Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization
Abstract
1. Introduction
2. Experiment
2.1. Chemicals and Materials
2.2. Preparation Process
2.3. Characterization
2.4. Photocatalytic Experiments
2.5. Experimental Design and Optimization
2.6. Reusability of TiO2/CdS
3. Results and Discussion
3.1. Characterization of the Photocatalyst
3.2. Quality Ratio
3.3. RSM–BBD
3.4. Reusability
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Paradina-Fernández, L.; Wünsch, U.; Bro, R.; Murphy, K. Direct Measurement of Organic Micropollutants in Water and Wastewater Using Fluorescence Spectroscopy. ACS EST Water 2023, 3, 3905–3915. [Google Scholar] [CrossRef]
- Pouramini, Z.; Mousavi, S.M.; Babapoor, A.; Hashemi, S.A.; Lai, C.W.; Mazaheri, Y.; Chiang, W.-H. Effect of Metal Atom in Zeolitic Imidazolate Frameworks (ZIF-8 & 67) for Removal of Dyes and Antibiotics from Wastewater: A Review. Catalysts 2023, 13, 155. [Google Scholar] [CrossRef]
- Xuan, J.; Feng, W.; Wang, J.; Wang, R.; Zhang, B.; Bo, L.; Chen, Z.-S.; Yang, H.; Sun, L. Antimicrobial peptides for combating drug-resistant bacterial infections. Drug Resist. Updat. 2023, 68, 100954. [Google Scholar] [CrossRef] [PubMed]
- Fang, S.-Y.; Zhang, P.; Gong, J.-L.; Tang, L.; Zeng, G.-M.; Song, B.; Cao, W.-C.; Li, J.; Ye, J. Construction of highly water-stable metal-organic framework UiO-66 thin-film composite membrane for dyes and antibiotics separation. Chem. Eng. J. 2020, 385, 123400. [Google Scholar] [CrossRef]
- Nasrollahi, N.; Vatanpour, V.; Khataee, A. Removal of antibiotics from wastewaters by membrane technology: Limitations, successes, and future improvements. Sci. Total Environ. 2022, 838, 156010. [Google Scholar] [CrossRef] [PubMed]
- Yao, B.; Luo, Z.; Du, S.; Yang, J.; Zhi, D.; Zhou, Y. Sustainable biochar/MgFe2O4 adsorbent for levofloxacin removal: Adsorption performances and mechanisms. Bioresour. Technol. 2021, 340, 125698. [Google Scholar] [CrossRef] [PubMed]
- Yu, F.; Sun, S.; Han, S.; Zheng, J.; Ma, J. Adsorption removal of ciprofloxacin by multi-walled carbon nanotubes with different oxygen contents from aqueous solutions. Chem. Eng. J. 2016, 285, 588–595. [Google Scholar] [CrossRef]
- Reddy, C.V.; Kakarla, R.R.; Cheolho, B.; Shim, J.; Aminabhavi, T.M. Heterostructured 2D/2D ZnIn2S4/g-C3N4 nanohybrids for photocatalytic degradation of antibiotic sulfamethoxazole and photoelectrochemical properties. Environ. Res. 2023, 225, 115585. [Google Scholar] [CrossRef] [PubMed]
- Xiao, M.; Li, R.; Yin, J.; Yang, J.; Hu, X.; Xiao, H.; Wang, W.; Yang, T. Enhanced photocatalytic oxidation of As(III) by TiO2 modified with Fe3O4 through Ti–O–Fe interface bonds. Colloids Surf. Physicochem. Eng. Asp. 2022, 651, 129678. [Google Scholar] [CrossRef]
- Mu, R.; Ao, Y.; Wu, T.; Wang, C.; Wang, P. Synthesis of novel ternary heterogeneous anatase-TiO2 (B) biphase nanowires/Bi4O5I2 composite photocatalysts for the highly efficient degradation of acetaminophen under visible light irradiation. J. Hazard. Mater. 2020, 382, 121083. [Google Scholar] [CrossRef]
