Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment
Abstract
:1. Introduction
2. Promotion of Photocatalysis by Photothermal Conversion of Graphene
3. Strategies for Enhancing System of SDIE-Coupled Photocatalytic
3.1. Enhancing Light Absorption
3.2. Enhancement of Photon Conversion Efficiency
3.3. Reducing the Enthalpy of Water Evaporation
3.4. Optimization for Environmental Energy Applications
3.5. Water Transport Regulation
3.6. Desalination Strategies
4. Structural Design of Graphene-Based SDIE-Coupled Photocatalytic Systems
4.1. Monolayer Structure
4.2. Multilayer Structures
4.3. 3D Structures
5. Application of Graphene-Based SDIE-Coupled Photocatalytic Systems in Water Treatment
5.1. Photocatalytic Degradation of Organic Pollutants
5.2. Reduction in and Fixation of Heavy Metal Ions
5.3. Microbial Inactivation and Anti-Biofouling
6. Design and Scale-Up of Graphene-Based Evaporation–Catalytic Experimental Systems
7. Challenges and Future Perspectives
7.1. Low Steam Condensation Efficiency Affecting Subsequent Freshwater Collection
7.2. Stability of Solar Evaporators in Long-Term Practical Operation
7.3. Adaptive Limitations in Complex Water Bodies
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, A.; Liang, H.; Chen, T.; Yang, W.; Ding, C. Influence of long-term irrigation with treated papermaking wastewater on soil ecosystem of a full-scale managed reed wetland. J. Soils Sediments 2015, 16, 1352–1359. [Google Scholar] [CrossRef]
- Magni, M.; Jones, E.R.; Bierkens, M.F.P.; van Vliet, M.T.H. Global energy consumption of water treatment technologies. Water Res. 2025, 277, 123245. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.; Qiu, J.; Xu, X.; Wan, R.; Yao, M.; Wang, H.; Zhou, Z.; Xu, J. Solar driven kaolin-based hydrogels for efficient interfacial evaporation and heavy metal ion adsorption from wastewater. Sep. Purif. Technol. 2025, 354, 129243. [Google Scholar] [CrossRef]
- Jiang, Y.; Tang, Y.; Li, H. A review of trends in the use of sewage irrigation technology from the livestock and poultry breeding industries for farmlands. Irrig. Sci. 2022, 40, 297–308. [Google Scholar] [CrossRef]
- Kama, R.; Liu, Y.; Aidara, M.; Kpalari, D.F.; Song, J.; Diatta, S.; Sulemana, H.; Li, H.; Li, Z. Plant-Soil Feedback Combined with Straw Incorporation Under Maize/Soybean Intercropping Increases Heavy Metals Migration in Soil-Plant System and Soil HMRG Abundance Under Livestock Wastewater Irrigation. J. Soil Sci. Plant Nutr. 2024, 24, 7090–7104. [Google Scholar] [CrossRef]
- Yu, J.; Wang, C.; Liu, S.; Yang, S.; Du, X.; Liu, S.; Shao, C.; Kong, H.; Wang, B.; Wu, T.; et al. Solid waste-derived solar desalination devices: Enhanced efficiency in water vapor generation and diffusion. Chem. Eng. J. 2024, 485, 149870. [Google Scholar] [CrossRef]
- Giwa, A.; Yusuf, A.; Dindi, A.; Balogun, H.A. Polygeneration in desalination by photovoltaic thermal systems: A comprehensive review. Renew. Sustain. Energy Rev. 2020, 130, 109946. [Google Scholar] [CrossRef]
- Ali, A.; Tufa, R.A.; Macedonio, F.; Curcio, E.; Drioli, E. Membrane technology in renewable-energy-driven desalination. Renew. Sustain. Energy Rev. 2018, 81, 1–21. [Google Scholar] [CrossRef]
- Richards, B.S.; Howard, I.A. Luminescent solar concentrators for building integrated photovoltaics: Opportunities and challenges. Energy Environ. Sci. 2023, 16, 3214–3239. [Google Scholar] [CrossRef]
- Li, J.; Wang, J.; Zhang, J.; Han, T.; Hu, X.; Lee, M.M.S.; Wang, D.; Tang, B.Z. A Facile Strategy of Boosting Photothermal Conversion Efficiency through State Transformation for Cancer Therapy. Adv. Mater. 2021, 33, e2105999. [Google Scholar] [CrossRef]
- Zhang, L.; Yang, Z.P.; Wu, X.; Wang, W.J.; Yang, C.; Xu, G.J.; Wu, C.A.; Bao, E.C. Open-Field Agrivoltaic System Impacts on Photothermal Environment and Light Environment Simulation Analysis in Eastern China. Agronomy 2023, 13, 1820. [Google Scholar] [CrossRef]
- Bei, X.R.; Yu, X.J.; Li, D.Q.; Sun, Q.L.; Yu, Y.H.; Wang, Y.Q.; Okonkwo, C.E.; Zhou, C.S. Heat source replacement strategy using catalytic infrared: A future for energy saving drying of fruits and vegetables. J. Food Sci. 2023, 88, 4827–4839. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Xu, J.; Tian, S.; Shi, K.; Gu, T.; Zhao, J.; Li, X.; Zhou, Z.; Tijing, L.; Shon, H.K. Hydrodynamic solar-driven interfacial evaporation—Gone with the flow. Water Res. 2024, 266, 122432. [Google Scholar] [CrossRef]
- Li, L.; Sun, X.S.; Miao, J.; Wang, H.N.; Song, Y.C.; Tang, D.W. Gradient engineering in interfacial evaporation for water, energy, and mineral harvesting. Energy Environ. Sci. 2025, 18, 1176–1190. [Google Scholar] [CrossRef]
- Bi, X.Y.; Li, L.B.; Luo, L.J.; Liu, X.H.; Li, J.M.; You, T.Y. A ratiometric fluorescence aptasensor based on photoinduced electron transfer from CdTe QDs to WS2 NTs for the sensitive detection of zearalenone in cereal crops. Food Chem. 2022, 385, 132657. [Google Scholar] [CrossRef]
