Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement
Abstract
:1. Introduction
2. Results and Discussion
2.1. Characterization of Samples
2.2. Electrochemical Testing of Samples
3. Materials and Methods
3.1. Chemicals and Materials
3.2. Preparation of CoFe/NF and CoFeS/NF
3.3. Preparation of Pt/C/NF and RuO2/NF
3.4. Characterization of Materials
3.5. Electrochemical Characterization
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Akadiri, A.C.; Saint Akadiri, S.; Gungor, H. The role of natural gas consumption in Saudi Arabia’s output and its implication for trade and environmental quality. Energy Policy 2019, 129, 230–238. [Google Scholar] [CrossRef]
- Child, M.; Koskinen, O.; Linnanen, L.; Breyer, C. Sustainability guardrails for energy scenarios of the global energy transition. Renew. Sustain. Energy Rev. 2018, 91, 321–334. [Google Scholar] [CrossRef]
- Lewis, N.S.; Nocera, D.G. Powering the planet: Chemical challenges in solar energy utilization. Proc. Natl. Acad. Sci. USA 2006, 103, 15729–15735. [Google Scholar] [CrossRef] [PubMed]
- Turner, J.A. Sustainable Hydrogen Production. Science 2004, 305, 972–974. [Google Scholar] [CrossRef] [PubMed]
- Dresselhaus, M.S.; Thomas, I.L. Alternative energy technologies. Nature 2001, 414, 332–337. [Google Scholar] [CrossRef]
- Chu, S.; Cui, Y.; Liu, N. The path towards sustainable energy. Nat. Mater. 2017, 16, 16–22. [Google Scholar] [CrossRef]
- Carmo, M.; Fritz, D.L.; Merge, J.; Stolten, D. A comprehensive review on PEM water electrolysis. Int. J. Hydrogen Energy 2013, 38, 4901–4934. [Google Scholar] [CrossRef]
- Xiao, X.; Yang, L.J.; Sun, W.P.; Chen, Y.; Yu, H.; Li, K.K.; Jia, B.H.; Zhang, L.; Ma, T.Y. Electrocatalytic Water Splitting: From Harsh and Mild Conditions to Natural Seawater. Small 2022, 18, 2105830. [Google Scholar] [CrossRef]
- Shi, L.N.; Cui, L.T.; Ji, Y.R.; Xie, Y.; Zhu, Y.R.; Yi, T.F. Towards high-performance electrocatalysts: Activity optimization strategy of 2D MXenes-based nanomaterials for water-splitting. Coord. Chem. Rev. 2022, 469, 214668. [Google Scholar] [CrossRef]
- Sun, H.; Li, L.; Chen, Y.; Kim, H.; Xu, X.; Guan, D.; Hu, Z.; Zhang, L.; Shao, Z.; Jung, W. Boosting ethanol oxidation by NiOOH-CuO nano-heterostructure for energy-saving hydrogen production and biomass upgrading. Appl. Catal. B Environ. Energy 2023, 325, 122388. [Google Scholar] [CrossRef]
- Cao, Z.; Zhou, T.; Ma, X.; Shen, Y.; Deng, Q.; Zhang, W.; Zhao, Y. Hydrogen Production from Urea Sewage on NiFe-Based Porous Electrocatalysts. ACS Sustain. Chem. Eng. 2020, 8, 11007–11015. [Google Scholar] [CrossRef]
- Zhu, L.; Huang, J.; Meng, G.; Wu, T.; Chen, C.; Tian, H.; Chen, Y.; Kong, F.; Chang, Z.; Cui, X.; et al. Active site recovery and N-N bond breakage during hydrazine oxidation boosting the electrochemical hydrogen production. Nat. Commun. 2023, 14, 1997. [Google Scholar] [CrossRef]
