Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic
Abstract
:1. Introduction
2. Results and Discussion
2.1. Synthesis and Characterization of MOF-Based Cyt P450 Mimic
2.2. Oxidative Aldehyde Deformylation Performance
2.3. Mechanistic Studies
3. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Graham-Lorence, S.; Peterson, J.A.; Amarneh, B.; Simpson, E.R.; White, R.E. A three-dimensional model of aromatase cytochrome P450. Protein Sci. 1995, 4, 1065–1080. [Google Scholar] [CrossRef] [PubMed]
- Miller, J.C.; Lee, J.H.Z.; Mclean, M.A.; Chao, R.R.; Stone, I.S.J.; Pukala, T.L.; Bruning, J.B.; Voss, J.J.D.; Schuler, M.A.; Sligar, S.G.; et al. Engineering C–C Bond Cleavage Activity into a P450 Monooxygenase Enzyme. J. Am. Chem. Soc. 2023, 145, 9207–9222. [Google Scholar] [CrossRef] [PubMed]
- UBagha, K.; Satpathy, J.K.; Mukherjee, G.; Sastri, C.V.; De Visser, S.P. A comprehensive insight into aldehyde deformylation: Mechanistic implications from biology and chemistry. Org. Biomol. Chem. 2021, 19, 1879–1899. [Google Scholar]
- Basri, R.S.; Rahman, R.N.Z.R.A.; Kamarudin, N.H.A.; Ali, M.S.M. Cyanobacterial aldehyde deformylating oxygenase: Structure, function, and potential in biofuels production. Int. J. Biol. Macromol. 2020, 164, 3155–3162. [Google Scholar] [CrossRef]
- Jasniewski, A.J.; Que, L. Dioxygen Activation by Nonheme Diiron Enzymes: Diverse Dioxygen Adducts, High-Valent Intermediates, and Related Model Complexes. Chem. Rev. 2018, 118, 2554–2592. [Google Scholar] [CrossRef]
- Podust, L.M.; Sherman, D.H. Diversity of P450 enzymes in the biosynthesis of natural products. Nat. Prod. Rep. 2012, 29, 1251. [Google Scholar] [CrossRef]
- Groves, J.T. Using push to get pull. Nat. Chem. 2014, 6, 89–91. [Google Scholar] [CrossRef]
- Krest, C.M.; Onderko, E.L.; Yosca, T.H.; Calixto, J.C.; Karp, R.F.; Livada, J.; Rittle, J.; Green, M.T. Reactive Intermediates in Cytochrome P450 Catalysis. J. Biol. Chem. 2013, 288, 17074–17081. [Google Scholar] [CrossRef]
- Mondal, P.; Udukalage, D.; Mohamed, A.A.; Wong, H.P.H.; De Visser, S.P.; Wijeratne, G.B. A Cytochrome P450 TxtE Model System with Mechanistic and Theoretical Evidence for a Heme Peroxynitrite Active Species. Angew. Chem. Int. Ed. 2024, 136, e202409430. [Google Scholar] [CrossRef]
- Tateishi, Y.; McCarty, K.D.; Martin, M.V.; Yoshimoto, F.K.; Guengerich, F.P. Roles of Ferric Peroxide Anion Intermediates (Fe3+O2−, Compound 0) in Cytochrome P450 19A1 Steroid Aromatization and a Cytochrome P450 2B4 Secosteroid Oxidation Model. Angew. Chem. Int. Ed. 2024, 63, e202406542. [Google Scholar] [CrossRef]
- Vatsis, K.P.; Coon, M.J. Oxidative aldehyde deformylation catalyzed by NADPH-cytochrome P450 reductase and the flavoprotein domain of neuronal nitric oxide synthase. Biochem. Biophys. Res. Commun. 2005, 337, 1107–1111. [Google Scholar] [CrossRef]
- Barman, P.; Upadhyay, P.; Faponle, A.S.; Kumar, J.; Nag, S.S.; Kumar, D.; Sastri, C.V.; de Visser, S.P. Deformylation Reaction by a Nonheme Manganese(III)–Peroxo Complex via Initial Hydrogen-Atom Abstraction. Angew. Chem. Int. Ed. 2016, 55, 11091–11095. [Google Scholar] [CrossRef] [PubMed]
