In-Depth First-Principles Study of High-Performance M2XO2 MXene Cathode Catalysts for Sodium-Oxygen Batteries
Abstract
:1. Introduction
2. Results and Discussion
2.1. Structure Properties
2.2. NaxO2 Adsorption
2.3. Evaluation of Catalytic Activity
3. Materials and Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Zhu, Y.; Ge, M.; Ma, F.; Wang, Q.; Huang, P.; Lai, C. Multifunctional electrolyte additives for better metal batteries. Adv. Funct. Mater. 2024, 34, 2301964. [Google Scholar] [CrossRef]
- Khan, Z.; Vagin, M.; Crispin, X. Can hybrid Na–Air batteries outperform nonaqueous Na–O2 batteries? Adv. Sci. 2020, 7, 1902866. [Google Scholar] [CrossRef] [PubMed]
- Wu, Q.; Ma, Y.; Wang, H.; Zhang, S.; Huang, B.; Dai, Y. Trifunctional electrocatalysts with high efficiency for the oxygen reduction reaction, oxygen evolution reaction, and Na–O2 battery in heteroatom-doped Janus monolayer MoSSe. ACS Appl. Mater. Interfaces 2020, 12, 24066–24073. [Google Scholar] [CrossRef] [PubMed]
- Lutz, L.; Dachraoui, W.; Demortière, A.; Johnson, L.R.; Bruce, P.G.; Grimaud, A.; Tarascon, J.-M. Operando monitoring of the solution-mediated discharge and charge processes in a Na–O2 battery using liquid-electrochemical transmission electron microscopy. Nano Lett. 2018, 18, 1280–1289. [Google Scholar] [CrossRef]
- Von Gunten, A.; Velinkar, K.; Nikolla, E.; Greeley, J. Elucidation of parasitic reaction mechanisms at interfaces in Na–O2 batteries. Chem. Mater. 2023, 35, 5945–5952. [Google Scholar] [CrossRef]
- Qin, B.; Wang, L.; Tsui, C.K.J.; Ho, C.-K.; Lam, W.-Y.A.; Li, F.; Li, C.-Y.V.; Chen, G.; Chan, K.-Y. Impacts of carbon mesopores on superoxide degradation in the cathode of a Na–O2 battery. Energy Fuels 2024, 38, 5522–5533. [Google Scholar] [CrossRef]
- Yuan, R.; Tan, C.; Zhang, Z.; Zeng, L.; Kang, W.; Liu, J.; Gao, X.; Tan, P.; Chen, Y.; Zhang, C. Topological engineering electrodes with ultrafast oxygen transport for super-power sodium-oxygen batteries. Adv. Mater. 2024, 36, 2311627. [Google Scholar] [CrossRef]
- Beermann, V.; Gocyla, M.; Willinger, E.; Rudi, S.; Heggen, M.; Dunin-Borkowski, R.E.; Willinger, M.-G.; Strasser, P. Rh-doped Pt–Ni octahedral nanoparticles: Understanding the correlation between elemental distribution, oxygen reduction reaction, and shape stability. Nano Lett. 2016, 16, 1719–1725. [Google Scholar] [CrossRef]
- Egorova, K.S.; Ananikov, V.P. Which metals are green for catalysis? Comparison of the toxicities of Ni, Cu, Fe, Pd, Pt, Rh, and Au salts. Angew. Chem. Int. Ed. 2016, 55, 12150–12162. [Google Scholar] [CrossRef]
- Jeong, Y.S.; Park, J.-B.; Jung, H.-G.; Kim, J.; Luo, X.; Lu, J.; Curtiss, L.; Amine, K.; Sun, Y.-K.; Scrosati, B.; et al. Study on the catalytic activity of noble metal nanoparticles on reduced graphene oxide for oxygen evolution reactions in lithium–air batteries. Nano Lett. 2015, 15, 4261–4268. [Google Scholar] [CrossRef]
- Yao, Y.; Wu, F. Turning waste chemicals into wealth—A new approach to synthesize efficient cathode material for an Li–O2 battery. ACS Appl. Mater. Interfaces 2017, 9, 31907–31912. [Google Scholar] [PubMed]
- Zhang, S.; Wen, Z.; Rui, K.; Shen, C.; Lu, Y.; Yang, J. Graphene nanosheets loaded with Pt nanoparticles with enhanced electrochemical performance for sodium–oxygen batteries. J. Mater. Chem. A 2015, 3, 2568–2571. [Google Scholar] [CrossRef]
