Rational Designing and Stepwise Cascade for Efficient Biosynthesis of Raspberry Ketone
Abstract
1. Introduction
2. Results and Discussion
2.1. Optimization of DERAEc Stability in Acetone by Rational Design
2.1.1. Determination of Mutation Sites in DERAEc by Molecular Dynamics Simulation
2.1.2. Determination of Mutation Sites in Derec by Molecular Docking Results
2.1.3. Validation of Advantageous Mutants by Molecular Dynamics Simulations
2.1.4. Experimental Validation of Mutant Strains
2.2. Redesign of the Coenzyme Cycle System
2.3. Biosynthesis of Raspberry Ketone with Stepwise Cascade Strategy
3. Materials and Methods
3.1. Strains and Chemical Compounds
3.2. Construction of a Mutant Library
3.3. Preparation of Whole-Cell Catalysts with DERAEc (WT) and Its Mutants
3.4. Activity Assay for Whole-Cell with DERAEc (WT) and Its Mutants
3.5. Cascade Biosynthesis of Raspberry Ketone
3.5.1. Whole-Cell Biosynthesis of 4-HBA
3.5.2. Whole-Cell Biosynthesis of RK
3.6. Molecular Dynamics Simulation and Other Analysis Tools
3.7. Analytical Methods
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Moore, S.; Hleba, Y.; Bischoff, S.; Bell, D.; Polizzi, K.; Freemont, P. Refactoring of a synthetic raspberry ketone pathway with EcoFlex. Microb. Cell Factories 2021, 20, 2. [Google Scholar]
- Li, X.; Wei, T.; Wu, M.; Chen, F.; Zhang, P.; Deng, Z.; Luo, T. Potential metabolic activities of raspberry ketone. J. Food Biochem. 2022, 46, 10. [Google Scholar] [CrossRef]
- Rao, S.; Kurakula, M.; Mamidipalli, N.; Tiyyagura, P.; Patel, B.; Manne, R. Pharmacological exploration of phenolic compound: Raspberry ketone—Update 2020. Plants 2021, 10, 17. [Google Scholar] [CrossRef] [PubMed]
- Park, K. Raspberry ketone increases both lipolysis and fatty acid oxidation in 3T3-L1 adipocytes. Planta Medica 2010, 76, 1654–1658. [Google Scholar] [CrossRef] [PubMed]
- Lim, S.; Choi, C. Potentials of raspberry ketone as a natural antioxidant. Antioxidants 2021, 10, 13. [Google Scholar] [CrossRef] [PubMed]
- Pedapudi, S.; Chin, C.; Pedersen, H. Production and elicitation of benzalacetone and the raspberry ketone in cell suspension cultures of Rubus idaeus. Biotechnol. Prog. 2000, 16, 346–349. [Google Scholar] [CrossRef] [PubMed]
- Yin, X.; Liu, Y.; Meng, L.; Zhou, H.; Wu, J.; Yang, L. Semi-rational hinge engineering: Modulating the conformational transformation of glutamate dehydrogenase for enhanced reductive amination activity towards non-natural substrates. Catal. Sci. Technol. 2020, 10, 3376–3386. [Google Scholar] [CrossRef]
- Gu, J.; Sim, B.; Li, J.; Yu, Y.; Qin, L.; Wu, L.; Liu, H.; Xu, Y.; Zhao, Y.; Nie, Y. Coevolution-based protein engineering of alcohol dehydrogenase at distal sites enables enzymatic compatibility with substrate diversity and stereoselectivity. Int. J. Biol. Macromol. 2025, 306, 13. [Google Scholar] [CrossRef]
- Wang, Z.; Gong, J.; Feng, D.; Su, C.; Li, H.; Rao, Z.; Lu, Z.; Shi, J.; Xu, Z. Geometric remodeling of nitrilase active pocket based on ALF-scanning strategy to enhance aromatic nitrile substrate preference and catalytic efficiency. Appl. Environ. Microbiol. 2023, 89, 20. [Google Scholar] [CrossRef]