- Zhao, R.; Zhang, B.-B.; Liu, Z.; Cheng, G.-J.; Wang, Z.-X. DFT Mechanistic Insights into Aldehyde Deformylations with Biomimetic Metal–Dioxygen Complexes: Distinct Mechanisms and Reaction Rules. JACS Au 2022, 2, 745–761. [Google Scholar] [CrossRef] [PubMed]
- Geiger, R.A.; Chattopadhyay, S.; Day, V.W.; Jackson, T.A. Nucleophilic reactivity of a series of peroxomanganese(iii) complexes supported by tetradentate aminopyridyl ligands. Dalton Trans. 2011, 40, 1707. [Google Scholar] [CrossRef] [PubMed]
- Shokri, A.; Que, L. Conversion of Aldehyde to Alkane by a Peroxoiron(III) Complex: A Functional Model for the Cyanobacterial Aldehyde-Deformylating Oxygenase. J. Am. Chem. Soc. 2015, 137, 7686–7691. [Google Scholar] [CrossRef]
- Jeong, D.; Valentine, J.S.; Cho, J. Bio-inspired mononuclear nonheme metal peroxo complexes: Synthesis, structures and mechanistic studies toward understanding enzymatic reactions. Coord. Chem. Rev. 2023, 480, 215021. [Google Scholar] [CrossRef]
- Bae, S.H.; Li, X.-X.; Seo, M.S.; Lee, Y.-M.; Fukuzumi, S.; Nam, W. Tunneling Controls the Reaction Pathway in the Deformylation of Aldehydes by a Nonheme Iron(III)–Hydroperoxo Complex: Hydrogen Atom Abstraction versus Nucleophilic Addition. J. Am. Chem. Soc. 2019, 141, 7675–7679. [Google Scholar] [CrossRef]
- Zhong, X.; Xia, H.; Huang, W.; Li, Z.; Jiang, Y. Biomimetic metal-organic frameworks mediated hybrid multi-enzyme mimic for tandem catalysis. Chem. Eng. J. 2020, 381, 122758. [Google Scholar] [CrossRef]
- Wan, J.; Zhang, L.; Yang, B.; Jia, B.; Yang, J.; Su, X. Enzyme immobilization on amino-functionalized Fe3O4@SiO2 via electrostatic interaction with enhancing biocatalysis in sludge dewatering. Chem. Eng. J. 2022, 427, 131976. [Google Scholar] [CrossRef]
- Wu, R.; Wang, Q.; Wang, G. Immobilized enzyme on pulp fiber through layer-by-layer technique using cationic polyacrylamide for whitewater treatment from papermaking. Bioprocess Biosyst. Eng. 2019, 42, 1583–1589. [Google Scholar] [CrossRef]
- Wang, D.; Wu, H.; Lim, W.Q.; Phua, S.Z.F.; Xu, P.; Chen, Q.; Guo, Z.; Zhao, Y. A Mesoporous Nanoenzyme Derived from Metal-Organic Frameworks with Endogenous Oxygen Generation to Alleviate Tumor Hypoxia for Significantly Enhanced Photodynamic Therapy. Adv. Mater. 2019, 31, 1901893. [Google Scholar] [CrossRef] [PubMed]
- Chen, K.; Wu, C.-D. Designed fabrication of biomimetic metal-organic frameworks for catalytic applications. Coord. Chem. Rev. 2019, 378, 445–465. [Google Scholar] [CrossRef]
- Liang, K.; Ricco, R.; Doherty, C.M.; Styles, M.J.; Bell, S.; Kirby, N.; Mudie, S.; Haylock, D.; Hill, A.J.; Doonan, C.J.; et al. Biomimetic mineralization of metal-organic frameworks as protective coatings for biomacromolecules. Nat. Commun. 2015, 6, 7240. [Google Scholar] [CrossRef] [PubMed]
- Gkaniatsou, E.; Sicard, C.; Ricoux, R.; Benahmed, L.; Bourdreux, F.; Zhang, Q.; Serre, C.; Mahy, J.; Steunou, N. Enzyme Encapsulation in Mesoporous Metal-Organic Frameworks for Selective Biodegradation of Harmful Dye Molecules. Angew. Chem. Int. Ed. 2018, 57, 16141–16146. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Qi, W.; Wang, Y.; Lin, D.; Yang, X.; Su, R.; He, Z. Rational Design of Mimic Multienzyme Systems in Hierarchically Porous Biomimetic Metal-Organic Frameworks. ACS Appl. Mater. Interfaces 2018, 10, 33407–33415. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.-L.; Zong, M.-H.; Lou, W.-Y. Zn-triazole coordination polymers: Bioinspired carbonic anhydrase mimics for hydration and sequestration of CO2. Chem. Eng. J. 2020, 398, 125530. [Google Scholar] [CrossRef]
