Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction
Abstract
1. Introduction
2. Results and Discussion
3. Materials and Methods
3.1. Chemicals and Reagents
3.2. Surface Hydrophilization of CC
3.3. Preparation of NiPx-Ni and Ru-NiPx-Ni
3.4. Preparation of C-Ni-P and C-Ru-Ni-P
3.5. Preparation of Pt/C, A-RuNi, and Ru@CC
3.6. Characterization
3.7. Electrochemical Measurements
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yu, J.; Li, Z.; Liu, T.; Zhao, S.; Guan, D.; Chen, D.; Shao, Z.; Ni, M. Morphology control and electronic tailoring of CoxAy (A= P, S, Se) electrocatalysts for water splitting. Chem. Eng. J. 2023, 460, 141674. [Google Scholar] [CrossRef]
- Park, J.; Lee, S.; Kim, S. Recent advances in amorphous electrocatalysts for oxygen evolution reaction. Front. Chem. 2022, 10, 1030803. [Google Scholar] [CrossRef] [PubMed]
- Wang, N.; Song, S.Z.; Wu, W.T.; Deng, Z.F.; Tang, C. Bridging laboratory electrocatalysts with industrially relevant alkaline water electrolyzers. Adv. Energy Mater. 2024, 14, 2303451. [Google Scholar] [CrossRef]
- Xia, J.; Zhang, J.; Huang, K.; Zhang, B.; Wu, F.; Liang, Y.; Lu, S.; Huang, Y.; Wu, J. In situ growth of an active catalytic layer on commercial stainless steel via a hydrothermal-assisted corrosion process for efficient oxygen evolution reaction. J. Mater. Chem. A 2024, 12, 19008–19017. [Google Scholar] [CrossRef]
- Zhao, W.; Xu, H.; Luan, H.; Chen, N.; Gong, P.; Yao, K.; Shen, Y.; Shao, Y. NiFe layered double hydroxides grown on a corrosion-cell cathode for oxygen evolution electrocatalysis. Adv. Energy Mater. 2021, 12, 2102372. [Google Scholar] [CrossRef]
- Feidenhans’l, A.A.; Regmi, Y.N.; Wei, C.; Xia, D.; Kibsgaard, J.; King, L.A. Precious Metal Free Hydrogen Evolution Catalyst Design and Application. Chem. Rev. 2024, 124, 5617–5667. [Google Scholar] [CrossRef]
- Wu, H.; Huang, Q.X.; Shi, Y.Y.; Chang, J.W.; Lu, S.Y. Electrocatalytic water splitting: Mechanism and electrocatalyst design. Nano Res. 2023, 16, 9142–9157. [Google Scholar] [CrossRef]
- Liu, X.P.; Gong, M.X.; Deng, S.F.; Zhao, T.H.; Shen, T.; Zhang, J.; Wang, D.L. Transforming damage into benefit: Corrosion engineering enabled electrocatalysts for water splitting. Adv. Funct. Mater. 2021, 31, 2009032. [Google Scholar] [CrossRef]
- Shi, X.; Ye, Q.; Huang, Q.; Ma, J.; Liu, Y.; Lin, S. Engineering Amorphous CoNiRuOx Nanoparticles Grown on Nickel Foam for Boosted Electrocatalytic Hydrogen Evolution. Catalysts 2025, 15, 211. [Google Scholar] [CrossRef]
- Shang, M.; Zhou, B.; Qiu, H.; Gong, Y.; Xin, L.; Xiao, W.; Xu, G.; Dai, C.; Zhang, H.; Wu, Z.; et al. Self-supported Ru-Fe-Ox nanospheres as efficient electrocatalyst to boost overall water-splitting in acid and alkaline media. J. Colloid Interface Sci. 2024, 669, 856–863. [Google Scholar] [CrossRef]