- Kutuzova, A.; Dontsova, T.; Kwapinski, W. Application of TiO2-Based Photocatalysts to Antibiotics Degradation: Cases of Sulfamethoxazole, Trimethoprim and Ciprofloxacin. Catalysts 2021, 11, 728. [Google Scholar] [CrossRef]
- Mahmoud, M.E.; Ibrahim, G.A.A. Cr(VI) and doxorubicin adsorptive capture by a novel bionanocomposite of Ti-MOF@TiO2 incorporated with watermelon biochar and chitosan hydrogel. Int. J. Biol. Macromol. 2023, 253, 126489. [Google Scholar] [CrossRef] [PubMed]
- Abreu-Jaureguí, C.; Andronic, L.; Sepúlveda-Escribano, A.; Silvestre-Albero, J. Improved photocatalytic performance of TiO2/carbon photocatalysts: Role of carbon additive. Environ. Res. 2024, 251, 118672. [Google Scholar] [CrossRef]
- Anucha, C.B.; Altin, I.; Bacaksiz, E.; Stathopoulos, V.N. Titanium dioxide (TiO2)-based photocatalyst materials activity enhancement for contaminants of emerging concern (CECs) degradation: In the light of modification strategies. Chem. Eng. J. Adv. 2022, 10, 100262. [Google Scholar] [CrossRef]
- Jiang, M.; Zhang, M.; Wang, L.; Fei, Y.; Wang, S.; Núñez-Delgado, A.; Bokhari, A.; Race, M.; Khataee, A.; Jaromír Klemeš, J.; et al. Photocatalytic degradation of xanthate in flotation plant tailings by TiO2/graphene nanocomposites. Chem. Eng. J. 2022, 431, 134104. [Google Scholar] [CrossRef]
- Etacheri, V.; Di Valentin, C.; Schneider, J.; Bahnemann, D.; Pillai, S.C. Visible-light activation of TiO2 photocatalysts: Advances in theory and experiments. J. Photochem. Photobiol. C Photochem. Rev. 2015, 25, 1–29. [Google Scholar] [CrossRef]
- Kumari, M.L.A.; Devi, L.G.; Maia, G.; Chen, T.-W.; Al-Zaqri, N.; Ali, M.A. Mechanochemical synthesis of ternary heterojunctions TiO2(A)/TiO2(R)/ZnO and TiO2(A)/TiO2(R)/SnO2 for effective charge separation in semiconductor photocatalysis: A comparative study. Environ. Res. 2022, 203, 111841. [Google Scholar] [CrossRef] [PubMed]
- Acharya, R.; Pani, P. Visible light susceptible doped TiO2 photocatalytic systems: An overview. Mater. Today Proc. 2022, 67, 1276–1282. [Google Scholar] [CrossRef]
- Li, S.; Liu, Y.; Long, Y.; Mo, L.; Zhang, H.; Liu, J. Facile Synthesis of Bi2MoO6 Microspheres Decorated by CdS Nanoparticles with Efficient Photocatalytic Removal of Levfloxacin Antibiotic. Catalysts 2018, 8, 477. [Google Scholar] [CrossRef]
- Guo, X.; Chen, C.; Song, W.; Wang, X.; Di, W.; Qin, W. CdS embedded TiO2 hybrid nanospheres for visible light photocatalysis. J. Mol. Catal. Chem. 2014, 387, 1–6. [Google Scholar] [CrossRef]
- Sabir, M.; Rafiq, K.; Abid, M.Z.; Quyyum, U.; Shah, S.S.A.; Faizan, M.; Rauf, A.; Iqbal, S.; Hussain, E. Growth of tunable Au-BaO@TiO2/CdS heterostructures: Acceleration of hydrogen evolution from water splitting. Fuel 2023, 353, 129196. [Google Scholar] [CrossRef]
- Xiao, R.; Zhang, J.; Jiang, T.; Zhou, Y.; Wang, Y.; Xu, W.; Feng, Y. Highly ordered Janus CdS-Au-TiO2 Z-scheme structure with high efficiency in photocatalysis. Sci. China Chem. 2023, 66, 1722–1730. [Google Scholar] [CrossRef]