- Nath, I. Metal organic frameworks mimicking natural enzymes: A structural and functional analogy. Chem. Soc. Rev. 2016, 45, 4127–4170. [Google Scholar] [CrossRef]
- Liang, S.; Wu, X.-L.; Xiong, J.; Yuan, X.; Liu, S.-L.; Zong, M.-H.; Lou, W.-Y. Multivalent Ce-MOFs as biomimetic laccase nanozyme for environmental remediation. Chem. Eng. J. 2022, 450, 138220. [Google Scholar] [CrossRef]
- Wang, Z.; Yeary, P.; Feng, X.; Lin, W. Self-Adaptive Metal-Organic Framework Assembles Diiron Active Sites to Mimic Monooxygenases. J. Am. Chem. Soc. 2023, 145, 8647–8655. [Google Scholar] [CrossRef]
- Pullen, S.; Fei, H.; Orthaber, A.; Cohen, S.M.; Ott, S. Enhanced Photochemical Hydrogen Production by a Molecular Diiron Catalyst Incorporated into a Metal-Organic Framework. J. Am. Chem. Soc. 2013, 135, 16997–17003. [Google Scholar] [CrossRef]
- Mondloch, J.E.; Katz, M.J.; Isley, W.C., III; Ghosh, P.; Liao, P.; Bury, W.; Wagner, G.W.; Hall, M.G.; DeCoste, J.B.; Peterson, G.W.; et al. Destruction of chemical warfare agents using metal-organic frameworks. Nat. Mater. 2015, 14, 512–516. [Google Scholar] [CrossRef] [PubMed]
- Yang, C.; Jiang, Z.; Wu, Q.; Hu, C.; Huang, C.; Li, Y.; Zhen, S. One-component nano-metal-organic frameworks with superior multienzyme-mimic activities for 1,4-dihydropyridine metabolism. J. Colloid Interface Sci. 2022, 605, 214–222. [Google Scholar] [CrossRef]
- Gkaniatsou, E.; Serre, C.; Mahy, J.-P.; Steunou, N.; Ricoux, R.; Sicard, C. Enhancing microperoxidase activity and selectivity: Immobilization in metal-organic frameworks. J. Porphyr. Phthalocyanines 2019, 23, 718–728. [Google Scholar] [CrossRef]
- Wang, X.-N.; Zhao, Y.; Li, J.-L.; Pang, J.-D.; Wang, Q.; Li, B.; Zhou, H.-C. Biomimetic catalysts of iron-based metal-organic frameworks with high peroxidase-mimicking activity for colorimetric biosensing. Dalton Trans. 2021, 50, 3854–3861. [Google Scholar] [CrossRef] [PubMed]
- Mondal, P.; Ishigami, I.; Yeh, S.; Wijeratne, G.B. The Role of Heme Peroxo Oxidants in the Rational Mechanistic Modeling of Nitric Oxide Synthase: Characterization of Key Intermediates and Elucidation of the Mechanism. Angew. Chem. Int. Ed. 2022, 134, e202211521. [Google Scholar] [CrossRef]
- Sahoo, P.C.; Jang, Y.N.; Lee, S.W. Enhanced biomimetic CO2 sequestration and CaCO3 crystallization using complex encapsulated metal organic framework. J. Cryst. Growth 2013, 373, 96–101. [Google Scholar] [CrossRef]
- Shen, H.-M.; Guo, A.-B.; Zhang, Y.; Liu, Q.-P.; Qin, J.-W.; She, Y.-B. Relay catalysis of hydrocarbon oxidation using O2 in the confining domain of 3D metalloporphyrin-based metal-organic frameworks with bimetallic catalytic centers. Chem. Eng. Sci. 2022, 260, 117825. [Google Scholar] [CrossRef]