- Chade, D.; Berlouis, L.; Infield, D.; Cruden, A.; Nielsen, P.T.; Mathiesen, T. Evaluation of Raney nickel electrodes prepared by atmospheric plasma spraying for alkaline water electrolysers. Int. J. Hydrogen Energy 2013, 38, 14380–14390. [Google Scholar] [CrossRef]
- Yang, H.; Guo, P.; Wang, R.; Chen, Z.; Xu, H.; Pan, H.; Sun, D.; Fang, F.; Wu, R. Sequential Phase Conversion-Induced Phosphides Heteronanorod Arrays for Superior Hydrogen Evolution Performance to Pt in Wide pH Media. Adv. Mater. 2022, 34, 2107548. [Google Scholar] [CrossRef] [PubMed]
- Wang, M.; Feng, C.; Mi, W.; Guo, M.; Guan, Z.; Li, M.; Chen, H.C.; Liu, Y.; Pan, Y. Defect-induced electron redistribution between Pt-N3S1 single atomic sites and Pt clusters for synergistic electrocatalytic hydrogen production with ultra-high mass activity. Adv. Funct. Mater. 2023, 34, 2309474. [Google Scholar] [CrossRef]
- Hu, Y.D.; Luo, G.; Wang, L.G.; Liu, X.K.; Qu, Y.T.; Zhou, Y.S.; Zhou, F.Y.; Li, Z.J.; Li, Y.F.; Yao, T.; et al. Single Ru Atoms Stabilized by Hybrid Amorphous/Crystalline FeCoNi Layered Double Hydroxide for Ultraefficient Oxygen Evolution. Adv. Energy Mater. 2021, 11, 2002816. [Google Scholar] [CrossRef]
- Huang, Q.; Zhang, X.; Lin, S.; Liu, Y.; Zou, X.; Chen, H. Corrosion engineering for electrode fabrication toward alkaline water electrolysis. Chem. Synth. 2025, 5. [Google Scholar] [CrossRef]
- Feng, D.; Wang, P.; Qin, R.; Shi, W.; Gong, L.; Zhu, J.; Ma, Q.; Chen, L.; Yu, J.; Liu, S.; et al. Flower-Like Amorphous MoO3−x Stabilized Ru Single Atoms for Efficient Overall Water/Seawater Splitting. Adv. Sci. 2023, 10, 2300342. [Google Scholar] [CrossRef]
- Niu, Z.; Lu, Z.; Qiao, Z.; Wang, S.; Cao, X.; Chen, X.; Yun, J.; Zheng, L.; Cao, D. Robust Ru-VO2 Bifunctional Catalysts for All-pH Overall Water Splitting. Adv. Mater. 2023, 36, 2310690. [Google Scholar] [CrossRef]
- Geng, S.; Tian, F.Y.; Li, M.G.; Liu, Y.Q.; Sheng, J.; Yang, W.W.; Yu, Y.S.; Hou, Y.L. Activating interfacial S sites of MoS2 boosts hydrogen evolution electrocatalysis. Nano Res. 2022, 15, 1809–1816. [Google Scholar] [CrossRef]
- Zhang, M.; Liu, Q.; Sun, W.; Sun, K.; Shen, Y.; An, W.; Zhang, L.; Chen, H.; Zou, X. Nanostructured intermetallics: From rational synthesis to energy electrocatalysis. Chem. Synth. 2023, 3, 28. [Google Scholar] [CrossRef]
- Zhu, Y.; Chen, Y.; Feng, Y.; Meng, X.; Xia, J.; Zhang, G. Constructing Ru-O-TM bridge in NiFe-LDH enables high current hydrazine-assisted H2 production. Adv. Mater. 2024, 36, 2401694. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, Y.; Zhai, W.; Liu, H.; Sakthivel, T.; Guo, S.; Dai, Z. Metastabilizing the Ruthenium Clusters by Interfacial Oxygen Vacancies for Boosted Water Splitting Electrocatalysis. Adv. Energy Mater. 2024, 14, 2400059. [Google Scholar] [CrossRef]
- Gou, W.; Wang, Y.; Zhang, M.; Tan, X.; Ma, Y.; Qu, Y. A review on fundamentals for designing stable ruthenium-based catalysts for the hydrogen and oxygen evolution reactions. Chin. J. Catal. 2024, 60, 68–106. [Google Scholar] [CrossRef]
