar, M.; Simon, D.; Kumar, A.; Ubaidullah, M.; Sutha, A.; Kumar, S.; Yuvaraj, S.; Banupriya, K.; Subashini, C.; Gupta, M.; et al. A comparative study of structural, optical, and magnetic properties of LaFeO3 and La2CuO4 perovskite nanoparticles. J. Mater. Sci.-Mater. Electron. 2024, 35, 949. [Google Scholar] [CrossRef]
- Hamdani, I.R.; Bhaskarwar, A.N. Recent progress in material selection and device designs for photoelectrochemical water-splitting. Renew. Sust. Energ. Rev. 2021, 138, 110503. [Google Scholar] [CrossRef]
- Aslam, S.; Awais, M.; Ahmed, S.; Safdar, M.; Buksh, A.A.; Haroone, M.S. Photoelectrochemical Water Splitting by Using Nanomaterials: A Review. J. Electron. Mater. 2024, 53, 1–15. [Google Scholar] [CrossRef]
- Wu, W.H.; Nie, Z.F.; Huang, P.A.; Zhang, M.M.; Zhang, S.N.; Zhu, X.R.; Wang, L.J.; Zhu, L.P. Enhanced photoelectrochemical performance of BiVO4 nanoparticle-modified TiO2 nanorod arrays. Surf. Interfaces 2024, 55, 105415. [Google Scholar] [CrossRef]
- Lu, P.; Zhang, Z.H.; Gu, Z.X.; Li, Z.; Su, H.N.; Shen, X.Z.; Xu, Q. Construction of Fe2O3-CuO Heterojunction Photoelectrode for Enhanced Efficiency of Solar Redox Flow Batteries. Processes 2024, 12, 1765. [Google Scholar] [CrossRef]
- Dong, F.L.; Zhang, P.F.; Cheng, J.Y.; Chen, J.N.; Liu, T.; Ma, X.Y.; Song, S.; Nie, S.X. Triboelectric-photocatalytic coupling enhanced photogenerated electrons and holes utilization for efficient algal inactivation. Nano Energy 2023, 118, 108977. [Google Scholar] [CrossRef]
- Abdullah, A.; Tariq, F.; Kulkarni, M.A.; Thaalbi, H.; Din, H.U.; Kang, S.H.; Ha, J.S.; Ryu, S.W. Cost-effective and efficient CuS/GaN/n-Si photoanode engineered for water splitting through extended light absorption and optimized charge transport. Mater. Today Energy 2025, 49, 101824. [Google Scholar] [CrossRef]
- Cao, Y.F.; Liu, D.Y.; Ni, X.; Meng, X.R.; Zhou, Y.; Sun, Z.F.; Kuang, Y.B. Better Charge Separation in CuO Nanowire Array Photocathodes: Micro-/Nanostructure Regulation for Photoelectrochemical Reaction. ACS Appl. Energ. Mater. 2020, 3, 6334–6343. [Google Scholar] [CrossRef]
- Yang, H.M.; Xu, M.L.; Li, Z.L.; Ge, S.G.; Zhang, L.N.; Zhu, P.H.; Yu, J.H. Dual-photocathode array propelled lab-on-paper ratiometric photoelectrochemical sensing platform for ultrasensitive microRNA bioassay. Sens. Actuator B-Chem. 2020, 316, 128093. [Google Scholar] [CrossRef]
- Garvey, S.; Holmes, J.D.; Kim, Y.S.; Long, B. Vapor-Phase Passivation of Chlorine-Terminated Ge(100) Using Self-Assembled Monolayers of Hexanethiol. ACS Appl. Mater. Interfaces 2020, 12, 29899–29907. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Z.M.; Plis, E.; Amtout, A.; Bhattacharya, P.; Krishna, S. Investigation of surface passivation in InAs/GaSb strained-layer-superlattices using picosecond excitation correlation measurement and variable-area diode array surface recombination velocity measurement. MRS Online Proc. Libr. 2005, 891, 108. [Google Scholar] [CrossRef]
- Cao, S.Y.; Zhang, Z.; Liao, Q.L.; Kang, Z.; Zhang, Y. Interface Engineering for High-Performance Photoelectrochemical Cells via Atomic Layer Deposition Technique. Energy Technol. 2021, 9, 2000819. [Google Scholar] [CrossRef]
