Gliding Arc Plasma Synthesis of MnO2 Nanomaterials for Catalytic Oxidation of Benzene: Effect of Plasmagenic Gas
Abstract
:1. Introduction
2. Results and Discussion
2.1. Effect of Plasmagenic Gas on the Precipitation Time and pH Solution
2.2. Characterizations of Prepared Materials
2.3. Catalytic Treatment of Benzene
3. Experimental Strategy
3.1. Gliding Arc Plasma as Synthesis Device
3.2. Synthesis Procedures
3.3. Characterization Techniques
3.4. Catalytic Tests
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Boyom-Tatchemo, F.W.; Devred, F.; Acayanka, E.; Kamgang-Youbi, G.; Nzali, S.; Laminsi, S.; Gaigneaux, E.M. Effect of cation insertion on the stability of gliding arc plasma-precipitated mesoporous MnO2 dye bleaching catalysts. J. Mater. Res. 2023, 38, 4144–4156. [Google Scholar] [CrossRef]
- Li, Y.; Wang, J.; Zhang, Y.; Banis, M.; Liu, J.; Geng, D.; Li, R.; Sun, X. Facile controlled synthesis and growth mechanisms of flower like and tubular MnO2 nanostructures by microwave-assisted hydrothermal method. J. Colloid Interface Sci. 2012, 369, 123–128. [Google Scholar] [CrossRef] [PubMed]
- Wan, C.; Yuan, L.; Shen, H. Effects of electrode mass-loading on the electrochemical properties of porous MnO2 for electrochemical supercapacitor. Int. J. Electrochem. Sci. 2014, 9, 4024–4038. [Google Scholar] [CrossRef]
- Liu, L.; Liu, R.; Xu, T.; Zhang, Q.; Tan, Y.; Zhang, Q.; Ding, J.; Tang, Y. Enhanced Catalytic Oxidation of Chlorobenzene over MnO2 Grafted In Situ by Rare Earth Oxide: Surface Doping Induces Lattice Oxygen Activation. Inorg. Chem. 2020, 59, 14407–14414. [Google Scholar] [CrossRef]
- Bertinchamps, F.; Grégoire, C.; Gaigneaux, E.M. Systematic investigation of supported transition metal oxide-based formulations for the catalytic oxidative elimination of (chloro)-aromatics Part I: Identification of the optimal main active phases and supports. Appl. Catal. B Environ. 2006, 66, 1–9. [Google Scholar] [CrossRef]
- Sun, D.; Peng, L.; Cheng, K.; Zheng, Y.; Jiang, S.P. Comparative study of manganese oxides with different oxidation states for catalytic carbonylation of n-butylamine by CO2. J. CO2 Util. 2023, 68, 102382. [Google Scholar] [CrossRef]
- Zhu, J.; Zhang, W.; Qi, Q.; Zhang, H.; Zhang, Y.; Sun, D.; Liang, P. Catalytic oxidation of toluene, ethyl acetate and chlorobenzene over Ag/MnO2-cordierite molded catalyst. Sci. Rep. 2019, 9, 12162. [Google Scholar] [CrossRef]
- Boyom-Tatchemo, F.W.; Devred, F.; Ndiffo-Yemeli, G.; Laminsi, S.; Gaigneaux, E.M. Plasma-induced reactions synthesis of nanosized α-, γ- and δ-MnO2 catalysts for dye degradation. Appl. Catal. B Environ. 2020, 26, 118159. [Google Scholar] [CrossRef]
- Hanon, F.; Hermans, S.; Gaigneaux, E.M. What are the species involved in the gliding arc plasma synthesis of heterogeneous catalysts? Catal. Today 2024, 430, 114550. [Google Scholar] [CrossRef]