- Zou, C.; Zhang, T.; Xie, M.-H.; Yan, L.; Kong, G.-Q.; Yang, X.-L.; Ma, A.; Wu, C.-D. Four Metalloporphyrinic Frameworks as Heterogeneous Catalysts for Selective Oxidation and Aldol Reaction. Inorg. Chem. 2013, 52, 3620–3626. [Google Scholar] [CrossRef]
- Zhang, X.; Wasson, M.C.; Shayan, M.; Berdichevsky, E.K.; Ricardo-Noordberg, J.; Singh, Z.; Papazyan, E.K.; Castro, A.J.; Marino, P.; Ajoyan, Z.; et al. A historical perspective on porphyrin-based metal-organic frameworks and their applications. Coord. Chem. Rev. 2021, 429, 213615. [Google Scholar] [CrossRef]
- Chen, J.; Zhu, Y.; Kaskel, S. Porphyrin-Based Metal-Organic Frameworks for Biomedical Applications. Angew. Chem. Int. Ed. 2021, 60, 5010–5035. [Google Scholar] [CrossRef]
- Shi, L.; Yang, L.; Zhang, H.; Chang, K.; Zhao, G.; Kako, T.; Ye, J. Implantation of Iron(III) in porphyrinic metal organic frameworks for highly improved photocatalytic performance. Appl. Catal. B Environ. 2018, 224, 60–68. [Google Scholar] [CrossRef]
- Anderson, J.S.; Gallagher, A.T.; Mason, J.A.; Harris, T.D. A Five-Coordinate Heme Dioxygen Adduct Isolated within a Metal-Organic Framework. J. Am. Chem. Soc. 2014, 136, 16489–16492. [Google Scholar] [CrossRef] [PubMed]
- Hüppe, H.M.; Iffland-Mühlhaus, L.; Heck, J.; Eilers, M.; Gildenast, H.; Schönfeld, S.; Dürrmann, A.; Hoffmann, A.; Weber, B.; Apfel, U.-P.; et al. Triflate vs Acetonitrile: Understanding the Iron(II)-Based Coordination Chemistry of Tri(quinolin-8-yl)amine. Inorg. Chem. 2023, 62, 4435–4455. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Jin, P.; Huang, J.; She, H.; Wang, Q. Integration of Copper(II)-Porphyrin Zirconium Metal-Organic Framework and Titanium Dioxide to Construct Z-Scheme System for Highly Improved Photocatalytic CO2 Reduction. ACS Sustain. Chem. Eng. 2019, 7, 15660–15670. [Google Scholar] [CrossRef]
- Chen, F.-Z.; Li, Y.-J.; Zhou, M.; Gong, X.-X.; Gao, Y.; Cheng, G.; Ren, S.-B.; Han, D.-M. Smart multifunctional direct Z-scheme In2S3@PCN-224 heterojunction for simultaneous detection and photodegradation towards antibiotic pollutants. Appl. Catal. B Environ. 2023, 328, 122517. [Google Scholar] [CrossRef]
- Jin, P.; Wang, L.; Ma, X.; Lian, R.; Huang, J.; She, H.; Zhang, M.; Wang, Q. Construction of hierarchical ZnIn2S4@PCN-224 heterojunction for boosting photocatalytic performance in hydrogen production and degradation of tetracycline hydrochloride. Appl. Catal. B Environ. 2021, 284, 119762. [Google Scholar] [CrossRef]
- Guengerich, F.P. Common and Uncommon Cytochrome P450 Reactions Related to Metabolism and Chemical Toxicity. Chem. Res. Toxicol. 2001, 14, 611–650. [Google Scholar] [CrossRef]
- Goto, Y.; Wada, S.; Morishima, I.; Watanabe, Y. Reactivity of peroxoiron(III) porphyrin complexes: Models for deformylation reactions catalyzed by cytochrome P-450. J. Inorg. Biochem. 1998, 69, 241–247. [Google Scholar] [CrossRef]
- Narulkar, D.D.; Ansari, A.; Vardhaman, A.K.; Harmalkar, S.S.; Lingamallu, G.; Dhavale, V.M.; Sankaralingam, M.; Das, S.; Kumar, P.; Dhuri, S.N. A side-on Mn(iii)–peroxo supported by a non-heme pentadentate N3Py2 ligand: Synthesis, characterization and reactivity studies. Dalton Trans. 2021, 50, 2824–2831. [Google Scholar] [CrossRef]