- Wang, J.; Cao, X.; Cui, X.; Wang, H.; Zhang, H.; Wang, K.; Li, X.; Li, Z.; Zhou, Y. Recent Advances of Green Electricity Generation: Potential in Solar Interfacial Evaporation System. Adv. Mater. 2024, 36, e2311151. [Google Scholar] [CrossRef]
- Cai, M.; Li, C.; An, X.; Zhong, B.; Zhou, Y.; Feng, K.; Wang, S.; Zhang, C.; Xiao, M.; Wu, Z.; et al. Supra-Photothermal CO2 Methanation over Greenhouse-Like Plasmonic Superstructures of Ultrasmall Cobalt Nanoparticles. Adv. Mater. 2024, 36, e2308859. [Google Scholar] [CrossRef] [PubMed]
- Cai, R.; Xiang, H.; Yang, D.; Lin, K.T.; Wu, Y.; Zhou, R.; Gu, Z.; Yan, L.; Zhao, Y.; Tan, W. Plasmonic AuPt@CuS Heterostructure with Enhanced Synergistic Efficacy for Radiophotothermal Therapy. J. Am. Chem. Soc. 2021, 143, 16113–16127. [Google Scholar] [CrossRef]
- Wan, X.; Li, Y.; Chen, Y.; Ma, J.; Liu, Y.A.; Zhao, E.D.; Gu, Y.; Zhao, Y.; Cui, Y.; Li, R.; et al. A nonmetallic plasmonic catalyst for photothermal CO2 flow conversion with high activity, selectivity and durability. Nat. Commun. 2024, 15, 1273. [Google Scholar] [CrossRef]
- He, S.S.; Jiang, Y.Y.; Li, J.C.; Pu, K.Y. Semiconducting Polycomplex Nanoparticles for Photothermal Ferrotherapy of Cancer. Angew. Chem. Int. Ed. 2020, 59, 10633–10638. [Google Scholar] [CrossRef]
- Sun, L.; Li, Z.; Su, R.; Wang, Y.; Li, Z.; Du, B.; Sun, Y.; Guan, P.; Besenbacher, F.; Yu, M. Phase-Transition Induced Conversion into a Photothermal Material: Quasi-Metallic WO2.9 Nanorods for Solar Water Evaporation and Anticancer Photothermal Therapy. Angew. Chem. Int. Ed. Engl. 2018, 57, 10666–10671. [Google Scholar] [CrossRef]
- Yang, M.Q.; Tan, C.F.; Lu, W.; Zeng, K.; Ho, G.W. Spectrum Tailored Defective 2D Semiconductor Nanosheets Aerogel for Full-Spectrum-Driven Photothermal Water Evaporation and Photochemical Degradation. Adv. Funct. Mater. 2020, 30, 2004460. [Google Scholar] [CrossRef]
- Hu, A.; Zhao, Y.; Hu, Q.; Chen, C.; Lu, X.; Cui, S.; Liu, B. Highly efficient solar steam evaporation via elastic polymer covalent organic frameworks monolith. Nat. Commun. 2024, 15, 9484. [Google Scholar] [CrossRef] [PubMed]
- Huang, C.H.; Huang, J.X.; Chiao, Y.H.; Chang, C.M.; Hung, W.S.; Lue, S.J.; Wang, C.F.; Hu, C.C.; Lee, K.R.; Pan, H.H.; et al. Tailoring of a Piezo-Photo-Thermal Solar Evaporator for Simultaneous Steam and Power Generation. Adv. Funct. Mater. 2021, 31, 2010422. [Google Scholar] [CrossRef]
- Qi, D.; Liu, Y.; Liu, Y.; Liu, Z.; Luo, Y.; Xu, H.; Zhou, X.; Zhang, J.; Yang, H.; Wang, W.; et al. Polymeric Membranes with Selective Solution-Diffusion for Intercepting Volatile Organic Compounds during Solar-Driven Water Remediation. Adv. Mater. 2020, 32, e2004401. [Google Scholar] [CrossRef] [PubMed]
- Song, J.; Wang, F.; Yang, X.; Ning, B.; Harp, M.G.; Culp, S.H.; Hu, S.; Huang, P.; Nie, L.; Chen, J.; et al. Gold Nanoparticle Coated Carbon Nanotube Ring with Enhanced Raman Scattering and Photothermal Conversion Property for Theranostic Applications. J. Am. Chem. Soc. 2016, 138, 7005–7015. [Google Scholar] [CrossRef]
- Yu, Y.; Liu, Y.; Zhang, X.; Lv, B.; Xu, Y.; Fan, X. Co-enhancing volatile organic compound degradation and steam generation in solar interfacial evaporation by integrating with electro-Fenton. Water Res. 2025, 277, 123348. [Google Scholar] [CrossRef]
- Xia, Q.; Wang, C.; Xu, N.; Yang, J.; Gao, G.; Ding, J. A Floating Integrated Solar Micro-Evaporator for Self-Cleaning Desalination and Organic Degradation. Adv. Funct. Mater. 2023, 33, 2214769. [Google Scholar] [CrossRef]
- Huang, L.; Liu, R.; Yang, J.; Shuai, Q.; Yuliarto, B.; Kaneti, Y.V.; Yamauchi, Y. Nanoarchitectured porous organic polymers and their environmental applications for removal of toxic metal ions. Chem. Eng. J. 2021, 408, 127991. [Google Scholar] [CrossRef]
- Jing, Z.; Ding, J.; Zhang, T.; Yang, D.; Qiu, F.; Chen, Q.; Xu, J. Flexible, versatility and superhydrophobic biomass carbon aerogels derived from corn bracts for efficient oil/water separation. Food Bioprod. Process. 2019, 115, 134–142. [Google Scholar] [CrossRef]
- Fang, S.; Huang, W.; Wu, J.; Han, J.; Wang, L.; Wang, Y. Separation and Purification of Recombinant beta-Glucosidase with Hydrophobicity and Thermally Responsive Property from Cell Lysis Solution by Foam Separation and Further Purification. J. Agric. Food Chem. 2023, 71, 3362–3372. [Google Scholar] [CrossRef]
- Shoaib, M.; Li, H.; Khan, I.M.; Hassan, M.M.; Zareef, M.; Niazi, S.; Chen, Q. Emerging MXenes-based aptasensors: A paradigm shift in food safety detection. Trends Food Sci. Technol. 2024, 151, 104635. [Google Scholar] [CrossRef]
- Li, W.T.; Zhang, X.A.; Shi, Y.Q.; Hu, X.T.; Wang, X.; Liang, N.N.; Shen, T.T.; Zou, X.B.; Shi, J.Y. A dual-modal biosensor coupling cooperative catalysis strategy for sensitive detection of AFB1 in agri-products. Food Chem. 2023, 426, 136553. [Google Scholar] [CrossRef] [PubMed]