- Zhao, L.; Zhu, J.; Zheng, Y.; Xiao, M.; Gao, R.; Zhang, Z.; Wen, G.; Dou, H.; Deng, Y.P.; Yu, A. Materials engineering toward durable electrocatalysts for proton exchange membrane fuel cells. Adv. Energy Mater. 2022, 12, 2102665. [Google Scholar] [CrossRef]
- Liu, R.; Sun, M.; Liu, X.; Lv, Z.; Yu, X.; Wang, J.; Liu, Y.; Li, L.; Feng, X.; Yang, W.; et al. Enhanced Metal-Support Interactions Boost the Electrocatalytic Water Splitting of Supported Ruthenium Nanoparticles on a Ni3N/NiO Heterojunction at Industrial Current Density. Angew. Chem. Int. Ed. 2023, 62, e202312644. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Jadhav, A.R.; Yang, T.; Hwang, Y.; Wang, H.; Wang, L.; Luo, Y.; Kumar, A.; Lee, J.; et al. Unraveling the Function of Metal-Amorphous Support Interactions in Single-Atom Electrocatalytic Hydrogen Evolution. Angew. Chem. Int. Ed. 2022, 61, e202114160. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.; Ma, M.; Zhang, C.; Chang, H.H.; Zhang, Y.; Li, L.; Chen, H.Y.; Peng, S. Manipulating the microenvironment of single atoms by switching support crystallinity for industrial hydrogen evolution. Angew. Chem. Int. Ed. 2023, 63, e202317220. [Google Scholar] [CrossRef]
- Li, X.; Liu, X.; Zhang, C.; Wang, R.; Wei, G.; Yang, T.; Zhang, J.; Chen, Y.; Gao, S. A corrosion-etching strategy for fabricating RuO2 coupled with defective NiFeZn(OH)x for a highly efficient hydrogen evolution reaction. J. Mater. Chem. A 2022, 10, 20453–20463. [Google Scholar] [CrossRef]
- Chen, M.; Li, W.; Lu, Y.; Qi, P.; Wu, H.; Liu, G.; Zhao, Y.; Tang, Y. Corrosion engineering approach to rapidly prepare Ni(Fe)OOH/Ni(Fe)Sx nanosheet arrays for efficient water oxidation. J. Mater. Chem. A 2023, 11, 4608–4618. [Google Scholar] [CrossRef]
- Li, X.G.; Liu, C.; Fang, Z.T.; Xu, L.; Lu, C.L.; Hou, W.H. Ultrafast room-temperature synthesis of self-supported NiFe-layered double hydroxide aslLarge-current-density oxygen evolution electrocatalyst. Small 2022, 18, 2104354. [Google Scholar] [CrossRef]
- Chen, H.Y.; Gao, R.T.; Chen, H.J.; Yang, Y.; Wu, L.M.; Wang, L. Ruthenium And Silver Synergetic Regulation NiFe LDH Boosting Long-Duration Industrial Seawater Electrolysis. Adv. Funct. Mater. 2024, 34, 2315674. [Google Scholar] [CrossRef]
- Wang, H.; Chen, L.; Tan, L.; Liu, X.; Wen, Y.; Hou, W.; Zhan, T. Electrodeposition of NiFe-layered double hydroxide layer on sulfur-modified nickel molybdate nanorods for highly efficient seawater splitting. J. Colloid Interface Sci. 2022, 613, 349–358. [Google Scholar] [CrossRef]
- Lee, J.; Jung, H.; Park, Y.S.; Woo, S.; Kwon, N.; Xing, Y.; Oh, S.H.; Choi, S.M.; Han, J.W.; Lim, B. Corrosion-engineered bimetallic oxide electrode as anode for high-efficiency anion exchange membrane water electrolyzer. Chem. Eng. J. 2021, 420, 127670. [Google Scholar] [CrossRef]