- Qiao, L.L.; Zhu, A.Q.; Liu, D.; Feng, J.X.; Chen, Y.Y.; Chen, M.P.; Zhou, P.F.; Yin, L.H.; Wu, R.C.; Ng, K.W.; et al. Crystalline phosphides/amorphous oxides composite for energy-saving hydrogen production assisted by efficient urea oxidation reaction. Chem. Eng. J. 2022, 454, 140380. [Google Scholar] [CrossRef]
- Qiu, Y.F.; Dai, X.F.; Wang, Y.P.; Ji, X.Y.; Ma, Z.; Liu, S.Q. The polyoxometalates mediated preparation of phosphate-modified NiMoO4-x with abundant O-vacancies for H2 production via urea electrolysis. J. Colloid Interface Sci. 2022, 629, 297–309. [Google Scholar] [CrossRef] [PubMed]
- Patil, S.A.; Shrestha, N.K.; Inamdar, A.I.; Bathula, C.; Jung, J.; Hussain, S.; Nazir, G.; Kaseem, M.; Im, H.; Kim, H. Bimetallic Cu/Fe MOF-Based Nanosheet Film via Binder-Free Drop-Casting Route: A Highly Efficient Urea-Electrolysis Catalyst. Nanomaterials 2022, 12, 1916. [Google Scholar] [CrossRef]
- Zhang, Q.; Sun, M.S.; Zhu, J.; Yang, S.D.; Chen, L.; Yang, X.L.; Wang, P.; Li, K.; Xue, F.N.; Lu, Y.; et al. New strategy to synthesize oxygen vacancy-rich CoFe nanoneedles for overall water splitting and urea electrolysis. Chem. Eng. J. 2021, 432, 134275. [Google Scholar] [CrossRef]
- Zheng, Z.C.; Wu, D.; Chen, L.; Chen, S.; Wan, H.; Chen, G.; Zhang, N.; Liu, X.H.; Ma, R.Z. Collaborative optimization of thermodynamic and kinetic for Ni-based hydroxides in electrocatalytic urea oxidation reaction. Appl. Catal. B Environ. 2023, 340, 123214. [Google Scholar] [CrossRef]
- Jiang, H.; Sun, M.Z.; Wu, S.L.; Huang, B.L.; Lee, C.S.; Zhang, W.J. Oxygen-Incorporated NiMoP Nanotube Arrays as Efficient Bifunctional Electrocatalysts For Urea-Assisted Energy-Saving Hydrogen Production in Alkaline Electrolyte. Adv. Funct. Mater. 2021, 31, 2104951. [Google Scholar] [CrossRef]
- Huang, C.J.; Xu, H.M.; Shuai, T.Y.; Zhan, Q.N.; Zhang, Z.J.; Li, G.R. Modulation Strategies for the Preparation of High-Performance Catalysts for Urea Oxidation Reaction and Their Applications. Small 2023, 19, 2301130. [Google Scholar] [CrossRef]
- Diao, Y.X.; Liu, Y.S.; Hu, G.X.; Zhao, Y.Y.; Qian, Y.H.; Wang, H.D.; Shi, Y.; Li, Z. NiFe nanosheets as urea oxidation reaction electrocatalysts for urea removal and energy-saving hydrogen production. Biosens. Bioelectron. 2022, 211, 114380. [Google Scholar] [CrossRef]
- Ge, J.H.; Kuang, J.E.; Xiao, Y.H.; Guan, M.H.; Yang, C.Z. Recent development of nickel-based catalysts and in situ characterization techniques for mechanism understanding of the urea oxidation reaction. Surf. Interfaces 2023, 41, 103230. [Google Scholar] [CrossRef]
- Huang, C.J.; Zhan, Q.N.; Xu, H.M.; Zhu, H.R.; Shuai, T.Y.; Li, G.R. Fe-Doped Ni2P/NiSe2 Composite Catalysts for Urea Oxidation Reaction (UOR) for Energy-Saving Hydrogen Production by UOR-Assisted Water Splitting. Inorg. Chem. 2024, 63, 8925–8937. [Google Scholar] [CrossRef]