- Yin, M.; Wang, W.; Wei, J.; Chen, X.; Chen, Q.; Chen, X.; Oyama, M. Novel dual-emissive fluorescent immunoassay for synchronous monitoring of okadaic acid and saxitoxin in shellfish. Food Chem. 2022, 368, 130856. [Google Scholar] [CrossRef]
- Guo, Z.; Chen, P.; Yin, L.; Zuo, M.; Chen, Q.; El-Seedi, H.R.; Zou, X. Determination of lead in food by surface-enhanced Raman spectroscopy with aptamer regulating gold nanoparticles reduction. Food Control 2022, 132, 108498. [Google Scholar] [CrossRef]
- Kurapati, R.; Kostarelos, K.; Prato, M.; Bianco, A. Biomedical Uses for 2D Materials Beyond Graphene: Current Advances and Challenges Ahead. Adv. Mater. 2016, 28, 6052–6074. [Google Scholar] [CrossRef] [PubMed]
- Li, Z.J.; Lei, H.; Kan, A.K.; Xie, H.Q.; Yu, W. Photothermal applications based on graphene and its derivatives: A state-of-the-art review. Energy 2021, 216, 119262. [Google Scholar] [CrossRef]
- Lim, H.W.; Seung Lee, H.; Joon Lee, S. Laminated chitosan/graphene nanoplatelets aerogel for 3D interfacial solar desalination with harnessing wind energy. Chem. Eng. J. 2024, 480, 148197. [Google Scholar] [CrossRef]
- Wang, Y.; Liu, X.; Zhang, Q.; Wang, C.; Huang, S.; Liu, Y.; Yu, T.; Yang, R.; Chen, G.; Chaker, M.; et al. Stable, Cost-Effective TiN-Based Plasmonic Nanocomposites with over 99% Solar Steam Generation Efficiency. Adv. Funct. Mater. 2023, 33, 2212301. [Google Scholar] [CrossRef]
- Lv, F.; Miao, J.; Hu, J.; Orejon, D. 3D Solar Evaporation Enhancement by Superhydrophilic Copper Foam Inverted Cone and Graphene Oxide Functionalization Synergistic Cooperation. Small 2023, 19, e2208137. [Google Scholar] [CrossRef]
- Ma, J.; Guo, Z.; Han, X.; Guo, K.; Li, H.; Fang, P.; Wang, X.; Xin, J. Reduced graphene oxide/FeOOH-based asymmetric evaporator for the simultaneous generation of clean water and electrical power. Carbon 2023, 201, 318–327. [Google Scholar] [CrossRef]
- Fan, Z.; Liu, J.; Liu, H.; Liu, L.; She, Y.; Wen, X.; Wang, H.; Hu, G.; Niu, R.; Gong, J. Synergism of solar-driven interfacial evaporation and photo-Fenton Cr(VI) reduction by sustainable Bi-MOF-based evaporator from waste polyester. J. Energy Chem. 2024, 94, 527–540. [Google Scholar] [CrossRef]
- Noureen, L.; Xie, Z.; Gao, Y.; Li, M.; Hussain, M.; Wang, K.; Zhang, L.; Zhu, J. Multifunctional Ag3PO4-rGO-Coated Textiles for Clean Water Production by Solar-Driven Evaporation, Photocatalysis, and Disinfection. ACS Appl. Mater. Interfaces 2020, 12, 6343–6350. [Google Scholar] [CrossRef]
- Sharma, A.S.; Ali, S.; Sabarinathan, D.; Murugavelu, M.; Li, H.; Chen, Q. Recent progress on graphene quantum dots-based fluorescence sensors for food safety and quality assessment applications. Compr. Rev. Food Sci. Food Saf. 2021, 20, 5765–5801. [Google Scholar] [CrossRef]
- Li, Y.; Li, Y.; Zhang, D.; Tan, W.; Shi, J.; Li, Z.; Liu, H.; Yu, Y.; Yang, L.; Wang, X.; et al. A fluorescence resonance energy transfer probe based on functionalized graphene oxide and upconversion nanoparticles for sensitive and rapid detection of zearalenone. LWT 2021, 147, 111541. [Google Scholar] [CrossRef]
- Rong, J.; Zhou, Z.; Wang, Y.; Han, J.; Li, C.; Zhang, W.; Ni, L. Immobilization of Horseradish Peroxidase on Multi-Armed Magnetic Graphene Oxide Composite: Improvement of Loading Amount and Catalytic Activity. Food Technol. Biotechnol. 2019, 57, 260–271. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.; Luo, S.; Sun, L.; Kong, D.; Sheng, J.; Wang, K.; Dong, C. A Green, Simple, and Rapid Detection for Amaranth in Candy Samples Based on the Fluorescence Quenching of Nitrogen-Doped Graphene Quantum Dots. Food Anal. Methods 2019, 12, 1658–1665. [Google Scholar] [CrossRef]
- Ren, H.Y.; Tang, M.; Guan, B.L.; Wang, K.X.; Yang, J.W.; Wang, F.F.; Wang, M.Z.; Shan, J.Y.; Chen, Z.L.; Wei, D.; et al. Hierarchical Graphene Foam for Efficient Omnidirectional Solar-Thermal Energy Conversion. Adv. Mater. 2017, 29, 1702590. [Google Scholar] [CrossRef]
- Wei, N.; Peng, X.S.; Xu, Z.P. Understanding Water Permeation in Graphene Oxide Membranes. Acs Appl. Mater. Interfaces 2014, 6, 5877–5883. [Google Scholar] [CrossRef]
- Chen, S.S.; Wu, Q.Z.; Mishra, C.; Kang, J.Y.; Zhang, H.J.; Cho, K.J.; Cai, W.W.; Balandin, A.A.; Ruoff, R.S. Thermal conductivity of isotopically modified graphene. Nat. Mater. 2012, 11, 203–207. [Google Scholar] [CrossRef]
- Balandin, A.A.; Ghosh, S.; Bao, W.Z.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C.N. Superior thermal conductivity of single-layer graphene. Nano Lett. 2008, 8, 902–907. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Duan, N.; Qiu, Y.; Li, J.; Wang, Z. Colorimetric aptasensor for the detection of Salmonella enterica serovar typhimurium using ZnFe2O4-reduced graphene oxide nanostructures as an effective peroxidase mimetics. Int. J. Food Microbiol. 2017, 261, 42–48. [Google Scholar] [CrossRef] [PubMed]
- Li, Y.H.; Tang, Z.R.; Xu, Y.J. Multifunctional graphene-based composite photocatalysts oriented by multifaced roles of graphene in photocatalysis. Chin. J. Catal. 2022, 43, 708–730. [Google Scholar] [CrossRef]