- Kaur, A.; Umar, A.; Anderson, W.A.; Kansal, S.K. Facile synthesis of CdS/TiO2 nanocomposite and their catalytic activity for ofloxacin degradation under visible illumination. J. Photochem. Photobiol. Chem. 2018, 360, 34–43. [Google Scholar] [CrossRef]
- Li, J.; Xia, Z.; Ma, D.; Liu, G.; Song, N.; Xiang, D.; Xin, Y.; Zhang, G.; Chen, Q. Improving photocatalytic activity by construction of immobilized Z-scheme CdS/Au/TiO2 nanobelt photocatalyst for eliminating norfloxacin from water. J. Colloid Interface Sci. 2021, 586, 243–256. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Nazari, S.; Joshaghani, M.; Zinadini, S.; Sibali, L.; Feyzi, M. Highly efficient azo dye degradation in a photocatalytic rotating disc reactor with deposited l-histidine-TiO2-CdS. Mater. Sci. Semicond. Process. 2022, 152, 107071. [Google Scholar] [CrossRef]
- Jin, X.; Huang, Y.; He, S.; Chen, G.; Liu, X.; He, C.; Du, C.; Chen, Q. Preparation of Co-Fe based Prussian blue analogs loaded nickel foams for Fenton-like degradation of tetracycline. Appl. Catal. Gen. 2023, 650, 118985. [Google Scholar] [CrossRef]
- Lu, M.; Sun, J.; Cui, B.; Zhang, J.; Ren, J.; Li, R. Construction of Pd, Ru/2D MXene nanosheets/3D self-supporting nickel foam composite electrode and its electrocatalytic synergistic degradation of antibiotics. Sep. Purif. Technol. 2024, 340, 126736. [Google Scholar] [CrossRef]
- Tang, J.; Cheng, Z.; Li, H.; Xiang, L. Electro-Chemical Degradation of Norfloxacin Using a PbO2-NF Anode Prepared by the Electrodeposition of PbO2 onto the Substrate of Nickel Foam. Catalysts 2022, 12, 1297. [Google Scholar] [CrossRef]
- Miao, F.; Lu, Y.; Tao, B.; Zhao, M.; Chu, P.K. Nickel foam-loaded Co-MOF@TiO2/MoS2 as electrode materials for dual-function devices for glucose detection and hydrogen evolution. Microchim. Acta 2024, 191, 469. [Google Scholar] [CrossRef] [PubMed]
- Jiao, F.-Z.; Wu, J.; Zhang, T.; Pan, R.-J.; Wang, Z.-H.; Yu, Z.-Z.; Qu, J. Simultaneous Solar-Thermal Desalination and Catalytic Degradation of Wastewater Containing Both Salt Ions and Organic Contaminants. ACS Appl. Mater. Interfaces 2023, 15, 41007–41018. [Google Scholar] [CrossRef] [PubMed]
- Yu, J.; Cong, S.; Liu, B.; Teng, W. Construction of MoS2/NiFe-Ni foam p-n heterojunction as photoanode for tetracycline degradation and simultaneous cathodic hydrogen evolution. J. Environ. Chem. Eng. 2022, 10, 108437. [Google Scholar] [CrossRef]
- Zhu, Y.F.; Zhou, L.; Jiang, Q.S. One-dimensional ZnO nanowires grown on three-dimensional scaffolds for improved photocatalytic activity. Ceram. Int. 2020, 46, 1158–1163. [Google Scholar] [CrossRef]
- Lv, C.; Lan, X.; Wang, L.; Dai, X.; Zhang, M.; Cui, J.; Yuan, S.; Wang, S.; Shi, J. Rapidly and highly efficient degradation of tetracycline hydrochloride in wastewater by 3D IO-TiO2 -CdS nanocomposite under visible light. Environ. Technol. 2021, 42, 377–387. [Google Scholar] [CrossRef] [PubMed]