- Liu, J.B.; Zhang, H.; Navarro-Pardo, F.; Selopal, G.S.; Sun, S.H.; Wang, Z.M.M.; Zhao, H.G.; Rosei, F. Hybrid surface passivation of PbS/CdS quantum dots for efficient photoelectrochemical hydrogen generation. Appl. Surf. Sci. 2020, 530, 147252. [Google Scholar] [CrossRef]
- Zhao, Z.R.; Wang, M.Y.; Zheng, S.Y.; Zhang, Q.Q.; Han, L.; Li, X.B. Synergistic enhancement of photoelectrocatalytic activity and photostability in CdS photoanodes by ultrathin polydopamine layer. Sci. Technol. Energ. Transit 2024, 79, 78. [Google Scholar] [CrossRef]
- Xu, D.D.; Fu, Z.W.; Wang, D.J.; Lin, Y.H.; Sun, Y.J.; Meng, D.D.; Xie, T.F. A Ni(OH)2-modified Ti-doped α-Fe2O3 photoanode for improved photoelectrochemical oxidation of urea: The role of Ni(OH)2 as a cocatalyst. Phys. Chem. Chem. Phys. 2015, 17, 23924–23930. [Google Scholar] [CrossRef]
- Chen, D.S.; Duan, M.N.; Wang, M.; Ma, W.; Zhang, X.L.; Wu, X.F. Nanostructured Fe2TiO5 photoanode with enhanced photoelectrochemical water splitting performance by Zn2+ doping and FeNi(OH)x cocatalyst deposition. Crystengcomm 2024, 26, 5820–5825. [Google Scholar] [CrossRef]
- Sun, Q.; Cheng, T.; Liu, Z.R.; Qi, L.M. A cobalt silicate modified BiVO4 photoanode for efficient solar water oxidation. Appl. Catal. B-Environ. 2020, 277, 119189. [Google Scholar] [CrossRef]
- Andrei, F.; Ion, V.; Bîrjega, R.; Dinescu, M.; Enea, N.; Pantelica, D.; Mihai, M.D.; Maraloiu, V.A.; Teodorescu, V.S.; Marcu, I.C.; et al. Thickness-Dependent Photoelectrochemical Water Splitting Properties of Self-Assembled Nanostructured LaFeO3 Perovskite Thin Films. Nanomaterials 2021, 11, 1371. [Google Scholar] [CrossRef] [PubMed]
- Chertkova, V.P.; Iskortseva, A.N.; Pazhetnov, E.M.; Arkharova, N.A.; Ryazantsev, S.V.; Levin, E.E.; Nikitina, V.A. Evaluation of the Efficiency of Photoelectrochemical Activity Enhancement for the Nanostructured LaFeO3 Photocathode by Surface Passivation and Co-Catalyst Deposition. Nanomaterials 2022, 12, 4327. [Google Scholar] [CrossRef] [PubMed]
- Iervolino, G.; Vaiano, V.; Sannino, D.; Rizzo, L.; Palma, V. Enhanced photocatalytic hydrogen production from glucose aqueous matrices on Ru-doped LaFeO3. Appl. Catal. B-Environ. 2017, 207, 182–194. [Google Scholar] [CrossRef]
- Aissa, B.; Ali, A. Piezo inkjet formation of Ag nanoparticles from microdots arrays for surface plasmonic resonance. Sci. Rep. 2024, 14, 4806. [Google Scholar] [CrossRef] [PubMed]
- Li, M.J.; Wang, J.P.; Zhou, Y.; Chen, Y.; Xia, L.Y. Photoelectrochemical biosensor with Au@PTCA Schottky junction and multiple sandwich structures for Hg2+ sensitive detection. Microchem. J. 2024, 196, 109609. [Google Scholar] [CrossRef]
- Michalska, M.; Matejka, V.; Pavlovsky, J.; Praus, P.; Ritz, M.; Serencísová, J.; Gembalová, L.; Kormunda, M.; Foniok, K.; Reli, M.; et al. Effect of Ag modification on TiO2 and melem/g-C3N4 composite on photocatalytic performances. Sci. Rep. 2023, 13, 5270. [Google Scholar] [CrossRef]
- Pleshanov, I.M.; Marasanov, D.; Sgibnev, Y.M.; Gets, D.S.; Kuzmenko, N.K.; Belorus, A.O. Influence of silver nanoparticles in the ion-exchange layer of photo-thermo-refractive porous glass on the spectral-luminescent properties of CsPbBr3 perovskite nanocrystals. Chem. Phys. Lett. 2023, 823, 140540. [Google Scholar] [CrossRef]