- Luo, L.; Liu, X.; Ma, S.; Li, L.; You, T. Quantification of zearalenone in mildewing cereal crops using an innovative photoelectrochemical aptamer sensing strategy based on ZnO-NGQDs composites. Food Chem. 2020, 322, 126778. [Google Scholar] [CrossRef] [PubMed]
- Luo, L.; Ma, S.; Li, L.; Liu, X.; Zhang, J.; Li, X.; Liu, D.; You, T. Monitoring zearalenone in corn flour utilizing novel self-enhanced electrochemiluminescence aptasensor based on NGQDs-NH2-Ru@SiO2 luminophore. Food Chem. 2019, 292, 98–105. [Google Scholar] [CrossRef]
- Zhang, W.; Xu, Y.; Zou, X. Rapid determination of cadmium in rice using an all-solid RGO-enhanced light addressable potentiometric sensor. Food Chem. 2018, 261, 1–7. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, W.; Shi, J.; Zou, X.; Li, Y.; Haroon Elrasheid, T.; Huang, X.; Li, Z.; Zhai, X.; Hu, X. Electrodeposition of gold nanoparticles and reduced graphene oxide on an electrode for fast and sensitive determination of methylmercury in fish. Food Chem. 2017, 237, 423–430. [Google Scholar] [CrossRef]
- Zhou, W.; Li, C.; Sun, C.; Yang, X. Simultaneously determination of trace Cd2+ and Pb2+ based on L-cysteine/graphene modified glassy carbon electrode. Food Chem. 2016, 192, 351–357. [Google Scholar] [CrossRef]
- Zhang, J.; Lei, Y.; Lin, Z.; Xie, P.; Lu, H.; Xu, J. A novel approach to recovery of lithium element and production of holey graphene based on the lithiated graphite of spent lithium ion batteries. Chem. Eng. J. 2022, 436, 135011. [Google Scholar] [CrossRef]
- Kim, S.H.; Kim, D.S.; Moradi, H.; Chang, Y.Y.; Yang, J.K. Highly porous biobased graphene-like carbon adsorbent for dye removal: Preparation, adsorption mechanisms and optimization. J. Environ. Chem. Eng. 2023, 11, 109278. [Google Scholar] [CrossRef]
- Cao, L.Y.; Wang, C.W.; Huang, Y.X. Structure optimization of graphene aerogel-based composites and applications in batteries and supercapacitors. Chem. Eng. J. 2023, 454, 140094. [Google Scholar] [CrossRef]
- Han, J.; Fang, S.; He, X.; Wang, L.; Li, C.; Wu, J.; Cai, Y.; Wang, Y. Combination of aqueous two-phase flotation and inverse transition cycling: Strategies for separation and purification of recombinant beta-glucosidase from cell lysis solution. Food Chem. 2022, 373, 131543. [Google Scholar] [CrossRef]
- Duan, N.; Gong, W.; Wu, S.; Wang, Z. Selection and Application of ssDNA Aptamers against Clenbuterol Hydrochloride Based on ssDNA Library Immobilized SELEX. J. Agric. Food Chem. 2017, 65, 1771–1777. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Y.; Ma, Y.; Zhou, R.; He, Y.; Wu, Y.; Yi, Y.; Zhu, G. Highly sensitive electrochemical detection of paraoxon ethyl in water and fruit samples based on defect-engineered graphene nanoribbons modified electrode. J. Food Meas. Charact. 2022, 16, 2596–2603. [Google Scholar] [CrossRef]
- Chao, Y.; Pang, J.; Bai, Y.; Wu, P.; Luo, J.; He, J.; Jin, Y.; Li, X.; Xiong, J.; Li, H.; et al. Graphene-like BN@SiO2 nanocomposites as efficient sorbents for solid-phase extraction of Rhodamine B and Rhodamine 6G from food samples. Food Chem. 2020, 320, 126666. [Google Scholar] [CrossRef]
- Zhu, Y.W.; Murali, S.; Cai, W.W.; Li, X.S.; Suk, J.W.; Potts, J.R.; Ruoff, R.S. Graphene and Graphene Oxide: Synthesis, Properties, and Applications. Adv. Mater. 2010, 22, 3906–3924. [Google Scholar] [CrossRef]
- Han, B.; Zhang, Y.L.; Chen, Q.D.; Sun, H.B. Carbon-Based Photothermal Actuators. Adv. Funct. Mater. 2018, 28, 1802235. [Google Scholar] [CrossRef]
- Xie, Z.; Duo, Y.; Lin, Z.; Fan, T.; Xing, C.; Yu, L.; Wang, R.; Qiu, M.; Zhang, Y.; Zhao, Y.; et al. The Rise of 2D Photothermal Materials beyond Graphene for Clean Water Production. Adv. Sci. 2020, 7, 1902236. [Google Scholar] [CrossRef]
- Li, X.; Yu, J.; Wageh, S.; Al-Ghamdi, A.A.; Xie, J. Graphene in Photocatalysis: A Review. Small 2016, 12, 6640–6696. [Google Scholar] [CrossRef]
- Yan, S.W.; Song, H.J.; Li, Y.; Yang, J.; Jia, X.H.; Wang, S.Z.; Yang, X.F. Integrated reduced graphene oxide/polypyrrole hybrid aerogels for simultaneous photocatalytic decontamination and water evaporation. Appl. Catal. B-Environ. Energy 2022, 301, 120820. [Google Scholar] [CrossRef]
- Li, Q.; Lu, J.; Gupta, P.; Qiu, M. Engineering Optical Absorption in Graphene and Other 2D Materials: Advances and Applications. Adv. Opt. Mater. 2019, 7, 1900595. [Google Scholar] [CrossRef]
- Zeng, L.; Deng, D.X.; Zhu, L.Y.; Zhang, Z.K.; Gu, X.; Wang, H.M.; Jiang, Y.J. Multi-scale CuS-rGO pyramidal photothermal structure for highly efficient solar-driven water evaporation and thermoelectric power generation. Nano Energy 2024, 125, 109531. [Google Scholar] [CrossRef]
- Ma, H.D.; Yu, L.J.; Li, Z.Z.; Chen, J.L.; Meng, J.G.; Song, Q.W.; Liu, Y.M.; Wang, Y.Z.; Wu, Q.; Miao, M.H.; et al. A Lotus Seedpods-Inspired Interfacial Solar Steam Generator with Outstanding Salt Tolerance and Mechanical Properties for Efficient and Stable Seawater Desalination. Small 2023, 19, 2304877. [Google Scholar] [CrossRef]