- Du, C.M.; Sun, Y.W.; Zhuang, X.F. The effects of gas composition on active species and byproducts formation in gas-water gliding arc discharge. Plasma Chem. Plasma Process. 2008, 28, 523–533. [Google Scholar] [CrossRef]
- Indarto, A.; Yang, D.R.; Choi, J.-W.; Lee, H.; Song, H.K. Gliding arc plasma processing of CO2 conversion. J. Hazard. Mater. 2007, 146, 309–315. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Li, X.; Tu, X.; Wang, Y.; Lu, S.; Yan, J. Decomposition of Naphthalene by dc gliding arc discharge. J. Phys. Chem. A 2010, 114, 360–368. [Google Scholar] [CrossRef] [PubMed]
- Delaigle, R.; Joseph, M.M.F.; Debecker, D.P.; Eloy, P.; Gaigneaux, E.M. An Alternative Method for the Incorporation of Silver in Ag-VOx/TiO2 Catalysts for the Total Oxidation of Benzene. Top. Catal. 2013, 56, 1867–1874. [Google Scholar] [CrossRef]
- Sophiana, I.C.; Topandi, A.; Iskandar, F.; Devianto, H.; Nishiyama, N.; Budhi, Y.W. Catalytic oxidation of benzene at low temperature over novel combination of metal oxide based catalysts: CuO, MnO2, NiO with Ce0.75Zr0.25O2 as support. Mater. Today Chem. 2020, 17, 100305. [Google Scholar] [CrossRef]
- Xu, C.; Liu, L.; Zhang, X.; Guo, L.; Zhang, X.; Huang, Z.; Wu, X.; Zhao, H.; Jing, G.; Shen, H. Enhanced catalytic oxidation of benzene though the synergistic Pt-Ni bimetallic single-atom catalyst. Chem. Eng. J. 2024, 480, 148361. [Google Scholar] [CrossRef]
- Zuo, X.; Zhang, L.; Gao, G.; Xin, C.; Fu, B.; Liu, S.; Ding, H. Catalytic Oxidation of Benzene over Atomic Active Site AgNi/BCN Catalysts at Room Temperature. Molecules 2024, 29, 1463. [Google Scholar] [CrossRef]
- Liu, X.; Zeng, J.; Shi, W.; Wang, J.; Zhu, T.; Chen, Y. Catalytic oxidation of benzene over ruthenium–cobalt bimetallic catalysts and study of its mechanism. Catal. Sci. Technol. 2017, 7, 213–221. [Google Scholar] [CrossRef]
- Li, L.; Yang, Q.; Wang, D.; Peng, Y.; Yan, J.; Li, J.; Crittenden, J. Facile synthesis λ-MnO2 spinel for highly effective catalytic oxidation of benzene. Chem. Eng. J. 2021, 421, 127828. [Google Scholar] [CrossRef]
- Terebun, P.; Kwiatkowski, M.; Hensel, K.; Kopacki, M.; Pawłat, J. Influence of Plasma Activated Water Generated in a Gliding Arc Discharge Reactor on Germination of Beetroot and Carrot Seeds. Appl. Sci. 2021, 11, 6164. [Google Scholar] [CrossRef]
- Benstaali, B.; Moussa, D.; Addou, A.; Brisset, J.-L. Plasma treatment of aqueous solutes: Some chemical properties of a gliding arc in humid air. Eur. Phys. J. Appl. Phys. 1998, 4, 171–179. [Google Scholar] [CrossRef]
- Moussa, D.; Abdelmalek, F.; Benstaali, B.; Addou, A.; Hnatiuc, E.; Brisset, J.-L. Acidity control of the gliding arc treatments of aqueous solutions: Application to pollutant abatement and biodecontamination. Eur. Phys. J. Appl. Phys. 2005, 29, 189–199. [Google Scholar] [CrossRef]