- Cullity, B.D.; Smoluchowski, R. Elements of X-ray Diffraction. Phys. Today 1957, 10, 50. [Google Scholar] [CrossRef]
- Gui, Y.; Liu, Z.; Feng, X.; Jia, Y.; Zhang, Y.; Zhang, Y.; Yang, H.; Zhang, Y.; Li, M.; Liang, L.; et al. One-step electrodeposition synthesis of NiFePS on carbon cloth as self-supported electrodes for electrochemical overall water splitting. J. Colloid Interface Sci. 2024, 673, 444–452. [Google Scholar] [CrossRef]
- Fu, Q.; Wong, L.W.; Zheng, F.; Zheng, X.; Tsang, C.S.; Lai, K.H.; Shen, W.; Ly, T.H.; Deng, Q.; Zhao, J. Unraveling and leveraging in situ surface amorphization for enhanced hydrogen evolution reaction in alkaline media. Nat. Commun. 2023, 14, 6462. [Google Scholar] [CrossRef]
- Nie, J.; Shi, J.; Huang, T.; Xie, M.Y.; Ouyang, Z.Y.; Xian, M.H.; Huang, G.F.; Wan, H.; Hu, W.; Huang, W.Q. Cation-Induced Deep Reconstruction and Self-Optimization of NiFe Phosphide Precatalysts for Hydrogen Evolution and Overall Water Splitting. Adv. Funct. Mater. 2024, 34, 2314172. [Google Scholar] [CrossRef]
- Fu, C.; Hao, W.; Fan, J.; Zhang, Q.; Guo, Y.; Fan, J.; Chen, Z.; Li, G. Fabrication of Ultra-Durable and Flexible NiPx -Based Electrode toward High-Efficient Alkaline Seawater Splitting at Industrial Grade Current Density. Small 2023, 19, 2205689. [Google Scholar] [CrossRef] [PubMed]
- Li, Q.; Chen, C.; Luo, W.; Yu, X.; Chang, Z.; Kong, F.; Zhu, L.; Huang, Y.; Tian, H.; Cui, X.; et al. In Situ Active Site Refreshing of Electro-Catalytic Materials for Ultra-Durable Hydrogen Evolution at Elevated Current Density. Adv. Energy Mater. 2024, 14, 2304099. [Google Scholar] [CrossRef]
- Zhang, X.; Tong, L.; Shi, X.H.; Li, Z.S.; Xiao, Z.H.; Liu, Y.P.; Zhang, T.; Lin, S.W. Tailoring atomically local electric field of NiFe layered double hydroxides with Ag dopants to boost oxygen evolution kinetics. J. Colloid Interface Sci. 2024, 668, 502–511. [Google Scholar] [CrossRef]
- Li, Z.; Zhang, X.; Zhang, Z.; Chen, P.; Zhang, Y.; Dong, X. Dual-metal hydroxide@oxide heterojunction catalyst constructed via corrosion engineering for large-current oxygen evolution reaction. Appl. Catal. B-Environ. 2023, 325, 122311. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3−δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Yan, L.; Du, Z.; Lai, X.; Lan, J.; Liu, X.; Liao, J.; Feng, Y.; Li, H. Synergistically modulating the electronic structure of Cr-doped FeNi LDH nanoarrays by O-vacancy and coupling of MXene for enhanced oxygen evolution reaction. Int. J. Hydrogen Energy 2023, 48, 1892–1903. [Google Scholar] [CrossRef]
- Qiu, Z.; Dai, Y.; Yang, F.; Zhang, R.; Guo, W.; Xiao, X.; Tong, Y.; Yao, L.; Yang, Z. Optimizing the activity of hydrogen evolution reaction through controllable synthesis of single crystal or polycrystalline NixPy. J. Alloys Compd. 2024, 976, 173029. [Google Scholar] [CrossRef]