- Zhao, X.; Meng, X.; Zou, H.; Wang, Z.; Du, Y.; Shao, Y.; Qi, J.; Qiu, J. Topographic Manipulation of Graphene Oxide by Polyaniline Nanocone Arrays Enables High-Performance Solar-Driven Water Evaporation. Adv. Funct. Mater. 2022, 33, 2209207. [Google Scholar] [CrossRef]
- Xiong, R.; Zhong, L.; Song, Y.; Xu, J.; Xiao, Y.; Cheng, B.; Lei, S. CoCr2O4 Nanoparticles with Abundant Oxygen Vacancies: A New Photothermal Platform for Efficient Solar Evaporation. ACS Mater. Lett. 2023, 5, 1992–2001. [Google Scholar] [CrossRef]
- Li, G.Q.; Wang, Q.; Wang, J.; Ye, J.Y.; Zhou, W.W.; Xu, J.; Zhuo, S.; Chen, W.F.; Liu, Y. Carbon-supported nano tungsten bronze aerogels with synergistically enhanced photothermal conversion performance: Fabrication and application in solar evaporation. Carbon 2022, 195, 263–271. [Google Scholar] [CrossRef]
- Meng, X.Y.; Yang, J.H.; Ramakrishna, S.; Sun, Y.M.; Dai, Y.Q. Gradient-aligned Au/graphene meshes with confined heat at multiple levels for solar evaporation and anti-gravity catalytic conversion. J. Mater. Chem. A 2020, 8, 16570–16581. [Google Scholar] [CrossRef]
- Wang, X.L.; Lyu, Q.; Tong, T.Z.; Sun, K.; Lin, L.C.; Tang, C.Y.Y.; Yang, F.L.; Guiver, M.D.; Quan, X.; Dong, Y.C. Robust ultrathin nanoporous MOF membrane with intra-crystalline defects for fast water transport. Nat. Commun. 2022, 13, 266. [Google Scholar] [CrossRef]
- Ren, L.T.; Yang, X.N.; Sun, X.; Yuan, Y.P. Synchronizing Efficient Purification of VOCs in Durable Solar Water Evaporation over a Highly Stable Cu/W18O49@Graphene Material. Nano Lett. 2023, 24, 715–723. [Google Scholar] [CrossRef]
- Ji, M.Y.J.; Kim, J.H.; Jeon, H.Y.; Han, S.H.; Lee, D.H.; Lee, Y.I. High-performance interfacial water evaporation of black TiO2-xwith high-concentration bulk oxygen vacancies. Chem. Eng. J. 2024, 483, 149435. [Google Scholar] [CrossRef]
- Allahbakhsh, A.; Jarrahi, Z.; Farzi, G.; Shavandi, A. Solar-powered and antibacterial water purification via Cu-BTC-embedded reduced graphene oxide nanocomposite aerogels. Chem. Eng. J. 2023, 467, 143472. [Google Scholar] [CrossRef]
- Wang, A.; Liang, H.; Chen, F.; Tian, X.; Yin, S.; Jing, S.; Tsiakaras, P. Facile synthesis of C3N4/NiIn2S4 heterostructure with novel solar steam evaporation efficiency and photocatalytic H2O2 production performance. Appl. Catal. B Environ. 2022, 310, 121336. [Google Scholar] [CrossRef]
- Gu, J.; Zhang, Y.; Xiao, P.; Fan, Q.; Guan, J.; Liang, K.; Chen, T. Sunflower-inspired hydrogel evaporator with mutual reinforcement of evaporation and photodegradation for integrated water management. Chem. Eng. J. 2024, 490, 151550. [Google Scholar] [CrossRef]
- Mo, H.; Wang, Y. A bionic solar-driven interfacial evaporation system with a photothermal-photocatalytic hydrogel for VOC removal during solar distillation. Water Res. 2022, 226, 119276. [Google Scholar] [CrossRef]
- Zhang, C.Y.; Jiang, Y.; Zou, X.Q.; Xing, L.; Liu, W.X.; Huang, Z.H.; Feng, Y.W.; Wang, J.K. Biomass-Based Ferric Tannate Hydrogel with a Photothermal Conversion Function for Solar Water Evaporation. Acs Appl. Polym. Mater. 2023, 5, 9574–9584. [Google Scholar] [CrossRef]
- Dao, V.-D.; Vu, N.H.; Thi Dang, H.-L.; Yun, S. Recent advances and challenges for water evaporation-induced electricity toward applications. Nano Energy 2021, 85, 105979. [Google Scholar] [CrossRef]
- Lu, Y.; Fan, D.; Shen, Z.; Zhang, H.; Xu, H.; Yang, X. Design and performance boost of a MOF-functionalized-wood solar evaporator through tuning the hydrogen-bonding interactions. Nano Energy 2022, 95, 107016. [Google Scholar] [CrossRef]
- Wu, X.; Lu, Y.; Ren, X.H.; Wu, P.; Chu, D.W.; Yang, X.F.; Xu, H.L. Interfacial Solar Evaporation: From Fundamental Research to Applications. Adv. Mater. 2024, 36, 2313090. [Google Scholar] [CrossRef]
- Guo, Y.; de Vasconcelos, L.S.; Manohar, N.; Geng, J.; Johnston, K.P.; Yu, G. Highly Elastic Interconnected Porous Hydrogels through Self-Assembled Templating for Solar Water Purification. Angew. Chem. Int. Ed. Engl. 2022, 61, e202114074. [Google Scholar] [CrossRef]
- Zhao, Q.; Yang, Y.; Zhu, B.; Sha, Z.; Zhu, H.; Wu, Z.; Nawaz, F.; Wei, Y.; Luo, L.; Que, W. Low vaporization enthalpy hydrogels for highly efficient solar-driven interfacial evaporation. Desalination 2023, 568, 116999. [Google Scholar] [CrossRef]
- Li, X.P.; Li, X.; Li, H.; Zhao, Y.; Wu, J.; Yan, S.; Yu, Z.Z. Reshapable MXene/Graphene Oxide/Polyaniline Plastic Hybrids with Patternable Surfaces for Highly Efficient Solar-Driven Water Purification. Adv. Funct. Mater. 2021, 32, 2110636. [Google Scholar] [CrossRef]
- Li, W.; Tian, X.; Li, X.; Han, S.; Li, C.; Zhai, X.-Z.; Kang, Y.; Yu, Z.-Z. Ultrahigh solar steam generation rate of a vertically aligned reduced graphene oxide foam realized by dynamic compression. J. Mater. Chem. A 2021, 9, 14859–14867. [Google Scholar] [CrossRef]