- Burlica, R.; Kirkpatrick, M.J.; Locke, B.R. Formation of reactive species in gliding arc discharges with liquid water. J. Electrostat. 2006, 64, 35–43. [Google Scholar] [CrossRef]
- Katsounaros, I.; Schneider, W.B.; Meier, J.C.; Benedikt, U.; Biedermann, P.U.; Auer, A.A.; Mayrhofer, K.J.J. Hydrogen peroxide electrochemistry on platinum: Towards understanding the oxygen reduction reaction mechanism. Phys. Chem. Chem. Phys. 2012, 14, 7384–7391. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Casadevall, A.V.; Arnarson, L.; Silvioli, L.; Colic, V.; Frydental, R.; Rossmeisl, J.; Chorkendorff, I.; Stephens, I.E.L. Toward the decentralized electrochemical production of H2O2: A focus on the catalysis. ACS Catal. 2018, 8, 4067–4081. [Google Scholar] [CrossRef]
- Nicol, M.J. The role and use of hydrogen peroxide as an oxidant in the leaching of minerals.1.acid solutions. Hydrometallurgy 2020, 193, 105328. [Google Scholar] [CrossRef]
- Dussault, P. Safe Use of Hydrogen Peroxide in the Organic Lab; Organic Peroxides: Safety Issues; 2018; 3. Available online: http://digitalcommons.unl.edu/chemistryperoxides/3 (accessed on 15 April 2025).
- Zhou, M.; Zhang, X.; Wei, J.; Zhao, S.; Wang, L.; Feng, B. Morphology-controlled synthesis and novel microwave absorption properties of hollow urchinlike α-MnO2 nanostructures. J. Phys. Chem. 2011, 115, 1398–1402. [Google Scholar] [CrossRef]
- Xu, M.; Kong, L.; Zhou, W.; Li, H. Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J. Phys. Chem. C 2007, 111, 19141–19147. [Google Scholar] [CrossRef]
- Boyom-Tatchemo, F.W.; Devred, F.; Laminsi, S.; Gaigneaux, E.M. Temporal post-discharge reactions effect on the oxidative catalytic properties of plasma-synthesized α-MnO2 nanorods. Appl. Catal. A-Gen. 2021, 616, 118109. [Google Scholar] [CrossRef]
- Simon, D.E.; Morton, R.W.; Gislason, J.J. A close look at electrolytic manganese dioxide (EMD) and the γ-MnO2 and ε-MnO2 phases using Rietveld modelling. ICDD Adv. X-Ray Anal. 2004, 47, 267–280. [Google Scholar]
- Lin, H.Y.; Sun, Y.P.; Morton, B.J.; Weng, B.J.; Yang, C.T.; Suen, N.T.; Liao, K.H.; Huang, Y.C.; Ho, J.Y.; Chong, N.S.; et al. Factors influencing the structure of electrochemically prepared α-MnO2 and γ-MnO2 phases. Electrochim. Acta 2007, 52, 6548–6553. [Google Scholar] [CrossRef]
- Boyom-Tatchemo, F.W.; Poupi, A.; Devred, F.; Acayanka, E.; Kamgang-Youbi, G.; Aprile, C.; Laminsi, S.; Gaigneaux, E.M. Plasma-synthesized combined nitrogen and cationic species doped-MnO2: Impact on texture, optical properties, and photocatalytic activity. Catal. Lett. 2025, 155, 8. [Google Scholar] [CrossRef]