- Omari, E.; Omari, M.; Barkat, D. Oxygen evolution reaction over copper and zinc co-doped LaFeO3 perovskite oxides. Polyhedron 2018, 156, 116–122. [Google Scholar] [CrossRef]
- Patil, R.B.; Chougale, A.D. Analytical methods for the identification and characterization of silver nanoparticles: A brief review. Mater. Today Proc. 2021, 47, 5520–5532. [Google Scholar] [CrossRef]
- Li, Y.M.; Fan, L.; Shui, X.L.; Fan, J.; Feng, X.A.; Tao, T. Boosted photocatalytic activity of LaFeO3/Ag3PO4 heterojunction via carbon quantum dots: Higher conductivity, stability, and dispersivity br. Colloid Surf. A-Physicochem. Eng. Asp. 2022, 652, 129895. [Google Scholar] [CrossRef]
- Jia, D.S.; Pan, J.X.; Zhang, D.L.; Wang, M.T.; Li, Y. Construction of novel spherical ZnIn2S4-Ag-LaFeO3 heterostructures for enhancing photocatalytic efficiency. J. Rare Earths 2025, 43, 295–303. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Kim, Y.-M.; He, J.; Biegalski, M.D.; Ambaye, H.; Lauter, V.; Christen, H.M.; Pantelides, S.T.; Pennycook, S.J.; Kalinin, S.V.; Borisevich, A.Y. Probing oxygen vacancy concentration and homogeneity in solid-oxide fuel-cell cathode materials on the subunit-cell level. Nat. Mater. 2012, 11, 888–894. [Google Scholar] [CrossRef] [PubMed]
- Gao, L.; Li, Q.; Sun, L.; Xia, T.; Huo, L.; Zhao, H.; Grenier, J.-C. Antimony-doped Bi0.5Sr0.5FeO3−δ as a novel Fe-based oxygen reduction electrocatalyst for solid oxide fuel cells below 600 °C. J. Mater. Chem. A 2018, 6, 15221–15229. [Google Scholar] [CrossRef]
- Humayun, M.; Bahadur, A.; Khan, A.; Bououdina, M. Exceptional Photocatalytic Performance of the LaFeO3/g-C3N4 Z-Scheme Heterojunction for Water Splitting and Organic Dyes Degradation. Catalysts 2023, 13, 907. [Google Scholar] [CrossRef]
- Abbas, N.H.; Rasuli, R.; Panahi, P.N. Decorated titanium oxide with Ag nanoparticles as an efficient photocatalyst under visible light: A novel synthesis approach. Sci. Rep. 2025, 15, 8207. [Google Scholar] [CrossRef]
- Sekrafi, H.E.; Costa, D.S.; Proença, M.; Meira, D.I.; Vaz, F.; Borges, J. Experimental and Theoretical Studies on Ag Nanoparticles with Enhanced Plasmonic Response, Formed Within Al2O3 Thin Films Deposited by Magnetron Sputtering. Plasmonics 2024, 19, 3177–3188. [Google Scholar] [CrossRef]
- Dai, J.; Zhu, Y.; Tahini, H.A.; Lin, Q.; Chen, Y.; Guan, D.; Zhou, C.; Hu, Z.; Lin, H.-J.; Chan, T.-S.; et al. Single-phase perovskite oxide with super-exchange induced atomic-scale synergistic active centers enables ultrafast hydrogen evolution. Nat. Commun. 2020, 11, 5657. [Google Scholar] [CrossRef]
- He, K.; Tadesse Tsega, T.; Liu, X.; Zai, J.; Li, X.-H.; Liu, X.; Li, W.; Ali, N.; Qian, X. Utilizing the Space-Charge Region of the FeNi-LDH/CoP p-n Junction to Promote Performance in Oxygen Evolution Electrocatalysis. Angew. Chem. Int. Ed. 2019, 58, 11903–11909. [Google Scholar] [CrossRef]
- He, Y.; Han, X.-P.; Rao, D.-W.; Zhang, Y.-D.; Zhao, J.; Zhong, C.; Hu, W.-B.; Wei, W.-F.; Deng, Y.-D. Charge redistribution of Co on cobalt (II) oxide surface for enhanced oxygen evolution electrocatalysis. Nano Energy 2019, 61, 267–274. [Google Scholar] [CrossRef]