- Lee, W.C.; Ronghe, A.; Villalobos, L.F.; Huang, S.; Dakhchoune, M.; Mensi, M.; Hsu, K.J.; Ayappa, K.G.; Agrawal, K.V. Enhanced Water Evaporation from A-Scale Graphene Nanopores. ACS Nano 2022, 16, 15382–15396. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.; Burhan, M.; Shahzad, M.W.; Ybyraiymkul, D.; Akhtar, F.H.; Li, Y.; Ng, K.C. A zero liquid discharge system integrating multi-effect distillation and evaporative crystallization for desalination brine treatment. Desalination 2021, 502, 114928. [Google Scholar] [CrossRef]
- Chen, Y.F.; Chen, H.; Dai, Y.T.; Xiao, J.L.; Qiu, F.X.; Zhang, T. Honeycomb porous regenerated cellulose aerogel films with enhanced thermal dissipation for agricultural mulch application. Food Bioprod. Process. 2024, 147, 418–427. [Google Scholar] [CrossRef]
- Wang, J.; Kong, Y.; Liu, Z.; Wang, H. Solar-driven interfacial evaporation: Design and application progress of structural evaporators and functional distillers. Nano Energy 2023, 108, 108115. [Google Scholar] [CrossRef]
- Ni, G.; Li, G.; Boriskina, S.V.; Li, H.X.; Yang, W.L.; Zhang, T.J.; Chen, G. Steam generation under one sun enabled by a floating structure with thermal concentration. Nat. Energy 2016, 1, 16126. [Google Scholar] [CrossRef]
- Gong, B.; Yang, H.; Wu, S.; Tian, Y.; Yan, J.; Cen, K.; Bo, Z.; Ostrikov, K. Nanotexturing-enhanced heat transfer and interfacial evaporation for energy-efficient solar-thermal water desalination. Int. J. Heat Mass Transf. 2022, 186, 122462. [Google Scholar] [CrossRef]
- Meng, S.; Zhao, X.; Tang, C.-Y.; Yu, P.; Bao, R.-Y.; Liu, Z.-Y.; Yang, M.-B.; Yang, W. A bridge-arched and layer-structured hollow melamine foam/reduced graphene oxide composite with an enlarged evaporation area and superior thermal insulation for high-performance solar steam generation. J. Mater. Chem. A 2020, 8, 2701–2711. [Google Scholar] [CrossRef]
- Han, X.; Besteiro, L.V.; Koh, C.S.L.; Lee, H.K.; Phang, I.Y.; Phan-Quang, G.C.; Ng, J.Y.; Sim, H.Y.F.; Lay, C.L.; Govorov, A.; et al. Intensifying Heat Using MOF-Isolated Graphene for Solar-Driven Seawater Desalination at 98% Solar-to-Thermal Efficiency. Adv. Funct. Mater. 2021, 31, 2008904. [Google Scholar] [CrossRef]
- Finnerty, C.T.K.; Menon, A.K.; Conway, K.M.; Lee, D.; Nelson, M.; Urban, J.J.; Sedlak, D.; Mi, B. Interfacial Solar Evaporation by a 3D Graphene Oxide Stalk for Highly Concentrated Brine Treatment. Env. Sci. Technol. 2021, 55, 15435–15445. [Google Scholar] [CrossRef]
- Shi, L.; Wang, Y.; Zhang, L.; Wang, P. Rational design of a bi-layered reduced graphene oxide film on polystyrene foam for solar-driven interfacial water evaporation. J. Mater. Chem. A 2017, 5, 16212–16219. [Google Scholar] [CrossRef]
- Song, H.M.; Liu, Y.H.; Liu, Z.J.; Singer, M.H.; Li, C.Y.; Cheney, A.R.; Ji, D.X.; Zhou, L.; Zhang, N.; Zeng, X.; et al. Cold Vapor Generation beyond the Input Solar Energy Limit. Adv. Sci. 2018, 5, 1800222. [Google Scholar] [CrossRef]
- Wang, Y.D.; Wu, X.; Yang, X.F.; Owens, G.; Xu, H.L. Reversing heat conduction loss: Extracting energy from bulk water to enhance solar steam generation. Nano Energy 2020, 78, 105269. [Google Scholar] [CrossRef]
- Kashyap, V.K.; Ghasemi, H.G. Solar heat localization: Concept and emerging applications. J. Mater. Chem. A 2020, 8, 7035–7065. [Google Scholar] [CrossRef]
- Lee, K.H.; Kang, D.J.; Eom, W.; Lee, H.; Han, T.H. Holey graphene oxide membranes containing both nanopores and nanochannels for highly efficient harvesting of water evaporation energy. Chem. Eng. J. 2022, 430, 132759. [Google Scholar] [CrossRef]
- Zhou, M.; Zhang, L.; Tao, S.; Li, R.; Wang, Y. Recent research advances in efficient solar-driven interfacial evaporation. Chem. Eng. J. 2024, 489, 151157. [Google Scholar] [CrossRef]
- Xu, H.; Lu, Y.; Jiang, F.; Zhang, J.; Ge, Y.; Li, Z. 3D porous N-doped lignosulfonate/graphene oxide aerogel for efficient solar steam generation and desalination. Int. J. Biol. Macromol. 2023, 233, 123469. [Google Scholar] [CrossRef]
- Liu, X.H.; Mishra, D.D.; Wang, X.B.; Peng, H.Y.; Hu, C.Q. Towards highly efficient solar-driven interfacial evaporation for desalination. J. Mater. Chem. A 2020, 8, 17907–17937. [Google Scholar] [CrossRef]
- Zhang, H.; Du, Y.; Jing, D.; Yang, L.; Ji, J.; Li, X. Integrated Janus Evaporator with an Enhanced Donnan Effect and Thermal Localization for Salt-Tolerant Solar Desalination and Thermal-to-Electricity Generation. ACS Appl. Mater. Interfaces 2023, 15, 49892–49901. [Google Scholar] [CrossRef]
- Zhao, D.; Ding, M.; Lin, T.; Duan, Z.; Wei, R.; Feng, P.; Yu, J.; Liu, C.Y.; Li, C. Gradient Graphene Spiral Sponges for Efficient Solar Evaporation and Zero Liquid Discharge Desalination with Directional Salt Crystallization. Adv. Sci. 2024, 11, e2400310. [Google Scholar] [CrossRef]
- Liu, H.; Luo, H.; Huang, J.; Chen, Z.; Yu, Z.; Lai, Y. Programmable Water/Light Dual-Responsive Hollow Hydrogel Fiber Actuator for Efficient Desalination with Anti-Salt Accumulation. Adv. Funct. Mater. 2023, 33, 2302038. [Google Scholar] [CrossRef]