- Roy, J.; Ahn, H.; Lee, J.; Kim, J.; Yoo, S.; Kim, Y. Production of highly water-soluble genistein α-diglucoside using an engineered O-α-glycoligase with enhanced transglycosylation activity and altered substrate specificity. Food Chem. 2024, 437, 9. [Google Scholar] [CrossRef]
- Häkkinen, S.; Seppänen-Laakso, T.; Oksman-Caldentey, K.; Rischer, H. Bioconversion to raspberry ketone is achieved by several non-related plant cell cultures. Front. Plant Sci. 2015, 6, 9. [Google Scholar] [CrossRef]
- Lee, D.; Lloyd, N.; Pretorius, I.; Borneman, A. Heterologous production of raspberry ketone in the wine yeast Saccharomyces cerevisiae via pathway engineering and synthetic enzyme fusion. Microb. Cell Factories 2016, 15, 7. [Google Scholar] [CrossRef]
- Milke, L.; Mutz, M.; Marienhagen, J. Synthesis of the character impact compound raspberry ketone and additional flavoring phenylbutanoids of biotechnological interest with Corynebacterium glutamicum. Microb. Cell Factories 2020, 19, 12. [Google Scholar] [CrossRef]
- Chang, C.; Liu, B.; Bao, Y.; Tao, Y.; Liu, W. Efficient bioconversion of raspberry ketone in Escherichia coli using fatty acids feedstocks. Microb. Cell. Fact. 2021, 20, 12. [Google Scholar] [CrossRef]
- Wang, C.; Zheng, P.; Chen, P. Construction of synthetic pathways for raspberry ketone production in engineered Escherichia coli. Appl. Microbiol. Biotechnol. 2019, 103, 3715–3725. [Google Scholar] [CrossRef] [PubMed]
- Yang, B.; Zheng, P.; Wu, D.; Chen, P. Efficient biosynthesis of raspberry ketone by engineered Escherichia coli coexpressing zingerone synthase and glucose dehydrogenase. J. Agric. Food Chem. 2021, 69, 2549–2556. [Google Scholar] [CrossRef]
- Liu, L.; Wang, X.; Wu, Y.; Li, H.; Wang, J.; Li, C.; Zheng, H.; Ni, J. Chemoenzymatic platform with coordinated cofactor self-circulation for lignin valorization. Nat. Synth. 2025, 4, 13. [Google Scholar] [CrossRef]
- Feron, G.; Mauvais, G.; Martin, F.; Sémon, E.; Blin-Perrin, C. Microbial production of 4-hydroxybenzylidene acetone, the direct precursor of raspberry ketone. Lett. Appl. Microbiol. 2007, 45, 29–35. [Google Scholar] [CrossRef] [PubMed]
- Nara, T.; Togashi, H.; Ono, S.; Egami, M.; Sekikawa, C.; Suzuki, Y.; Masuda, I.; Ogawa, J.; Horinouchi, N.; Shimizu, S.; et al. Improvement of aldehyde tolerance and sequential aldol condensation activity of deoxyriboaldolase via immobilization on interparticle pore type mesoporous silica. J. Mol. Catal. B-Enzym. 2011, 68, 181–186. [Google Scholar] [CrossRef]
- Heine, A.; Luz, J.G.; Wong, C.-H.; Wilson, I.A. Analysis of the class I aldolase binding site architecture based on the crystal structure of 2-deoxyribose-5-phosphate aldolase at 0.99 Å resolution. J. Mol. Biol. 2004, 343, 1019–1034. [Google Scholar] [CrossRef]