- Benti, N.E.; Tiruye, G.A.; Mekonnen, Y.S. Boron and pyridinic nitrogen-doped graphene as potential catalysts for rechargeable non-aqueous sodium–air batteries. RSC Adv. 2020, 10, 21387–21398. [Google Scholar] [PubMed]
- Munuera, J.M.; Paredes, J.I.; Enterría, M.; Villar-Rodil, S.; Kelly, A.G.; Nalawade, Y.; Coleman, J.N.; Rojo, T.; Ortiz-Vitoriano, N.; Martínez-Alonso, A.; et al. High performance Na-O2 batteries and printed microsupercapacitors based on water-processable, biomolecule-assisted anodic graphene. ACS Appl. Mater. Interfaces 2020, 12, 494–506. [Google Scholar] [PubMed]
- Liu, Y.; Chi, X.; Han, Q.; Du, Y.; Yang, J.; Liu, Y. Vertically self-standing C@NiCo2O4 nanoneedle arrays as effective binder-free cathodes for rechargeable Na−O2 batteries. J. Alloys Compd. 2019, 772, 693–702. [Google Scholar]
- Wang, J.; Gao, R.; Zheng, L.; Chen, Z.; Wu, Z.; Sun, L.; Hu, Z.; Liu, X. CoO/CoP heterostructured nanosheets with an O–P interpenetrated interface as a bifunctional electrocatalyst for Na–O2 battery. ACS Catal. 2018, 8, 8953–8960. [Google Scholar] [CrossRef]
- Brady, A.; Liang, K.; Vuong, V.Q.; Sacci, R.; Prenger, K.; Thompson, M.; Matsumoto, R.; Cummings, P.; Irle, S.; Wang, H.-W.; et al. Pre-sodiated Ti3C2Tx MXene structure and behavior as electrode for sodium-ion capacitors. ACS Nano 2021, 15, 2994–3003. [Google Scholar]
- Verma, S.; Padha, B.; Young, S.-J.; Chu, Y.-L.; Bhardwaj, R.; Mishra, R.K.; Arya, S. 3D MXenes for supercapacitors: Current status, opportunities and challenges. Prog. Solid State Chem. 2023, 72, 100425. [Google Scholar]
- Shetti, N.P.; Mishra, A.; Basu, S.; Aminabhavi, T.M.; Alodhayb, A.; Pandiaraj, S. MXenes as Li-ion battery electrodes: Progress and outlook. Energy Fuels 2023, 37, 12541–12557. [Google Scholar]
- Zhang, Y.; Lu, Q.; Zhang, L.; Zhang, L.; Shao, G.; Zhang, P. Adjustable MXene-based materials in metal-ion batteries: Progress, prospects, and challenges. Small Struct. 2024, 5, 2300255. [Google Scholar]
- Dai, X.; Zhang, W.; Sun, Y.; Du, Z.; Tao, Z.; Wang, J.; Fang, W.; Xing, X.; Chen, Y.; Li, H.; et al. Niobium oxide/MXene heterostructure for simultaneous production of ammonia and energy via rechargeable Zn-N2 battery system. J. Energy Chem. 2025, 103, 448–457. [Google Scholar]
- Zhu, L.; Wang, J.; Liu, J.; Wang, R.; Lin, M.; Wang, T.; Zhen, Y.; Xu, J.; Zhao, L. First principles study of the structure–performance relation of pristine Wn+1Cn and oxygen-functionalized Wn+1CnO2 MXenes as cathode catalysts for Li-O2 batteries. Nanmaterials 2024, 14, 666. [Google Scholar]
- Mudassar Aslam, M.; Noor, T.; Iqbal, N. Advances in MXenes synthesis and MXenes derived electrocatalysts for oxygen electrode in metal-air batteries: A review. Mater. Sci. Eng. B 2023, 292, 116400. [Google Scholar]
- Min, Y.; Yuan, H.; Wang, W.; Xu, L. Design of heterostructures of MXene/Two-dimensional organic frameworks for Na–O2 batteries with a new mechanism and a new descriptor. J. Phys. Chem. Lett. 2021, 12, 2742–2748. [Google Scholar] [PubMed]
- Tang, C.; Min, Y.; Chen, C.; Xu, W.; Xu, L. Potential applications of heterostructures of TMDs with MXenes in sodium-ion and Na–O2 batteries. Nano Lett. 2019, 19, 5577–5586. [Google Scholar]
- He, X.; Jin, S.; Miao, L.; Cai, Y.; Hou, Y.; Li, H.; Zhang, K.; Yan, Z.; Chen, J. A 3D hydroxylated MXene/carbon nanotubes composite as a scaffold for dendrite-free sodium-metal electrodes. Angew. Chem. Int. Ed. 2020, 59, 16705–16711. [Google Scholar]