- Sun, Y.; Tan, X.; Yuan, X.; Li, J. Solar-driven interfacial evaporation: Research advances in structural design. Chem. Eng. J. 2024, 495, 153316. [Google Scholar] [CrossRef]
- Zhou, J.G.; Sun, Z.L.; Chen, M.Q.; Wang, J.T.; Qiao, W.M.; Long, D.H.; Ling, L.C. Macroscopic and Mechanically Robust Hollow Carbon Spheres with Superior Oil Adsorption and Light-to-Heat Evaporation Properties. Adv. Funct. Mater. 2016, 26, 5368–5375. [Google Scholar] [CrossRef]
- Li, R.X.; Wu, M.R.; Ma, H.J.; Zhu, Y.Q.; Zhang, H.Y.; Chen, Q.M.; Zhang, C.H.; Wei, Y. A Single Component, Single Layer Flexile Foam Evaporator with the Higher Efficiency for Water Generation. Adv. Mater. 2024, 36, 2402016. [Google Scholar] [CrossRef]
- Wo, Z.; Sun, X.; Sun, H.; Su, Y.; Xie, Y.; Yang, N.; Zhang, X. All-in-one design of wood evaporator with highly-efficient salt resistance for sustainable solar desalination and contaminated water purification. Chem. Eng. J. 2025, 507, 160715. [Google Scholar] [CrossRef]
- Du, H.; Ge, C.; Xu, D.; Qian, Y.; Chen, Z.; Gao, C.; Song, B.; Shen, Z.; Chen, J.; Liu, K.; et al. Multifunctional woven fabric for integrated solar-driven water generation and personal thermal management. Cellulose 2023, 30, 9207–9220. [Google Scholar] [CrossRef]
- Sun, Z.Z.; Han, C.A.L.; Gao, S.W.; Li, Z.X.; Jing, M.X.; Yu, H.P.; Wang, Z.A.K. Achieving efficient power generation by designing bioinspired and multi-layered interfacial evaporator. Nat. Commun. 2022, 13, 5077. [Google Scholar] [CrossRef]
- Meng, F.L.; Gao, M.M.; Ding, T.P.; Yilmaz, G.; Ong, W.L.; Ho, G.W. Modular Deformable Steam Electricity Cogeneration System with Photothermal, Water, and Electrochemical Tunable Multilayers. Adv. Funct. Mater. 2020, 30, 2002867. [Google Scholar] [CrossRef]
- Sun, N.; Li, J.; Ren, J.; Xu, Z.; Sun, H.; Du, Z.; Zhao, H.; Ettelatie, R.; Cheng, F. Insights into the enhanced flux of graphene oxide composite membrane in direct contact membrane distillation: The different role at evaporation and condensation interfaces. Water Res. 2022, 212, 118091. [Google Scholar] [CrossRef]
- Wei, Y.; Li, W.; Zhang, S.; Yu, J.; Tang, Y.; Wu, J.; Yu, S. Laser-Induced Porous Graphene/CuO Composite for Efficient Interfacial Solar Steam Generation. Adv. Funct. Mater. 2024, 34, 2401149. [Google Scholar] [CrossRef]
- Li, W.C.; Zheng, Z.H.; Qian, Z.Q.; Liu, H.; Wang, X.D. Phase Change Material Boosting Electricity Output and Freshwater Production through Hierarchical-Structured 3D Solar Evaporator. Adv. Funct. Mater. 2024, 34, 2316504. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Zhong, Q.Y.; Huang, Q.; Hu, M.; He, F.; Li, Y.X.; Wang, Z.X. Surface Engineering of 3D Solar Evaporator for Uncompromising Water Evaporation and Salt Production Toward High Concentration Brine. Adv. Funct. Mater. 2024, 34, 2408554. [Google Scholar] [CrossRef]
- Eskafi, A.F.; De Finnda, C.; Garcia, C.A.; Mi, B.X. Mineral Scaling in 3D Interfacial Solar Evaporators-A Challenge for Brine Treatment and Lithium Recovery. Environ. Sci. Technol. 2025, 59, 892–901. [Google Scholar] [CrossRef] [PubMed]
- Payanthoth, N.S.; Mut, N.N.N.; Samanta, P.; Li, G.L.; Jung, J.H. A review of biodegradation and formation of biodegradable microplastics in soil and freshwater environments. Appl. Biol. Chem. 2024, 67, 110. [Google Scholar] [CrossRef]
- Li, D.; Liang, Z.; Yang, H.; Zhang, M.; Cao, K.; Zhao, B.; Wang, Y.; Peng, M.; Sun, Y.; Jiang, L. Mutual Reinforcement of Evaporation and Catalysis for Efficient Freshwater–Salt–Chemical Production. Adv. Funct. Mater. 2023, 33, 2300353. [Google Scholar] [CrossRef]
- Huang, T.H.; Tian, X.Y.; Chen, Y.Y.; Widakdo, J.; Austria, H.F.M.; Setiawan, O.; Subrahmanya, T.M.; Hung, W.S.; Wang, D.M.; Chang, C.Y.; et al. Multifunctional Phra Phrom-like Graphene-Based Membrane for Environmental Remediation and Resources Regeneration. Adv. Funct. Mater. 2023, 34, 2308321. [Google Scholar] [CrossRef]
- Han, Z.X.; Wang, N.; Zhang, H.L.; Yang, X.Y. Heavy metal contamination and risk assessment of human exposure near an e-waste processing site. Acta Agric. Scand. Sect. B Soil Plant Sci. 2017, 67, 119–125. [Google Scholar] [CrossRef]
- Jiang, C.L.; Wang, X.H.; Hou, B.X.; Hao, C.; Li, X.; Wu, J.B. Construction of a Lignosulfonate-Lysine Hydrogel for the Adsorption of Heavy Metal Ions. J. Agric. Food Chem. 2020, 68, 3050–3060. [Google Scholar] [CrossRef]
- Tian, Y.; Du, C.; Yong, S.; Zhou, X.; Zhou, C.; Yang, S. Catalysis-involved 3D N-doped graphene aerogel achieves a superior solar water purification rate and efficiency. Chem. Eng. J. 2023, 453, 139793. [Google Scholar] [CrossRef]
- Dong, S.; Zhao, Y.; Yang, J.; Li, W.; Luo, W.; Li, S.; Liu, X.; Guo, H.; Yu, C.; Sun, J.; et al. Solar water recycling of carbonaceous aerogel in open and colsed systems for seawater desalination and wastewater purification. Chem. Eng. J. 2022, 431, 133824. [Google Scholar] [CrossRef]