- Li, J.; Yang, J.; Men, Y.; Zeng, Y.; Zhu, Y.; Dong, C.; Sun, Y.; Ma, Y. Biosynthesis of 2-deoxysugars using whole-cell catalyst expressing 2-deoxy-d-ribose 5-phosphate aldolase. Appl. Microbiol. Biotechnol. 2015, 99, 7963–7972. [Google Scholar] [CrossRef]
- Voutilainen, S.; Heinonen, M.; Andberg, M.; Jokinen, E.; Maaheimo, H.; Pääkkönen, J.; Hakulinen, N.; Rouvinen, J.; Lähdesmäki, H.; Kaski, S.; et al. Substrate specificity of 2-deoxy-D-ribose 5-phosphate aldolase (DERA) assessed by different protein engineering and machine learning methods. Appl. Microbiol. Biotechnol. 2020, 104, 10515–10529. [Google Scholar] [CrossRef]
- DeSantis, G.; Liu, J.; Clark, D.P.; Heine, A.; Wilson, I.A.; Wong, C.-H. Structure-based mutagenesis approaches toward expanding the substrate specificity of d-2-Deoxyribose-5-phosphate aldolase. Bioorganic Med. Chem. 2003, 11, 43–52. [Google Scholar] [CrossRef]
- Lee, H.; Yoo, S.; Yoo, H.; Yun, C.; Kim, G. Expression and Characterization of Monomeric Recombinant Isocitrate Dehydrogenases from Corynebacterium glutamicum and Azotobacter vinelandii for NADPH Regeneration. Int. J. Mol. Sci. 2022, 23, 12. [Google Scholar] [CrossRef]
- Beekwilder, J.; van der Meer, I.M.; Sibbesen, O.; Broekgaarden, M.; Qvist, I.; Mikkelsen, J.D.; Hall, R.D. Microbial production of natural raspberry ketone. Biotechnol. J. 2007, 2, 1270–1279. [Google Scholar] [CrossRef] [PubMed]
- Morris, G.; Huey, R.; Lindstrom, W.; Sanner, M.; Belew, R.; Goodsell, D.; Olson, A. AutoDock4 and AutoDockTools4: Automated Docking with Selective Receptor Flexibility. J. Comput. Chem. 2009, 30, 2785–2791. [Google Scholar] [CrossRef] [PubMed]
- Pettersen, E.; Goddard, T.; Huang, C.; Couch, G.; Greenblatt, D.; Meng, E.; Ferrin, T. UCSF chimera—A visualization system for exploratory research and analysis. J. Comput. Chem. 2004, 25, 1605–1612. [Google Scholar] [CrossRef] [PubMed]
- Yuan, S.; Chan, H.; Hu, Z. Using PyMOL as a platform for computational drug design. Wiley Interdiscip. Rev.-Comput. Mol. Sci. 2017, 7, 10. [Google Scholar] [CrossRef]






Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, Y.; Shang, K.; Gao, X.; Zhu, X.; Ling, M.; Zheng, P.; Xu, S.; Chen, P. Rational Designing and Stepwise Cascade for Efficient Biosynthesis of Raspberry Ketone. Catalysts 2025, 15, 1148. https://doi.org/10.3390/catal15121148
Yang Y, Shang K, Gao X, Zhu X, Ling M, Zheng P, Xu S, Chen P. Rational Designing and Stepwise Cascade for Efficient Biosynthesis of Raspberry Ketone. Catalysts. 2025; 15(12):1148. https://doi.org/10.3390/catal15121148
Chicago/Turabian StyleYang, Yang, Kangkang Shang, Xiaorui Gao, Xingmiao Zhu, Mengying Ling, Pu Zheng, Shichao Xu, and Pengcheng Chen. 2025. "Rational Designing and Stepwise Cascade for Efficient Biosynthesis of Raspberry Ketone" Catalysts 15, no. 12: 1148. https://doi.org/10.3390/catal15121148
APA StyleYang, Y., Shang, K., Gao, X., Zhu, X., Ling, M., Zheng, P., Xu, S., & Chen, P. (2025). Rational Designing and Stepwise Cascade for Efficient Biosynthesis of Raspberry Ketone. Catalysts, 15(12), 1148. https://doi.org/10.3390/catal15121148