- Li, Y.; Wang, T.; Gao, B.; Fan, X.; Gong, H.; Xue, H.; Zhang, S.; Huang, X.; He, J. Efficient photocathode performance of lithium ion doped LaFeO3 nanorod arrays in hydrogen evolution. New J. Chem. 2021, 45, 3463–3468. [Google Scholar] [CrossRef]
- Aadenan, A.; Arzaee, N.A.; Noh, M.F.M.; Daud, M.N.M.; Hisham, D.H.B.; Anuar, M.A.M.; Mustapha, M.; Mohamed, N.A.; Ahmad, M.H.; Ibrahim, M.A.; et al. Improving Photocatalytic Activities of LaFeO3 Photocathode by Chromium-Incorporated Nanoparticle. Electron. Mater. Lett. 2024, 20, 775–790. [Google Scholar] [CrossRef]
- Díez-García, M.I.; Gómez, R. Metal Doping to Enhance the Photoelectrochemical Behavior of LaFeO3 Photocathodes. ChemSusChem 2017, 10, 2457–2463. [Google Scholar] [CrossRef] [PubMed]
- Pawar, G.S.; Elikkottil, A.; Pesala, B.; Tahir, A.A.; Mallick, T.K. Plasmonic nickel nanoparticles decorated on to LaFeO3 photocathode for enhanced solar hydrogen generation. Int. J. Hydrogen Energy 2019, 44, 578–586. [Google Scholar] [CrossRef]
- Peng, Q.; Shan, B.; Wen, Y.; Chen, R. Enhanced charge transport of LaFeO3 via transition metal (Mn, Co, Cu) doping for visible light photoelectrochemical water oxidation. Int. J. Hydrogen Energy 2015, 40, 15423–15431. [Google Scholar] [CrossRef]
- Santoni, A.; Biccari, F.; Malerba, C.; Valentini, M.; Chierchia, R.; Mittiga, A. Valence band offset at the CdS/Cu2ZnSnS4 interface probed by x-ray photoelectron spectroscopy. J. Phys. D Appl. Phys. 2013, 46, 175101. [Google Scholar] [CrossRef]
Materials | Potential | Photocurrent Density | Reference |
---|---|---|---|
Li/LaFeO3 | 0.4 V vs. RHE | −50 μA·cm−2 | [39] |
Cr/LaFeO3 | −0.5 V vs. Ag/AgCl | −60.52 μA·cm−2 | [40] |
Zn/LaFeO3 | −0.5 V vs. Ag/AgCl | 75 μA·cm−2 | [41] |
Ni/LaFeO3 | 0.6 V vs. RHE | 66 μA·cm−2 | [42] |
Cu/LaFeO3 | 1 V vs. Ag/AgCl | 0.99 mA·cm−2 | [43] |
3% Ag/LaFeO3 | −0.2 V vs. RHE | 15 mA·cm−2 | This work |
Materials | Rs (Ω) | Rf (Ω) | CPE1-T (Ω) | CPE1-P (Ω) | Rct (Ω) | CPE2-T (Ω) | CPE2-P (Ω) |
---|---|---|---|---|---|---|---|
LaFeO3 | 0.62 | 3940 | 0.55 × 10−2 | 1.15 | 3390 | 6.44 × 10−3 | 1.15 |
1% Ag/LaFeO3 | 0.35 | 2865 | 0.55 × 10−2 | 1.27 | 1115 | 6.28 × 10−3 | 1.27 |
3% Ag/LaFeO3 | 0.47 | 1959 | 0.47 × 10−2 | 1.05 | 984 | 5.87 × 10−3 | 1.05 |
5% Ag/LaFeO3 | 0.58 | 889 | 0.43 × 10−2 | 1.29 | 345 | 5.73 × 10−3 | 1.29 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Zeng, H.; Fan, J.; Zhu, M.; Zhang, C.; An, X.; Luo, Z.; Fu, H.; Yang, X. Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties. Catalysts 2025, 15, 456. https://doi.org/10.3390/catal15050456
Li S, Zeng H, Fan J, Zhu M, Zhang C, An X, Luo Z, Fu H, Yang X. Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties. Catalysts. 2025; 15(5):456. https://doi.org/10.3390/catal15050456
Chicago/Turabian StyleLi, Sijie, Hao Zeng, Jiaqi Fan, Mei Zhu, Caiyi Zhang, Xizhong An, Zhifu Luo, Haitao Fu, and Xiaohong Yang. 2025. "Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties" Catalysts 15, no. 5: 456. https://doi.org/10.3390/catal15050456
APA StyleLi, S., Zeng, H., Fan, J., Zhu, M., Zhang, C., An, X., Luo, Z., Fu, H., & Yang, X. (2025). Incorporating Ag Nanocrystals with LaFeO3 Photocathodes Towards Greatly Enhanced Photoelectrocatalytic Properties. Catalysts, 15(5), 456. https://doi.org/10.3390/catal15050456