- Singha Roy, S.; Madhu, R.; Karmakar, A.; Kundu, S. From Theory to Practice: A Critical and Comparative Assessment of Tafel Slope Analysis Techniques in Electrocatalytic Water Splitting. ACS Mater. Lett. 2024, 6, 3112–3123. [Google Scholar] [CrossRef]
- Chen, W.; Wu, B.; Wang, Y.; Zhou, W.; Li, Y.; Liu, T.; Xie, C.; Xu, L.; Du, S.; Song, M.; et al. Deciphering the alternating synergy between interlayer Pt single-atom and NiFe layered double hydroxide for overall water splitting. Energy Environ. Sci. 2021, 14, 6428–6440. [Google Scholar] [CrossRef]
- Zhang, X.; Jin, M.; Jia, F.; Huang, J.; Amini, A.; Song, S.; Yi, H.; Cheng, C. Noble-Metal-Free oxygen evolution reaction electrocatalysts working at high current densities over 1000 mA cm−2: From fundamental understanding to design principles. Energy Environ. Mater. 2023, 6, e12457. [Google Scholar] [CrossRef]
- Jiang, B.; Zhu, J.; Xia, Z.; Lyu, J.; Li, X.; Zheng, L.; Chen, C.; Chaemchuen, S.; Bu, T.; Verpoort, F.; et al. Correlating Single-Atomic Ruthenium Interdistance with Long-Range Interaction Boosts Hydrogen Evolution Reaction Kinetics. Adv. Mater. 2024, 36, 2310699. [Google Scholar] [CrossRef]
- Wang, S.; Jiang, T.; Hao, Y.; Wu, J.; Lei, C.; Chen, Z.; Du, W.; Gong, M. Unveiling the Cation Dependence in Alkaline Hydrogen Evolution by Differently-Charged Ruthenium/Molybdenum Sulfide Hybrids. Adv. Mater. 2024, 36, 2410422. [Google Scholar] [CrossRef]
- Liu, Y.; Liu, X.; Wang, X.; Ning, H.; Yang, T.; Yu, J.; Kumar, A.; Luo, Y.; Wang, H.; Wang, L. Unraveling the synergy of chemical hydroxylation and the physical heterointerface upon improving the hydrogen evolution kinetics. ACS Nano 2021, 15, 15017–15026. [Google Scholar] [CrossRef]
- Fu, L.; Wang, S.; Cai, J.; Huang, H.; Yang, F.; Xie, S. Recent advances in platinum-group-metal based electrocatalysts for alkaline hydrogen oxidation reaction. Chem. Synth. 2024, 4, 8. [Google Scholar] [CrossRef]
- Wang, H.Y.; Hung, S.F.; Chen, H.Y.; Chan, T.S.; Chen, H.M.; Liu, B. In Operando Identification of Geometrical-Site-Dependent Water Oxidation Activity of Spinel Co3O4. J. Am. Chem. Soc. 2016, 138, 36–39. [Google Scholar] [CrossRef] [PubMed]
- Bai, L.; Harrington, D.; Conway, B. Behavior of overpotential—Deposited species in Faradaic reactions—II. ac Impedance measurements on H2 evolution kinetics at activated and unactivated Pt cathodes. Electrochim. Acta 1987, 32, 1713–1731. [Google Scholar] [CrossRef]
- He, S.; Tu, Y.; Zhang, J.; Zhang, L.; Ke, J.; Wang, L.; Du, L.; Cui, Z.; Song, H. Ammonia-Induced FCC Ru Nanocrystals for Efficient Alkaline Hydrogen Electrocatalysis. Small 2024, 20, 2308053. [Google Scholar] [CrossRef]
- Hao, Y.; Hung, S.F.; Tian, C.; Wang, L.; Chen, Y.Y.; Zhao, S.; Peng, K.S.; Zhang, C.; Zhang, Y.; Kuo, C.H.; et al. Polarized Ultrathin BN Induced Dynamic Electron Interactions for Enhancing Acidic Oxygen Evolution. Angew. Chem. Int. Ed. 2024, 63, e202402018. [Google Scholar] [CrossRef]