- Zhang, J.Y.; Wang, H.M.; Tian, Y.F.; Yan, Y.; Xue, Q.; He, T.; Liu, H.F.; Wang, C.D.; Chen, Y.; Xia, B.Y. Anodic hydrazine oxidation assists energy-efficient hydrogen evolution over a bifunctional cobalt perselenide nanosheet electrode. Angew. Chem. Int. Ed. 2018, 57, 7649–7653. [Google Scholar] [CrossRef]
- Wang, S.L.; Zhao, L.Y.; Li, J.X.; Tian, X.L.; Wu, X.; Feng, L.G. High valence state of Ni and Mo synergism in NiS2-MoS2 hetero-nanorods catalyst with layered surface structure for urea electrocatalysis. J. Energy Chem. 2021, 66, 483–492. [Google Scholar] [CrossRef]
- Liang, Y.H.; Liu, Q.; Asiri, A.M.; Sun, X.P. Enhanced electrooxidation of urea using NiMoO4·xH2O nanosheet arrays on Ni foam as anode. Electrochim. Acta 2014, 153, 456–460. [Google Scholar] [CrossRef]
- Yu, Z.Y.; Lang, C.C.; Gao, M.R.; Chen, Y.; Fu, Q.Q.; Duan, Y.; Yu, S.H. Ni–Mo–O nanorod-derived composite catalysts for efficient alkaline water-to-hydrogen conversion via urea electrolysis. Energy Environ. Sci. 2018, 11, 1890–1897. [Google Scholar] [CrossRef]
- Zhuo, X.Y.; Jiang, W.J.; Yu, T.Q.; Qian, G.F.; Chen, J.L.; Yang, H.F.; Yin, S.B. Crystalline-Amorphous Ni3S2-NiMoO4 Heterostructure for Durable Urea Electrolysis-Assisted Hydrogen Production at High Current Density. ACS Appl. Mater. Interfaces 2022, 14, 46481–46490. [Google Scholar] [CrossRef]
- Chen, J.L.; Wang, Y.M.; Qian, G.F.; Yu, T.Q.; Wang, Z.L.; Luo, L.; Shen, F.; Yin, S.B. In Situ Growth of Volcano-like FeIr Alloy on Nickel Foam as Efficient Bifunctional Catalyst for Overall Water Splitting at High Current Density. Chem. Eng. J. 2021, 421, 129892. [Google Scholar] [CrossRef]
- Wang, Z.J.; Guo, P.; Liu, M.; Guo, C.; Liu, H.J.; Wei, S.X.; Zhang, J.; Lu, X.Q. Rational Design of Metallic NiTex (x = 1 or 2) as Bifunctional Electrocatalysts for Efficient Urea Conversion. ACS Appl. Energy Mater. 2019, 2, 3363–3372. [Google Scholar] [CrossRef]
- Zhu, X.J.; Dou, X.Y.; Dai, J.; An, X.D.; Guo, Y.Q.; Zhang, L.D.; Tao, S.; Zhao, J.Y.; Chu, W.S.; Zeng, X.C.; et al. Metallic Nickel Hydroxide Nanosheets Give Superior Electrocatalytic Oxidation of Urea for Fuel Cells. Angew. Chem. Int. Ed. 2016, 55, 12465–12469. [Google Scholar] [CrossRef]
- Ren, H.N.; Yu, L.X.; Yang, L.P.; Huang, Z.H.; Kang, F.Y.; Lv, R.T. Efficient electrocatalytic overall water splitting and structural evolution of cobalt iron selenide by one-step electrodeposition. J. Energy Chem. 2021, 60, 194–201. [Google Scholar] [CrossRef]
- Shit, S.; Bolar, S.; Murmu, N.C.; Kuila, T. Tailoring the bifunctional electrocatalytic activity of electrodeposited molybdenum sulfide/iron oxide heterostructure to achieve excellent overall water splitting. Chem. Eng. J. 2021, 417, 129333. [Google Scholar] [CrossRef]