- Cui, H.Y.; Zhou, H.; Lin, L. The specific antibacterial effect of the Salvia oil nanoliposomes against Staphylococcus aureus biofiims on milk container. Food Control 2016, 61, 92–98. [Google Scholar] [CrossRef]
- Hu, W.; Li, C.Z.; Dai, J.M.; Cui, H.Y.; Lin, L. Antibacterial activity and mechanism of Litsea cubeba essential oil against methicillin-resistant Staphylococcus aureus (MRSA). Ind. Crops Prod. 2019, 130, 34–41. [Google Scholar] [CrossRef]
- Lu, X.; Feng, X.; Zhang, X.; Chukwu, M.N.; Osuji, C.O.; Elimelech, M. Fabrication of a Desalination Membrane with Enhanced Microbial Resistance through Vertical Alignment of Graphene Oxide. Environ. Sci. Technol. Lett. 2018, 5, 614–620. [Google Scholar] [CrossRef]
- Noureen, L.; Wang, Q.; Ismail, P.M.; Alomar, M.; Arshad, N.; Irshad, M.S.; Xu, Q.; Wang, X. Multifunctional aerogel with antibiofouling properties for efficient solar steam generation and seawater desalination. Nano Today 2024, 54, 102130. [Google Scholar] [CrossRef]
- Lin, L.; Wang, W.; Li, D.; Xu, S.; Sun, Y.; Li, L.; Fan, K.; Xing, C.; Zhang, L.; Li, J. Multifunctional graphene/Ag hydrogel with antimicrobial and catalytic properties for efficient solar-driven desalination and wastewater purification. Chem. Eng. J. 2023, 478, 147249. [Google Scholar] [CrossRef]
- Li, J.; Wang, X.; Lin, Z.; Xu, N.; Li, X.; Liang, J.; Zhao, W.; Lin, R.; Zhu, B.; Liu, G.; et al. Over 10 kg m−2 h−1 Evaporation Rate Enabled by a 3D Interconnected Porous Carbon Foam. Joule 2020, 4, 928–937. [Google Scholar] [CrossRef]
- Zhang, P.; Li, J.; Lv, L.; Zhao, Y.; Qu, L. Vertically Aligned Graphene Sheets Membrane for Highly Efficient Solar Thermal Generation of Clean Water. ACS Nano 2017, 11, 5087–5093. [Google Scholar] [CrossRef]
Design Type | Evaporation Rate (kg m−2 h−1) | Energy Conversion Efficiency | Design Description | Durability | References |
---|---|---|---|---|---|
Reducing the Enthalpy of Water Evaporation | 3.94 | 135.6% | Ti3C2Tx/GO/polyaniline hybrids | 8 h | [91] |
Reducing the Enthalpy of Water Evaporation | 3.39 | 104.1% | GO foam with numerous vertical channels | 10 days (10 h per day) | [92] |
Optimization for Environmental Energy Applications | 1.42 | 94.2% | Vertically oriented graphene on graphite felt sheets | / | [98] |
Optimization for Environmental Energy Applications | 1.48 | 92.9% | Bridge-arched and hollow melamine foam/rGO | Run the test 10 times | [99] |
Optimization for Environmental Energy Applications | 34.70 | 95.3% | 3D GO stalk | 45 h | [101] |
Water Transport Regulation | 5.98 | 73.0% | Laminated chitosan/graphene nanoplatelets | 30 h | [38] |
Water Transport Regulation | 1.57 | 95.2% | N-doped lignosulfonate/GO | 6 cycles with 24 h | [108] |
Monolayer Structure | 2.10 | 96.8% | CuO/Cu2O nanoparticles | 30 days | [116] |
Monolayer Structure | 1.63 | 88.0% | Hydrogel-reduced GO composite membrane | 8 days (8 h per day) | [117] |
Multilayer Structures | 2.54 | 91.1% | Graphene/CuO Composite | 8 h | [121] |
Photocatalytic Degradation of Organic Pollutants | 1.94 | 84.0% | rGO/FeOOH-based asymmetric evaporator | Run the test 15 times | [41] |
Photocatalytic Degradation of Organic Pollutants | 2.08 | 94.8% | GO/polypyrrole hybrid aerogel | 20 h | [126] |
Photocatalytic Degradation of Organic Pollutants | 12.70 | 88.9% | rGO-Pd catalytic evaporator | Run the test 8 times | [127] |
Reduction and Fixation of Heavy Metal Ions | 2.16 | 87.5% | Bi-MOF/graphene composite | Run the test 15 times | [43] |
Reduction and Fixation of Heavy Metal Ions | 6.46 | 90.3% | Ag-MnO2 nanostructure with N-doped graphene aerogel | 5-day cycle (8 h per day) | [130] |
Reduction and Fixation of Heavy Metal Ions | 1.80 | 70.0% | Cellulose graphene aerogel | Run the test 12 times | [131] |
Microbial Inactivation and Anti-biofouling | 1.31 | 86.8% | Ag3PO4-rGO nanocomposite | Run the test 7 times | [42] |
Microbial Inactivation and Anti-biofouling | 2.10 | 94.0% | Ag3VO4-rGO aerogel | Run the test 10 times | [135] |
Microbial Inactivation and Anti-biofouling | 3.09 | 122.7% | Graphene/silver composite hydrogel | Run the test 8 times | [136] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Wang, H.; Zhang, J. Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment. Catalysts 2025, 15, 336. https://doi.org/10.3390/catal15040336
Zhang Y, Wang H, Zhang J. Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment. Catalysts. 2025; 15(4):336. https://doi.org/10.3390/catal15040336
Chicago/Turabian StyleZhang, Yining, Huiqin Wang, and Jisheng Zhang. 2025. "Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment" Catalysts 15, no. 4: 336. https://doi.org/10.3390/catal15040336
APA StyleZhang, Y., Wang, H., & Zhang, J. (2025). Application of Graphene-Based Solar Driven Interfacial Evaporation-Coupled Photocatalysis in Water Treatment. Catalysts, 15(4), 336. https://doi.org/10.3390/catal15040336