- Malhotra, D.; Nguyen, T.H.; Tran, D.T.; Dinh, V.A.; Kim, N.H.; Lee, J.H. Triphasic Ni2P-Ni12P5 -Ru with Amorphous Interface Engineering Promoted by Co Nano-Surface for Efficient Water Splitting. Small 2024, 20, 2309122. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.P.; Wang, X.H.; Gong, M.X.; Wang, R.; Hao, X.F.; Chen, Y. Corrosion strategy for synthesizing Ru-decorated FeOOH nanoneedles as advanced hydrogen evolution reaction catalysts. J. Alloys Compd. 2023, 958, 170430. [Google Scholar] [CrossRef]
- Feng, X.Y.; Sun, T.T.; Feng, X.F.; Yu, H.; Yang, Y.; Chen, L.M.; Zhang, F.Q. Single-Atomic-Site Platinum Steers Middle Hydroxyl Selective Oxidation on Amorphous/Crystalline Homojunction for Photoelectrochemical Glycerol Oxidation Coupled with Hydrogen Generation. Adv. Funct. Mater. 2024, 34, 2316238. [Google Scholar] [CrossRef]
- Ma, G.; Yang, N.; Xue, Y.; Zhou, G.; Wang, X. Ethylene glycol electrochemical reforming using ruthenium nanoparticle-decorated nickel phosphide ultrathin nanosheets. ACS Appl. Mater. Interfaces 2021, 13, 42763–42772. [Google Scholar] [CrossRef]
- Li, X.; Niu, Z.; Niu, M.; Wang, J.; Cao, D.; Zeng, X. Single atom Ru doped Ni2P/Fe3P heterostructure for boosting hydrogen evolution for water splitting. Small 2024, 20, 2311335. [Google Scholar] [CrossRef]
- Cai, J.; Zhang, W.; Liu, Y.; Shen, R.; Xie, X.; Tian, W.; Zhang, X.; Ding, J.; Liu, Y.; Li, B. Interfacial synergistic effect of Ru nanoparticles embedded onto amorphous/crystalline WO3 nanorods on boosting the pH-universal hydrogen evolution reaction. Appl. Catal. B Environ. 2023, 343, 123502. [Google Scholar] [CrossRef]
- Wu, Z.; Zhao, Y.; Wu, H.; Gao, Y.; Chen, Z.; Jin, W.; Wang, J.; Ma, T.; Wang, L. Corrosion Engineering on Iron Foam toward Efficiently Electrocatalytic Overall Water Splitting Powered by Sustainable Energy. Adv. Funct. Mater. 2021, 31, 2010437. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Huang, Q.; Zhang, X.; Tong, L.; Liu, Y.; Lin, S. Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction. Catalysts 2025, 15, 434. https://doi.org/10.3390/catal15050434
Huang Q, Zhang X, Tong L, Liu Y, Lin S. Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction. Catalysts. 2025; 15(5):434. https://doi.org/10.3390/catal15050434
Chicago/Turabian StyleHuang, Quanbin, Xu Zhang, Li Tong, Yipu Liu, and Shiwei Lin. 2025. "Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction" Catalysts 15, no. 5: 434. https://doi.org/10.3390/catal15050434
APA StyleHuang, Q., Zhang, X., Tong, L., Liu, Y., & Lin, S. (2025). Growing Nanocrystalline Ru on Amorphous/Crystalline Heterostructure for Efficient and Durable Hydrogen Evolution Reaction. Catalysts, 15(5), 434. https://doi.org/10.3390/catal15050434