- Liu, S.S.; Ma, L.J.; Li, J.S. Facile preparation of amorphous NiFe hydroxide by corrosion engineering for electrocatalytic water and urea oxidation. J. Alloys Compd. 2022, 936, 168271. [Google Scholar] [CrossRef]
- Song, Y.L.; Huang, J.L.; Tang, C.L.; Wang, T.; Liu, Y.S.; He, X.S.; Xie, C.P.; Chen, G.; Deng, C.F.; He, Z.B. Improved Urea Oxidation Performance via Interface Electron Redistributions of the NiFe(OH)x/MnO2/NF p-p Heterojunction. Small 2024, 20, 2403612. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Cheng, C.Q.; Kuai, C.G.; Sokaras, D.; Zheng, X.L.; Sainio, S.; Lin, F.; Dong, C.K.; Nordlund, D.; Du, X.W. Unveiling the critical role of the Mn dopant in a NiFe(OH)2 catalyst for water oxidation. J. Mater. Chem. A 2020, 8, 17471–17476. [Google Scholar] [CrossRef]
- Li, Y.L.; Jia, B.M.; Chen, B.Y.; Liu, Q.L.; Cai, M.K.; Xue, Z.Q.; Fan, Y.N.; Wang, H.P.; Su, C.Y.; Li, G.Q. MOF-derived Mn doped porous CoP nanosheets as efficient and stable bifunctional electrocatalysts for water splitting. Dalton Trans. 2018, 47, 14679–14685. [Google Scholar] [CrossRef]
- Luo, M.; Liu, S.Q.; Zhu, W.W.; Ye, G.Y.; Wang, J.; He, Z. An electrodeposited MoS2-MoO3-x/Ni3S2 heterostructure electrocatalyst for efficient alkaline hydrogen evolution. Chem. Eng. J. 2021, 428, 131055. [Google Scholar] [CrossRef]
- Qin, H.Y.; Ye, Y.K.; Li, J.H.; Jia, W.Q.; Zheng, S.Y.; Cao, X.J.; Lin, G.L.; Jiao, L.F. Synergistic engineering of doping and vacancy in Ni(OH)2 to boost urea electrooxidation. Adv. Funct. Mater. 2022, 33, 2209698. [Google Scholar] [CrossRef]
- Yi, X.; He, X.; Yin, F.; Chen, B.; Li, G.; Yin, H. Amorphous Ni-Fe-Se hollow nanospheres electrodeposited on nickel foam as a highly active and bifunctional catalyst for alkaline water splitting. Dalton Trans. 2020, 49, 6764–6775. [Google Scholar] [CrossRef]
- Li, S.R.; Zhang, Y.P.; Yu, X.; Wang, Z.L.; Zhang, G.F.; Zhao, Z.Y.; Yan, Z.Y.; Xiao, X.C. One-step electrodeposition synthesis of amorphous NiCoFe(OH)x/NF as an efficient catalyst for urea-assisted overall water splitting. Electrochim. Acta 2023, 463, 142803. [Google Scholar] [CrossRef]
- Yao, L.C.; Zhang, H.M.; Humayun, M.; Fu, Y.J.; Xu, X.F.; Feng, C.D.; Wang, C.D. Constructing Nanoporous Crystalline/Amorphous NiFe2O4/NiO Electrocatalyst for High Efficiency OER/UOR. J. Alloys Compd. 2022, 936, 168206. [Google Scholar] [CrossRef]
- Wang, Z.L.; Li, S.R.; Zhang, G.F.; Yu, X.; Shi, Y.; Zhang, Y.P.; Xiao, X.C. Facile synthesis of FeCoW oxides: Effects of amorphous structure, electronic configuration and catalytic sites on water oxidation. J. Alloys Compd. 2022, 933, 167787. [Google Scholar] [CrossRef]
- Mosallaei, H.; Hadadzadeh, H.; Ensafi, A.A.; Mousaabadi, K.Z.; Weil, M.; Foelske, A.; Sauer, M. Evaluation of HER and OER electrocatalytic activity over RuO2–Fe2O3 nanocomposite deposited on HrGO nanosheets. Int. J. Hydrogen Energy 2022, 48, 1813–1830. [Google Scholar] [CrossRef]