- Chalmers, J.M. Anomalies, artifacts and common errors in using vibrational spectroscopy techniques. In Mid-Infrared Spectroscopy: Anomalies, Artifacts and Common Errors; John Wiley & Sons Ltd.: Hoboken, NJ, USA, 2002. [Google Scholar] [CrossRef]
- Meng, Y.; Song, W.; Huang, H.; Ren, Z.; Chen, S.-Y.; Suib, S.L. Structure-property relationship of bifunctional MnO2 nanostructures: High efficient, ultra-stable electrochemical water oxidation and oxygen reduction catalyst identified in alkaline media. J. Am. Chem. Soc. 2014, 136, 11452–11464. [Google Scholar] [CrossRef] [PubMed]
- Tang, X.; Xu, T.; Shen, W. Promoting effect of copper on the catalytic activity of MnOx-CeO2 mixed oxide for complete oxidation of benzene. Chem. Eng. J. 2008, 144, 175–180. [Google Scholar] [CrossRef]
- Debecker, D.P.; Delaigle, R.; Bouchmella, K.; Eloy, P.; Gaigneaux, E.M.; Mutin, P.H. Total oxidation of benzene and chlorobenzene with MoO3− and WO3− promoted V2O5/TiO2 catalysts prepared by a nonhydrolytic sol-gel route. Catal. Today 2010, 157, 125–130. [Google Scholar] [CrossRef]
Moist Air (Atmospheric Air) | |
With bubbling | Without bubbling |
N2 + e− → 2N· + e− O2 + e− → 2O· + e− N· + O· → NO· N2 + O· → NO· + N· H2O(g+l) + e− → H· + HO· + e− (bubbling water) N· + HO· → NO· + H· MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) NO• + 2H2O(l) → NO3− + 4H+ + 3e− (E° = 0.94 V) HNO2 → NO2 + H+ + e− (0.51 V) MnO4− + NO∙ → MnO2 + NO3− | N2 + e− → 2N· + e− O2 + e− → 2O· + e− N· + O· → NO· N2 + O· → NO· + N· H2O(g) + e− → H· + HO· + e− (Air) N· + HO· → NO· + H· MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) NO· + 2H2O(l) → NO3− + 4H+ + 3e− (E° = 0.94 V) HNO2 → NO2 + H+ + e− (0.51 V) MnO4− + NO∙ → MnO2 + NO3− |
Nitrogen (N2) | |
With bubbling | Without bubbling |
N2 + e− → 2N2+ + 2e− N2 + e− → 2N· + e− H2O(g+l) + e−→H· + HO· + e− (bubbling water) N· + HO· → NO· + H· MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) NO· + 2H2O(l) → NO3− + 4H+ + 3e− (E° = 0.94 V) HNO2 → NO2 + H+ + e− (0.51 V) MnO4− + NO∙ → MnO2 + NO3− | N2 + e− → 2N2+ + 2e− N2 + e− → 2N· + e− H2O(l) + e− → H· + HO· + e− (reaction medium) N· + HO· → NO· + H· MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) NO·+ 2H2O(l) → NO3− + 4H+ + 3e− (E° = 0.94 V) HNO2 → NO2 + H+ + e− (0.51 V) MnO4− + NO∙ → MnO2 + NO3− |
Oxygen (O2) | |
With bubbling | Without bubbling |
O2 + e− → 2O· + e− H2O(l) + e− → H· + HO· + e− (bubbling and air) H2O(l) + e− → H+ + HO· + 2e− O2 + O· → O3 (unfavourable in the presence of water) O2 + H· → HO2· HO· + HO· → H2O2 (reducing species) O3 + 2H+ + 2e- → O2 + H2O (E° = 2.07 V) MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) H2O2 → O2 + 2H+ + 2e− (E° = 0.69 V) 2MnO4− + 3H2O2 + 2H+ → 2MnO2 + 3O2 + 4 H2O | O2 + e− → 2O· + e− H2O(l) + e− → H· + HO· + e− (from air) H2O(l) + e− → H+ + HO· + 2e− O2 + O· → O3 O2 + H· → HO2· HO· + HO· → H2O2 O3 + 2H+ + 2e- → O2 + H2O (E° = 2.07 V) MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) H2O2 → HO2 + H+ + e− (E° = 1.44 V) H2O2 → O2 + 2H+ + 2e− (E° = 0.69 V) 2MnO4− + 3H2O2 + 2H+ → 2MnO2 + 3O2 + 4H2O |