- Shen, W.; Xiang, D.; Yang, J.; Tang, Y.; Xin, C.; Guo, Q.; Yu, X. Fabrication of beta zeolite supported Ti3+-TiO2/CdS composite for ultrahigh-performance photodegradation of tetracycline under visible-light illumination. Colloids Surf. Physicochem. Eng. Asp. 2022, 653, 129965. [Google Scholar] [CrossRef]
- Zhang, Y.; Shi, Z.; Luo, L.; Liu, Z.; Macharia, D.K.; Duoerkun, G.; Shen, C.; Liu, J.; Zhang, L. Construction of titanium dioxide/cadmium sulfide heterojunction on carbon fibers as weavable photocatalyst for eliminating various contaminants. J. Colloid Interface Sci. 2020, 561, 307–317. [Google Scholar] [CrossRef] [PubMed]
- Bi, X.; Du, G.; Kalam, A.; Sun, D.; Yu, Y.; Su, Q.; Xu, B.; Al-Sehemi, A.G. Tuning oxygen vacancy content in TiO2 nanoparticles to enhance the photocatalytic performance. Chem. Eng. Sci. 2021, 234, 116440. [Google Scholar] [CrossRef]
- Xu, J.; Cao, X. Characterization and mechanism of MoS2/CdS composite photocatalyst used for hydrogen production from water splitting under visible light. Chem. Eng. J. 2015, 260, 642–648. [Google Scholar] [CrossRef]
- Gao, B.; Zhao, X.; Liang, Z.; Wu, Z.; Wang, W.; Han, D.; Niu, L. CdS/TiO2 Nanocomposite-Based Photoelectrochemical Sensor for a Sensitive Determination of Nitrite in Principle of Etching Reaction. Anal. Chem. 2021, 93, 820–827. [Google Scholar] [CrossRef] [PubMed]
- Shi, C.; An, Y.; Gao, G.; Xue, J.; Algadi, H.; Huang, Z.; Guo, Z. Insights into Selective Glucose Photoreforming for Coproduction of Hydrogen and Organic Acid over Biochar-Based Heterojunction Photocatalyst Cadmium Sulfide/Titania/Biochar. ACS Sustain. Chem. Eng. 2024, 12, 2538–2549. [Google Scholar] [CrossRef]
- Ali, H. Facile synthesis of mesoporous TiO2-CdS-polyaniline ternary system with improved optical properties. Mater. Res. Express 2019, 6, 115529. [Google Scholar] [CrossRef]
- Du, Y.; Niu, X.; He, X.; Hou, K.; Liu, H.; Zhang, C. Synthesis and Photocatalytic Activity of TiO2/CdS Nanocomposites with Co-Exposed Anatase Highly Reactive Facets. Molecules 2021, 26, 6031. [Google Scholar] [CrossRef]
- Dai, Q.; Li, Y.; Qiu, Z.; Tian, H.; Pu, Y.; Chen, X.; Lv, B.; Wei, J.; Wang, W. CdS/ZnFe2O4 Core–Shell Nanorod Arrays on Modified TiO2 Photoanodes for Photoelectrochemical Water Splitting. ACS Appl. Nano Mater. 2024, 7, 17441–17450. [Google Scholar] [CrossRef]
- Rafiq, K.; Sabir, M.; Abid, M.Z.; Jalil, M.; Nadeem, M.A.; Iqbal, S.; Rauf, A.; Hussain, E. Tuning of TiO2 /CdS Hybrid Semiconductor with Au Cocatalysts: State-of-the-Art Design for Sunlight-Driven H 2 Generation from Water Splitting. Energy Fuels 2024, 38, 4625–4636. [Google Scholar] [CrossRef]
- Li, J.; Wang, L.; Wang, W.; Jia, X.; Zhang, Y.; Yang, H.; Li, Y.; Zhou, Q. Cooperative effects of surface plasmon resonance and type-II band alignment to significantly boost photoelectrochemical H2 generation of TiO2/CdS/TiN nanorod array photoanode. Appl. Catal. B Environ. 2023, 334, 122833. [Google Scholar] [CrossRef]