- Raja, A.; Son, N.; Swaminathan, M.; Kang, M. Electrochemical behavior of heteroatom doped on reduced graphene oxide with RuO2 for HER, OER, and supercapacitor applications. J. Taiwan Inst. Chem. Eng. 2022, 138, 104471. [Google Scholar] [CrossRef]
- He, W.; Zhang, R.; Liu, H.; Hao, Q.; Li, Y.; Zheng, X.; Liu, C.; Zhang, J.; Xin, H. Atomically Dispersed Silver Atoms Embedded in NiCo Layer Double Hydroxide Boost Oxygen Evolution Reaction. Small 2023, 19, 2301610. [Google Scholar] [CrossRef]
- Ren, L.P.; Yang, D.; Li, J.Q.; Li, H.S.; Yang, J.H. Nitrogen doped carbon fiber supported nickel phosphide for efficient electrocatalytic overall urea splitting. Appl. Surf. Sci. 2023, 624, 157173. [Google Scholar] [CrossRef]
- Xie, H.; Feng, Y.F.; He, X.Y.; Zhu, Y.; Li, Z.Y.; Liu, H.H.; Zeng, S.Y.; Qian, Q.Z.; Zhang, G.Q. Construction of Nitrogen-Doped Biphasic Transition-Metal Sulfide Nanosheet Electrode for Energy-Efficient Hydrogen Production via Urea Electrolysis. Small 2022, 19, 2207425. [Google Scholar] [CrossRef]
- Shamloofard, M.; Shahrokhian, S. Morphology Modulation and Phase Transformation of Manganese-Cobalt Carbonate Hydroxide Caused by Fluoride Doping and Its Effect on Boosting the Overall Water Electrolysis. Inorg. Chem. 2023, 62, 1178–1191. [Google Scholar] [CrossRef]
- Shang, X.; Yan, K.; Lu, S.; Dong, B.; Gao, W.; Chi, J.; Liu, Z.; Chai, Y.; Liu, C. Controlling electrodeposited ultrathin amorphous Fe hydroxides film on V-doped nickel sulfide nanowires as efficient electrocatalyst for water oxidation. J. Power Sources 2017, 363, 44–53. [Google Scholar] [CrossRef]
- Zou, D.; Yi, Y.; Song, Y.; Guan, D.; Xu, M.; Ran, R.; Wang, W.; Zhou, W.; Shao, Z. The BaCe0.16Y0.04Fe0.8O3-δ nanocomposite: A new high-performance cobalt-free triple-conducting cathode for protonic ceramic fuel cells operating at reduced temperatures. J. Mater. Chem. A 2022, 10, 5381–5390. [Google Scholar] [CrossRef]
- Li, Q.; Chen, B.; Huang, L.; Zhu, S.; Qian, Y.; Wu, D.; Luo, S.; Xie, A. S-doped Ni(Fe)OOH bifunctional electrocatalysts for overall water splitting. Int. J. Hydrogen Energy 2023, 51, 1392–1406. [Google Scholar] [CrossRef]
- Zhang, L.S.; Wang, L.P.; Lin, H.P.; Liu, Y.X.; Ye, J.Y.; Wen, Y.Z.; Chen, A.; Wang, L.; Ni, F.L.; Zhou, Z.Y.; et al. A Lattice-Oxygen-Involved Reaction Pathway to Boost Urea Oxidation. Angew. Chem. Int. Ed. 2019, 58, 16820–16825. [Google Scholar] [CrossRef] [PubMed]
- Yu, T.Q.; Xu, Q.L.; Chen, J.L.; Qian, G.F.; Zhuo, X.Y.; Yang, H.F.; Yin, S.B. Boosting urea-assisted water splitting by constructing sphere-flower-like NiSe2-NiMoO4 heterostructure. Chem. Eng. J. 2022, 449, 137791. [Google Scholar] [CrossRef]
- Xu, H.; Liao, Y.; Gao, Z.F.; Qing, Y.; Wu, Y.Q.; Xia, L.Y. A branch-like Mo-doped Ni3S2 nanoforest as a high-efficiency and durable catalyst for overall urea electrolysis. J. Mater. Chem. A 2021, 9, 3418–3426. [Google Scholar] [CrossRef]