Dry-air (N2 + O2) | |
N2 + e− → 2N· + e− O2 + e− → 2O· + e− N· + O· → NO· MnO4− + 4H+ + 3e− → MnO2 + 2H2O (E° = 1.7 V) NO· + 2H2O(l) → NO3− + 4H+ + 3e− (E° = 0.94 V) HNO2 → NO2 + H+ + e− (0.51 V) MnO4− + NO∙ → MnO2 + NO3− |
Gas | Final pH of the Solution | |
---|---|---|
With Humidification | Without Humidification | |
Dry-air | --------------- | 2.63 |
Air | 2.50 | 2.52 |
N2 | 2.81 | 2.70 |
O2 | 2.58 | 2.58 |
Material (MnO2) | AOS (Mn) | %N | Oα/Oβ | Mn2p1/2 (eV) | Mn2p3/2 (eV) | ΔMn2p (eV) |
---|---|---|---|---|---|---|
Dry-air | 3.41 | 1.2 | 0.55 | 653.86 | 642.27 | 11.59 |
Air with Hum | 3.43 | 1.3 | 0.54 | 653.82 | 642.20 | 11.62 |
Air without Hum | 3.39 | 1.6 | 0.60 | 653.80 | 642.27 | 11.53 |
N2 with Hum | 3.38 | 1.1 | 0.61 | 653.86 | 642.24 | 11.62 |
N2 without Hum | 3.40 | 1.2 | 0.35 | 653.82 | 642.41 | 11.41 |
O2 with Hum | 3.35 | Trace | 0.64 | 653.89 | 642.24 | 11.65 |
O2 without Hum | 3.41 | Trace | 0.57 | 653.89 | 642.39 | 11.50 |
Material (MnO2) | Surface Area (m2/g) | Pore Volume (cm3/g) | Pore Diameter (nm) |
---|---|---|---|
Dry-air | 56 | 0.28 | 21 |
Air with Hum | 116 | 0.38 | 11 |
Air without Hum | 37 | 0.22 | 29 |
N2 with Hum | 64 | 0.32 | 21 |
N2 without Hum | 54 | 0.27 | 22 |
O2 with Hum | 93 | 0.41 | 16 |
O2 without Hum | 73 | 0.33 | 18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Boyom-Tatchemo, F.W.; Devred, F.; Acayanka, E.; Kamgang-Youbi, G.; Laminsi, S.; Gaigneaux, E.M. Gliding Arc Plasma Synthesis of MnO2 Nanomaterials for Catalytic Oxidation of Benzene: Effect of Plasmagenic Gas. Catalysts 2025, 15, 451. https://doi.org/10.3390/catal15050451
Boyom-Tatchemo FW, Devred F, Acayanka E, Kamgang-Youbi G, Laminsi S, Gaigneaux EM. Gliding Arc Plasma Synthesis of MnO2 Nanomaterials for Catalytic Oxidation of Benzene: Effect of Plasmagenic Gas. Catalysts. 2025; 15(5):451. https://doi.org/10.3390/catal15050451
Chicago/Turabian StyleBoyom-Tatchemo, Franck W., François Devred, Elie Acayanka, Georges Kamgang-Youbi, Samuel Laminsi, and Eric M. Gaigneaux. 2025. "Gliding Arc Plasma Synthesis of MnO2 Nanomaterials for Catalytic Oxidation of Benzene: Effect of Plasmagenic Gas" Catalysts 15, no. 5: 451. https://doi.org/10.3390/catal15050451
APA StyleBoyom-Tatchemo, F. W., Devred, F., Acayanka, E., Kamgang-Youbi, G., Laminsi, S., & Gaigneaux, E. M. (2025). Gliding Arc Plasma Synthesis of MnO2 Nanomaterials for Catalytic Oxidation of Benzene: Effect of Plasmagenic Gas. Catalysts, 15(5), 451. https://doi.org/10.3390/catal15050451