- Battistella, B.; Lohmiller, T.; Cula, B.; Hildebrandt, P.; Kuhlmann, U.; Dau, H.; Mebs, S.; Ray, K. A New Thiolate-Bound Dimanganese Cluster as a Structural and Functional Model for Class Ib Ribonucleotide Reductases. Angew. Chem. Int. Ed. 2023, 62, e202217076. [Google Scholar] [CrossRef]
- Barman, P.; Cantú, F.G.; Bagha, U.K.; Kumar, D.; Sastri, C.V.; de Visser, S.P. Hydrogen by Deuterium Substitution in an Aldehyde Tunes the Regioselectivity by a Nonheme Manganese(III)–Peroxo Complex. Angew. Chem. Int. Ed. 2019, 58, 10639–10643. [Google Scholar] [CrossRef] [PubMed]
- Cant, F.G.; Kumar, D.; Kumar, D.; Sastri, C.V.; de Visser, S.P. Keto-enol tautomerization triggers an electrophilic aldehyde deformylation reaction by a nonheme manganese(III)-peroxo complex. J. Am. Chem. Soc. 2017, 139, 18328–18338. [Google Scholar]
- Tateishi, Y.; McCarty, K.D.; Martin, M.V.; Guengerich, F.P. Oxygen-18 Labeling Defines a Ferric Peroxide (Compound 0) Mechanism in the Oxidative Deformylation of Aldehydes by Cytochrome P450 2B4. ACS Catal. 2024, 14, 2388–2394. [Google Scholar] [CrossRef]
- Nakamoto, K.; Watanabe, T.; Ama, T.; Urban, M.W. Matrix isolation infrared spectra of oxy-tetraphenylporphyrinatoiron(II). J. Am. Chem. Soc. 1982, 104, 3744–3745. [Google Scholar] [CrossRef]
- Gallagher, A.T.; Lee, J.Y.; Kathiresan, V.; Anderson, J.S.; Hoffman, B.M.; Harris, T.D. A structurally-characterized peroxomanganese(iv) porphyrin from reversible O 2 binding within a metal-organic framework. Chem. Sci. 2018, 9, 1596–1603. [Google Scholar] [CrossRef] [PubMed]
- Hoffman, B.M.; Szymanski, T.; Brown, T.G.; Basolo, F. The dioxygen adducts of several manganese(II) porphyrins. Electron paramagnetic resonance studies. J. Am. Chem. Soc. 1978, 100, 7253–7259. [Google Scholar] [CrossRef]
- Jones, D.H.; Hinman, A.S. In situ Infrared Spectroelectrochemical Studies of Tetraphenyl-porphyrin Complexes containing Manganese, Iron and Cobalt. J. Am. Chem. Soc. Dalton. Trans. 1992, 9, 1503–1508. [Google Scholar] [CrossRef]
- Loehr, T.M. Oxygen binding by the metalloproteins hemerythrin, hemocyanin, and hemoglobin. In Oxygen Complexes and Oxygen Activation by Transition Metals; Springer: Boston, MA, USA, 1988; pp. 17–32. [Google Scholar]
- McCandlish, E.; Miksztal, A.R.; Nappa, M.; Sprenger, A.Q.; Valentine, J.S.; Stong, J.D.; Spiro, T.G. Reactions of superoxide with iron porphyrins in aprotic solvents. A high spin ferric porphyrin peroxo complex. J. Am. Chem. Soc. 1980, 102, 4268–4271. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Luo, Z.; Zhou, W.; Chen, J.; Li, Y. Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic. Catalysts 2025, 15, 436. https://doi.org/10.3390/catal15050436
Luo Z, Zhou W, Chen J, Li Y. Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic. Catalysts. 2025; 15(5):436. https://doi.org/10.3390/catal15050436
Chicago/Turabian StyleLuo, Zehua, Wentian Zhou, Junying Chen, and Yingwei Li. 2025. "Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic" Catalysts 15, no. 5: 436. https://doi.org/10.3390/catal15050436
APA StyleLuo, Z., Zhou, W., Chen, J., & Li, Y. (2025). Unveiling the Reaction Pathway of Oxidative Aldehyde Deformylation by a MOF-Based Cytochrome P450 Mimic. Catalysts, 15(5), 436. https://doi.org/10.3390/catal15050436