- Lebedeva, O.; Kultin, D.; Zakharov, V.; Kuznetsova, I.; Aslanov, L.; Kustov, L. Triazine derivatives as metal-free electrocatalysts: Do three nitrogen atoms mimic a metal? Sustain. Energy Fuels 2024, 9, 1464–1479. [Google Scholar] [CrossRef]
- Li, J.N.; Li, J.L.; Liu, T.; Chen, L.; Li, Y.F.; Wang, H.L.; Chen, X.R.; Gong, M.; Liu, Z.P.; Yang, X.J. Deciphering and suppressing over-oxidized nitrogen in nickel-catalyzed urea electrolysis. Angew. Chem. Int. Ed. 2021, 60, 26656–26662. [Google Scholar] [CrossRef]
- Zhu, D.D.; Zhang, H.Y.; Miao, J.H.; Hu, F.X.; Wang, L.; Tang, Y.J.; Qiao, M.; Guo, C.X. Strategies for designing more efficient electrocatalysts towards the urea oxidation reaction. J. Mater. Chem. A 2022, 10, 3296–3313. [Google Scholar] [CrossRef]
- Jiao, Y.; Zheng, Y.; Jaroniec, M.; Qiao, S.Z. Design of Electrocatalysts for Oxygen- and Hydrogen-Involving Energy Conversion Reactions. Chem. Soc. Rev. 2015, 44, 2060–2086. [Google Scholar] [CrossRef]
- Kordek, K.; Yin, H.J.; Rutkowski, P.; Zhao, H.J. Cobalt-based composite films on electrochemically activated carbon cloth as high performance overall water splitting electrodes. Int. J. Hydrogen Energy 2018, 44, 23–33. [Google Scholar] [CrossRef]
- Lai, Y.Q.; Li, Y.; Jiang, L.X.; Xu, W.; Lv, X.J.; Li, J.; Liu, Y.X. Electrochemical behaviors of co-deposited Pb/Pb-MnO2 composite anode in sulfuric acid solution—Tafel and EIS investigations. J. Electroanal. Chem. 2012, 671, 16–23. [Google Scholar] [CrossRef]
- Wu, J.; Yu, Z.J.; Zhang, Y.Y.; Niu, S.Q.; Zhao, J.Y.; Li, S.W.; Xu, P. Understanding the effect of second metal on CoM (M = Ni, Cu, Zn) metal-organic frameworks for electrocatalytic oxygen evolution reaction. Small 2021, 17, 2105150. [Google Scholar] [CrossRef] [PubMed]
- Wang, L.L.; He, W.; Yin, D.D.; Xie, Y.R.; Zhang, H.L.; Ma, Q.L.; Yu, W.S.; Yang, Y.; Dong, X.T. Achieving Efficient Urea Electrolysis by Spatial Confinement Effect and Heterostructure. Chem. Eng. J. 2023, 462, 142254. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, S.; Yao, L.; Wang, Z.; Xu, Z.; Xiao, X. Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement. Catalysts 2025, 15, 285. https://doi.org/10.3390/catal15030285
Li S, Yao L, Wang Z, Xu Z, Xiao X. Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement. Catalysts. 2025; 15(3):285. https://doi.org/10.3390/catal15030285
Chicago/Turabian StyleLi, Sirong, Lang Yao, Zhenlong Wang, Zhonghe Xu, and Xuechun Xiao. 2025. "Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement" Catalysts 15, no. 3: 285. https://doi.org/10.3390/catal15030285
APA StyleLi, S., Yao, L., Wang, Z., Xu, Z., & Xiao, X. (2025). Sulfur-Doped CoFe/NF Catalysts for High-Efficiency Electrochemical Urea Oxidation and Hydrogen Production: Structure Optimization and Performance Enhancement. Catalysts, 15(3), 285. https://doi.org/10.3390/catal15030285