- Huang, W.; Zhang, J.; Deng, G.; Zhu, G.; Chen, Y.; Xu, C.; Cheng, J. MXene-supported Co–S–N–C catalysts with enhanced oxygen reduction reaction activity for anion exchange membrane fuel cells. ACS Appl. Energy Mater. 2025, 8, 2612–2619. [Google Scholar]
- Tan, L.; Wang, J.; Zhou, S.; Zhu, H.; Guo, J.; Chen, Y.; Li, X.; Dong, Z.; Zhang, Q.; Cong, Y. NiFe phosphides coupled on Ti3C2Tx MXene nanosheets for high-efficiency oxygen evolution reaction in alkaline medium. J. Colloid Interface Sci. 2025, 689, 137263. [Google Scholar]
- Shen, Y.; Lv, H.; Chen, L. Recent advances in two-dimensional MXenes for zinc-ion batteries. Mater. Chem. Front. 2023, 7, 2373–2404. [Google Scholar]
- Liu, C.; Yang, Y.; Tang, K.; Wu, F.; Liu, Y.; Yang, Z.; Chai, Y.; Sun, J. Properties of Ti2CO2 and Ti2CO2/G heterostructures as anodes of sodium-ion batteries by first-principles study. Theor. Chem. Acc. 2024, 143, 58. [Google Scholar]
- Liu, C.-Y.; Li, E.Y. Termination effects of Pt/v-Tin+1CnT2 MXene surfaces for oxygen reduction reaction catalysis. ACS Appl. Mater. Interfaces 2019, 11, 1638–1644. [Google Scholar] [PubMed]
- Wang, L.; Dou, Y.; Gan, R.; Zhao, Q.; Ma, Q.; Liao, Y.; Cheng, G.; Zhang, Y.; Wang, D. The single atom anchoring strategy: Rational design of MXene-based single-atom catalysts for electrocatalysis. Small 2025, 21, 2410772. [Google Scholar]
- Yorulmaz, U.; Özden, A.; Perkgöz, N.K.; Ay, F.; Sevik, C. Vibrational and mechanical properties of single layer MXene structures: A first-principles investigation. Nanotechnology 2016, 27, 335702. [Google Scholar] [PubMed]
- Liu, M.-Z.; Li, X.-H.; Cui, X.-H.; Yan, H.-T.; Zhang, R.-Z.; Cui, H.-L. The influence of different functional groups on quantum capacitance, electronic and optical properties of Hf2C MXene. Appl. Surf. Sci. 2022, 605, 154830. [Google Scholar]
- Mekonnen, Y.S.; Christensen, R.; Garcia-Lastra, J.M.; Vegge, T. Thermodynamic and kinetic limitations for peroxide and superoxide formation in Na–O2 batteries. J. Phys. Chem. Lett. 2018, 9, 4413–4419. [Google Scholar]
- Krishnamurthy, D.; Hansen, H.A.; Viswanathan, V. Universality in nonaqueous alkali oxygen reduction on metal surfaces: Implications for Li–O2 and Na–O2 batteries. ACS Energy Lett. 2016, 1, 162–168. [Google Scholar]
- Kumar, S.; Kishore, B.; Munichandraiah, N. Electrochemical studies of non-aqueous Na–O2 cells employing Ag-RGO as the bifunctional catalyst. RSC Adv. 2016, 6, 63477–63479. [Google Scholar]
- Tatara, R.; Leverick, G.M.; Feng, S.; Wan, S.; Terada, S.; Dokko, K.; Watanabe, M.; Shao-Horn, Y. Tuning NaO2 cube sizes by controlling Na+ and solvent activity in Na–O2 batteries. J. Phys. Chem. C 2018, 122, 18316–18328. [Google Scholar]
- Wang, J.; Zhang, K.; Pan, M.; Liu, Z.; Deng, H. Theoretically evaluating two-dimensional tetragonal Si2Se2 and SiSe2 nanosheets as cathode catalysts for alkali metal–O2 batteries. J. Phys. Chem. C 2023, 127, 21033–21046. [Google Scholar]
- Zheng, Z.; Jiang, J.; Guo, H.; Li, C.; Konstantinov, K.; Gu, Q.; Wang, J. Tuning NaO2 formation and decomposition routes with nitrogen-doped nanofibers for low overpotential Na-O2 batteries. Nano Energy 2021, 81, 105529. [Google Scholar]
- Clark, S.J.; Segall, M.D.; Pickard, C.J.; Hasnip, P.J.; Probert, M.I.J.; Refson, K.; Payne, M.C. First principles methods using CASTEP. Z. Kristallogr. Cryst. Mater. 2005, 220, 567–570. [Google Scholar]