- Luo, T.; Sun, X.; Ma, D.; Wang, G.; Yang, F.; Zhang, Y.; Huang, J.; Zhang, H.; Wang, J.; Peng, F. Fabrication of TiO2 /CdS Heterostructure by Soluble Solid-State Titanium-oxo-Clusters for Fast Photocatalytic Degradation of Tetracycline. J. Phys. Chem. C 2023, 127, 1372–1380. [Google Scholar] [CrossRef]
- Sinar Mashuri, S.I.; Ibrahim, M.L.; Kasim, M.F.; Mastuli, M.S.; Rashid, U.; Abdullah, A.H.; Islam, A.; Asikin Mijan, N.; Tan, Y.H.; Mansir, N.; et al. Photocatalysis for Organic Wastewater Treatment: From the Basis to Current Challenges for Society. Catalysts 2020, 10, 1260. [Google Scholar] [CrossRef]
- Hassan, A.F.; El-Naggar, G.A.; Braish, A.G.; Abd El-Latif, M.M.; Shaltout, W.A.; Elsayed, M.S. Fabrication of titania/calcium alginate nanocomposite matrix for efficient adsorption and photocatalytic degradation of malachite green. Int. J. Biol. Macromol. 2023, 249, 126075. [Google Scholar] [CrossRef] [PubMed]
- Silerio-Vázquez, F.D.J.; González-Burciaga, L.A.; Antileo, C.; Núñez-Núñez, C.M.; Proal-Nájera, J.B. Photocatalytic degradation of antibiotics in water via TiO2-x: Research needs for technological advancements. J. Hazard. Mater. Adv. 2024, 16, 100506. [Google Scholar] [CrossRef]
- Zhang, T.; Liu, Y.; Rao, Y.; Li, X.; Yuan, D.; Tang, S.; Zhao, Q. Enhanced photocatalytic activity of TiO2 with acetylene black and persulfate for degradation of tetracycline hydrochloride under visible light. Chem. Eng. J. 2020, 384, 123350. [Google Scholar] [CrossRef]
- Ebrahimi-Koodehi, S.; Ghodsi, F.E.; Mazloom, J. Ni/Mn metal–organic framework decorated bacterial cellulose (Ni/Mn-MOF@BC) and nickel foam (Ni/Mn-MOF@NF) as a visible-light photocatalyst and supercapacitive electrode. Sci. Rep. 2023, 13, 19260. [Google Scholar] [CrossRef] [PubMed]
- Sadegh Jafari Zadegan, M.; Sabbaghi, S.; Rasouli, K.; Moosaei, R.; Mahdi Zerafat, M. Innovatively-synthesized α-Fe2O3/Ti3C2Tx MXene nanocomposite by dry-impregnation method: Photocatalyst characterization and influence of operational parameters on highly efficient tetracycline degradation. Inorg. Chem. Commun. 2024, 163, 112314. [Google Scholar] [CrossRef]
- Chakachaka, V.M.; Tshangana, C.S.; Mamba, B.B.; Muleja, A.A. CFD-Assisted Process Optimization of an Integrated Photocatalytic Membrane System for Water Treatment. Membranes 2023, 13, 827. [Google Scholar] [CrossRef] [PubMed]
- Fu, Y.; Ren, Z.; Wu, J.; Li, Y.; Liu, W.; Li, P.; Xing, L.; Ma, J.; Wang, H.; Xue, X. Direct Z-scheme heterojunction of ZnO/MoS2 nanoarrays realized by flowing-induced piezoelectric field for enhanced sunlight photocatalytic performances. Appl. Catal. B Environ. 2021, 285, 119785. [Google Scholar] [CrossRef]
- Cheikh, S.; Imessaoudene, A.; Bollinger, J.-C.; Hadadi, A.; Manseri, A.; Bouzaza, A.; Assadi, A.; Amrane, A.; Zamouche, M.; El Jery, A.; et al. Complete Elimination of the Ciprofloxacin Antibiotic from Water by the Combination of Adsorption–Photocatalysis Process Using Natural Hydroxyapatite and TiO2. Catalysts 2023, 13, 336. [Google Scholar] [CrossRef]