- Payne, M.C.; Teter, M.P.; Allan, D.C.; Arias, T.A.; Joannopoulos, J.D. Iterative minimization techniques for ab initio total-energy calculations: Molecular dynamics and conjugate gradients. Rev. Mod. Phys. 1992, 64, 1045–1097. [Google Scholar]
- Perdew, J.P.; Burke, K.; Ernzerhof, M. Generalized gradient approximation made simple. Phys. Rev. Lett. 1996, 77, 3865–3868. [Google Scholar] [PubMed]
- Grimme, S. Semiempirical GGA-type density functional constructed with a long-range dispersion correction. J. Comput. Chem. 2006, 27, 1787–1799. [Google Scholar]
- Oschinski, H.; Morales-García, Á.; Illas, F. Interaction of first row transition metals with M2C (M = Ti, Zr, Hf, V, Nb, Ta, Cr, Mo, and W) MXenes: A quest for single-atom catalysts. J. Phys. Chem. C 2021, 125, 2477–2484. [Google Scholar]
- Bae, S.; Kang, Y.-G.; Khazaei, M.; Ohno, K.; Kim, Y.-H.; Han, M.J.; Chang, K.J.; Raebiger, H. Electronic and magnetic properties of carbide MXenes—The role of electron correlations. Mater. Today Adv. 2021, 9, 100118. [Google Scholar]
- Barman, S.C.; Jin, Y.; El-Demellawi, J.K.; Thomas, S.; Wehbe, N.; Lei, Y.; Hota, M.K.; Xu, X.; Hasan, E.A.; Mohammed, O.F.; et al. Antibody-functionalized MXene-based electrochemical biosensor for point-of-care detection of vitamin D deficiency. Commun. Mater. 2025, 6, 31. [Google Scholar]
- Saharan, S.; Ghanekar, U.; Meena, S. Sulphur-decorated Ti3C2 MXene structures as high-capacity electrode for Zn-ion batteries: A DFT study. Nanoscale 2025. [Google Scholar] [CrossRef]
- Meng, L.; Pokochueva, E.V.; Chen, Z.; Fedorov, A.; Viñes, F.; Illas, F.; Koptyug, I.V. Contrasting metallic (Rh0) and carbidic (2D-Mo2C MXene) surfaces in olefin hydrogenation provides insights on the origin of the pairwise hydrogen addition. ACS Catal. 2024, 14, 12500–12511. [Google Scholar]
- Grimme, S.; Antony, J.; Ehrlich, S.; Krieg, H. A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu. J. Chem. Phys. 2010, 132, 154104. [Google Scholar]
- Hamann, D.R.; Schlüter, M.; Chiang, C. Norm-conserving pseudopotentials. Phys. Rev. Lett. 1979, 43, 1494–1497. [Google Scholar]
- Blöchl, P.E. Projector augmented-wave method. Phys. Rev. B 1994, 50, 17953–17979. [Google Scholar]
Overpotentials | Ti2CO2 | Ti2NO2 | Zr2CO2 | Zr2NO2 | Hf2CO2 | Hf2NO2 |
---|---|---|---|---|---|---|
0.23 | 0.87 | 0.47 | 0.76 | 1.03 | 1.25 | |
0.32 | 0.92 | 0.88 | 1.05 | 2.68 | 2.85 | |
0.55 | 1.79 | 1.35 | 1.81 | 3.71 | 4.10 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhao, L.; Jiang, Z.; Ding, T.; Peng, Z.; Lin, M.; Ren, H.; Xu, J.; Xing, W. In-Depth First-Principles Study of High-Performance M2XO2 MXene Cathode Catalysts for Sodium-Oxygen Batteries. Catalysts 2025, 15, 311. https://doi.org/10.3390/catal15040311
Zhao L, Jiang Z, Ding T, Peng Z, Lin M, Ren H, Xu J, Xing W. In-Depth First-Principles Study of High-Performance M2XO2 MXene Cathode Catalysts for Sodium-Oxygen Batteries. Catalysts. 2025; 15(4):311. https://doi.org/10.3390/catal15040311
Chicago/Turabian StyleZhao, Lianming, Zhumei Jiang, Tao Ding, Zeyue Peng, Meixin Lin, Hao Ren, Jing Xu, and Wei Xing. 2025. "In-Depth First-Principles Study of High-Performance M2XO2 MXene Cathode Catalysts for Sodium-Oxygen Batteries" Catalysts 15, no. 4: 311. https://doi.org/10.3390/catal15040311
APA StyleZhao, L., Jiang, Z., Ding, T., Peng, Z., Lin, M., Ren, H., Xu, J., & Xing, W. (2025). In-Depth First-Principles Study of High-Performance M2XO2 MXene Cathode Catalysts for Sodium-Oxygen Batteries. Catalysts, 15(4), 311. https://doi.org/10.3390/catal15040311