- Santoso, S.P.; Angkawijaya, A.E.; Bundjaja, V.; Hsieh, C.-W.; Go, A.W.; Yuliana, M.; Hsu, H.-Y.; Tran-Nguyen, P.L.; Soetaredjo, F.E.; Ismadji, S. TiO2/guar gum hydrogel composite for adsorption and photodegradation of methylene blue. Int. J. Biol. Macromol. 2021, 193, 721–733. [Google Scholar] [CrossRef]
- Zhang, B.; He, X.; Yu, C.; Liu, G.; Ma, D.; Cui, C.; Yan, Q.; Zhang, Y.; Zhang, G.; Ma, J.; et al. Degradation of tetracycline hydrochloride by ultrafine TiO2 nanoparticles modified g-C3N4 heterojunction photocatalyst: Influencing factors, products and mechanism insight. Chin. Chem. Lett. 2022, 33, 1337–1342. [Google Scholar] [CrossRef]
- Zangeneh, H.; Zinatizadeh, A.A.; Zinadini, S.; Feyzi, M.; Rafiee, E.; Bahnemann, D.W. A novel L-Histidine (C, N) codoped-TiO2-CdS nanocomposite for efficient visible photo-degradation of recalcitrant compounds from wastewater. J. Hazard. Mater. 2019, 369, 384–397. [Google Scholar] [CrossRef]
- Zeinali Heris, S.; Etemadi, M.; Mousavi, S.B.; Mohammadpourfard, M.; Ramavandi, B. Preparation and characterizations of TiO2/ZnO nanohybrid and its application in photocatalytic degradation of tetracycline in wastewater. J. Photochem. Photobiol. Chem. 2023, 443, 114893. [Google Scholar] [CrossRef]
Independent Variables | Symbols | Coded Levels | ||
---|---|---|---|---|
−1 | 0 | 1 | ||
Catalyst Dose | A | 20 | 30 | 40 |
Agitating rate | B | 100 | 300 | 500 |
pH | C | 6 | 9 | 12 |
Source | Sum of Squares | df | Mean Square | F-Value | p-Value | |
---|---|---|---|---|---|---|
Model | 1338.61 | 9 | 148.73 | 115.99 | <0.0001 | significant |
A | 20.67 | 1 | 20.67 | 16.12 | 0.0051 | |
B | 108.71 | 1 | 108.71 | 84.78 | <0.0001 | |
C | 7.74 | 1 | 7.74 | 6.04 | 0.0436 | |
AB | 3.13 | 1 | 3.13 | 2.44 | 0.1620 | |
AC | 9.86 | 1 | 9.86 | 7.69 | 0.0276 | |
BC | 68.81 | 1 | 68.81 | 53.66 | 0.0002 | |
A2 | 56.92 | 1 | 56.92 | 44.39 | 0.0003 | |
B2 | 830.49 | 1 | 830.49 | 647.66 | <0.0001 | |
C2 | 151.79 | 1 | 151.79 | 118.38 | <0.0001 | |
Residual | 8.98 | 7 | 1.28 | 1.28 | ||
Lack of Fit | 6.68 | 3 | 2.23 | 2.23 | 3.88 | not significant |
Pure Error | 2.30 | 4 | 4 | 0.5740 | ||
Cor Total | 1347.58 | 16 | 16 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, K.; Ma, L.; Duan, J.; Fang, Z.; Yang, Z. Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization. Catalysts 2025, 15, 113. https://doi.org/10.3390/catal15020113
Zhu K, Ma L, Duan J, Fang Z, Yang Z. Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization. Catalysts. 2025; 15(2):113. https://doi.org/10.3390/catal15020113
Chicago/Turabian StyleZhu, Kefu, Lizhe Ma, Jieli Duan, Zhiyong Fang, and Zhou Yang. 2025. "Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization" Catalysts 15, no. 2: 113. https://doi.org/10.3390/catal15020113
APA StyleZhu, K., Ma, L., Duan, J., Fang, Z., & Yang, Z. (2025). Photocatalytic Degradation of Tetracycline Hydrochloride Using TiO2/CdS on Nickel Foam Under Visible Light and RSM–BBD Optimization. Catalysts, 15(2), 113. https://doi.org/10.3390/catal15020113